Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Malar J ; 23(1): 156, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773487

ABSTRACT

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Subject(s)
Anopheles , Gene Drive Technology , Malaria , Mosquito Control , Mosquito Vectors , Mosquito Control/methods , Mosquito Vectors/genetics , Malaria/prevention & control , Malaria/transmission , Animals , Anopheles/genetics , Gene Drive Technology/methods
2.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
3.
Heredity (Edinb) ; 132(5): 232-246, 2024 May.
Article in English | MEDLINE | ID: mdl-38494530

ABSTRACT

Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.


Subject(s)
Anopheles , Gene Drive Technology , Genetics, Population , Malaria , Microsatellite Repeats , Mosquito Vectors , Anopheles/genetics , Animals , Mosquito Vectors/genetics , Malaria/transmission , Gene Drive Technology/methods , Melanesia , Alleles
4.
G3 (Bethesda) ; 14(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38306583

ABSTRACT

A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9. We find that targeting the wupA gene during spermatogenesis skews the sex ratio so fewer than 14% of progeny are daughters. That is unless we cross the mutagenic males to X^XY female flies that bear attached-X chromosomes, which reverses the inheritance of the poisoned X chromosome so that sons inherit it from their father, in which case only 2% of the progeny are sons. These sex ratio biases suggest that most of the CRISPR/Cas9 mutants we induced in the wupA gene are haplolethal but some are recessive lethal. The males generating wupA mutants do not suffer from reduced fertility; rather, the haplolethal mutants arrest development in the late stages of embryogenesis well after fertilized eggs have been laid. This provides a distinct advantage over genetic manipulation strategies involving sterility which can be countered by the remating of females. We also find that wupA mutants that destroy the nuclear localization signal of shorter isoforms are not haplolethal as long as the open reading frame remains intact. Like D. melanogaster, wupA orthologs of Drosophila suzukii and Anopheles mosquitos are found on X chromosomes making wupA a viable X-poisoning target in multiple species.


Subject(s)
Drosophila Proteins , Gene Drive Technology , Animals , Female , Male , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Gene Drive Technology/methods , Troponin I/genetics , X Chromosome/genetics
5.
Genes (Basel) ; 14(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38136999

ABSTRACT

Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.


Subject(s)
CRISPR-Cas Systems , Gene Drive Technology , Gene Drive Technology/methods , Ecosystem , Weed Control/methods , Plant Weeds/genetics
6.
Malar J ; 22(1): 384, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129897

ABSTRACT

BACKGROUND: Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS: A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS: Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION: Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.


Subject(s)
Culicidae , Gene Drive Technology , Malaria , Animals , Humans , Gene Drive Technology/methods , Africa South of the Sahara , Government , Malaria/prevention & control
7.
Nat Commun ; 14(1): 6388, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37821497

ABSTRACT

One method for reducing the impact of vector-borne diseases is through the use of CRISPR-based gene drives, which manipulate insect populations due to their ability to rapidly propagate desired genetic traits into a target population. However, all current gene drives employ a Cas9 nuclease that is constitutively active, impeding our control over their propagation abilities and limiting the generation of alternative gene drive arrangements. Yet, other nucleases such as the temperature sensitive Cas12a have not been explored for gene drive designs in insects. To address this, we herein present a proof-of-concept gene-drive system driven by Cas12a that can be regulated via temperature modulation. Furthermore, we combined Cas9 and Cas12a to build double gene drives capable of simultaneously spreading two independent engineered alleles. The development of Cas12a-mediated gene drives provides an innovative option for designing next-generation vector control strategies to combat disease vectors and agricultural pests.


Subject(s)
CRISPR-Cas Systems , Gene Drive Technology , CRISPR-Cas Systems/genetics , Gene Drive Technology/methods , Agriculture , Endonucleases/genetics , Alleles
8.
Mol Ecol ; 32(20): 5673-5694, 2023 10.
Article in English | MEDLINE | ID: mdl-37694511

ABSTRACT

With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.


Subject(s)
Gene Drive Technology , Humans , Gene Drive Technology/methods , CRISPR-Cas Systems
9.
Malar J ; 22(1): 234, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580703

ABSTRACT

BACKGROUND: Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS: Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS: While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS: Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.


Subject(s)
Anopheles , Gene Drive Technology , Malaria , MicroRNAs , Animals , Humans , Mosquito Vectors/genetics , Anopheles/genetics , CRISPR-Cas Systems , Gene Drive Technology/methods , Allergens/genetics
10.
J Math Biol ; 87(2): 30, 2023 07 16.
Article in English | MEDLINE | ID: mdl-37454310

ABSTRACT

Understanding the temporal spread of gene drive alleles-alleles that bias their own transmission-through modeling is essential before any field experiments. In this paper, we present a deterministic reaction-diffusion model describing the interplay between demographic and allelic dynamics, in a one-dimensional spatial context. We focused on the traveling wave solutions, and more specifically, on the speed of gene drive invasion (if successful). We considered various timings of gene conversion (in the zygote or in the germline) and different probabilities of gene conversion (instead of assuming 100[Formula: see text] conversion as done in a previous work). We compared the types of propagation when the intrinsic growth rate of the population takes extreme values, either very large or very low. When it is infinitely large, the wave can be either successful or not, and, if successful, it can be either pulled or pushed, in agreement with previous studies (extended here to the case of partial conversion). In contrast, it cannot be pushed when the intrinsic growth rate is vanishing. In this case, analytical results are obtained through an insightful connection with an epidemiological SI model. We conducted extensive numerical simulations to bridge the gap between the two regimes of large and low growth rate. We conjecture that, if it is pulled in the two extreme regimes, then the wave is always pulled, and the wave speed is independent of the growth rate. This occurs for instance when the fitness cost is small enough, or when there is stable coexistence of the drive and the wild-type in the population after successful drive invasion. Our model helps delineate the conditions under which demographic dynamics can affect the spread of a gene drive.


Subject(s)
Gene Drive Technology , Computer Simulation , Gene Drive Technology/methods , Diffusion , Demography , Models, Biological
11.
Ecol Lett ; 26(7): 1174-1185, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37162099

ABSTRACT

Suppression gene drives bias their inheritance to spread through a population, potentially eliminating it when they reach high frequency. CRISPR homing suppression drives have already seen success in the laboratory, but several models predict that success may be elusive in population with realistic spatial structure due to extinction-recolonization cycles. Here, we extend our continuous space framework to include two competing species or predator-prey pairs. We find that in both general and mosquito-specific models, competing species or predators can facilitate drive-based suppression, albeit at the cost of an increased rate of drive loss outcomes. These results are robust in mosquito models with seasonal fluctuations. Our study illustrates the difficulty of predicting outcomes in complex ecosystems. However, our results are promising for the prospects of less powerful suppression gene drives to successfully eliminate target mosquito and other pest populations.


Subject(s)
Ecosystem , Gene Drive Technology , Animals , Gene Drive Technology/methods , Population Dynamics
12.
Transgenic Res ; 32(1-2): 17-32, 2023 04.
Article in English | MEDLINE | ID: mdl-36920721

ABSTRACT

Gene drive-modified mosquitoes (GDMMs) are being developed as possible new tools to prevent transmission of malaria and other mosquito-borne diseases. To date no GDMMs have yet undergone field testing. This early stage is an opportune time for developers, supporters, and possible users to begin to consider the potential regulatory requirements for eventual implementation of these technologies in national or regional public health programs, especially as some of the practical implications of these requirements may take considerable planning, time and coordination to address. Several currently unresolved regulatory questions pertinent to the implementation of GDMMs are examined, including: how the product will be defined; what the registration/approval process will be for placing new GDMM products on the market; how the potential for transboundary movement of GDMMs can be addressed; and what role might be played by existing multinational bodies and agreements in authorization decisions. Regulation and policies applied for registration of other genetically modified organisms or other living mosquito products are assessed for relevance to the use case of GDMMs to prevent malaria in Africa. Multiple national authorities are likely to be involved in decision-making, according to existing laws in place within each country for certain product classes. Requirements under the Cartagena Protocol on Biodiversity will be considered relevant in most countries, as may existing regulatory frameworks for conventional pesticide, medical, and biocontrol products. Experience suggests that standard regulatory processes, evidence requirements, and liability laws differ from country to country. Regional mechanisms will be useful to address some of the important challenges.


Subject(s)
Culicidae , Gene Drive Technology , Malaria , Animals , Culicidae/genetics , Gene Drive Technology/methods , Malaria/genetics , Malaria/prevention & control , Policy
13.
Am Nat ; 201(1): E1-E22, 2023 01.
Article in English | MEDLINE | ID: mdl-36524934

ABSTRACT

AbstractGene drive technology promises to deliver on some of the global challenges humanity faces today in health care, agriculture, and conservation. However, there is a limited understanding of the consequences of releasing self-perpetuating transgenic organisms into wild populations under complex ecological conditions. In this study, we analyze the impact of three such complexities-mate choice, mating systems, and spatial mating network-on the population dynamics for two distinct classes of modification gene drive systems. All three factors had a high impact on the modeling outcome. First, we demonstrate that distortion-based gene drives appear to be more robust against mate choice than viability-based gene drives. Second, we find that gene drive spread is much faster for higher degrees of polygamy. Including a fitness cost, the drive is fastest for intermediate levels of polygamy. Finally, the spread of a gene drive is faster and more effective when the individuals have fewer connections in a spatial mating network. Our results highlight the need to include mating complexities when modeling the properties of gene drives, such as release thresholds, timescales, and population-level consequences. This inclusion will enable a more confident prediction of the dynamics of engineered gene drives and possibly even inform about the origin and evolution of natural gene drives.


Subject(s)
Gene Drive Technology , Humans , Gene Drive Technology/methods , Reproduction , Population Dynamics
14.
Ann Med ; 55(2): 2302504, 2023.
Article in English | MEDLINE | ID: mdl-38232762

ABSTRACT

Background: In the era of insecticides and anti-malarial drug resistance, gene drive technology holds considerable promise for malaria control. Gene drive technology deploys genetic modifications into mosquito populations to impede their ability to transmit the malaria parasite. This can be either through the disruption of an essential mosquito gene or the association of gene drive with a desirable effector gene. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a gene editing tool that precisely modifies mosquito vector DNA sequences and curtails the rate of pathogen transmission.Methods: A comprehensive search was conducted in the SCOPUS and MEDLINE databases (via PubMed) until October 2023. The keywords used were related to the principles and mechanisms of gene drive technology, its advantages, and disadvantages, and its ethical and regulatory considerations in sustainable malaria eradication.Results: The development of gene drive enables the preferential inheritance of specific genes in targeted mosquitoes, potentially obstructing the transmission of the Plasmodium parasite. This technology was also studied for the control of other vector-borne diseases such as dengue and chikungunya viruses. Despite its experimental superiority over other traditional methods such as insecticide-treated nets and insecticide sprays, the long-term dynamic interplay of mutation and resistance poses challenges for gene drive efficiency in sustainable malaria control.Conclusions: This commentary elucidates the underlying mechanisms and principles of gene drive technology, underscoring its promise and challenges as a novel strategy to curtail malaria prevalence. Although the release of such genetically modified mosquitoes into the natural environment would result in the eradication of the locally targeted species of mosquitoes, the complete eradication of the entire species remains questionable. Thus, the practical application raises significant ethical and regulatory concerns for further research and risk assessment, including the risk of gene drive spreading to nontarget species in the wider theatre of biodiverse species.


Subject(s)
Culicidae , Gene Drive Technology , Insecticides , Malaria , Animals , Humans , Culicidae/genetics , Mosquito Control/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Malaria/genetics , Malaria/prevention & control
15.
PLoS Genet ; 18(9): e1010370, 2022 09.
Article in English | MEDLINE | ID: mdl-36121880

ABSTRACT

The introgression of genetic traits through gene drive may serve as a powerful and widely applicable method of biological control. However, for many applications, a self-perpetuating gene drive that can spread beyond the specific target population may be undesirable and preclude use. Daisy-chain gene drives have been proposed as a means of tuning the invasiveness of a gene drive, allowing it to spread efficiently into the target population, but be self-limiting beyond that. Daisy-chain gene drives are made up of multiple independent drive elements, where each element, except one, biases the inheritance of another, forming a chain. Under ideal inheritance biasing conditions, the released drive elements remain linked in the same configuration, generating copies of most of their elements except for the last remaining link in the chain. Through mathematical modelling of populations connected by migration, we have evaluated the effect of resistance alleles, different fitness costs, reduction in the cut-rate, and maternal deposition on two alternative daisy-chain gene drive designs. We find that the self-limiting nature of daisy-chain gene drives makes their spread highly dependent on the efficiency and fidelity of the inheritance biasing mechanism. In particular, reductions in the cut-rate and the formation of non-lethal resistance alleles can cause drive elements to lose their linked configuration. This severely reduces the invasiveness of the drives and allows for phantom cutting, where an upstream drive element cuts a downstream target locus despite the corresponding drive element being absent, creating and biasing the inheritance of additional resistance alleles. This phantom cutting can be mitigated by an alternative indirect daisy-chain design. We further find that while dominant fitness costs and maternal deposition reduce daisy-chain invasiveness, if overcome with an increased release frequency, they can reduce the spread of the drive into a neighbouring population.


Subject(s)
Gene Drive Technology , Alleles , CRISPR-Cas Systems , Gene Drive Technology/methods , Mutation
16.
Mol Ecol ; 31(17): 4451-4464, 2022 09.
Article in English | MEDLINE | ID: mdl-35790043

ABSTRACT

Gene drives that skew sex ratios offer a new management tool to suppress or eradicate pest populations. Early models and empirical work suggest that these suppression drives can completely eradicate well-mixed populations, but models that incorporate stochasticity and space (i.e. drift and recolonization events) often result in loss or failure of the drive. We developed a stochastic model to examine these processes in a simple one-dimensional space. This simple space allows us to map the events and outcomes that emerged and examine how properties of the drive's wave of invasion affect outcomes. Our simulations, across a biologically realistic section of parameter space, suggest that drive failure might be a common outcome in spatially explicit, stochastic systems, and that properties of the drive wave appear to mediate outcomes. Surprisingly, the drives that would be considered fittest in an aspatial model were strongly associated with failure in the spatial setting. The fittest drives cause relatively fast moving, and narrow waves that have a high chance of being penetrated by wild-types (WTs) leading to WT recolonization, leading to failure. Our results also show that high rates of dispersal reduce the chance of failure because drive waves get disproportionately wider than WT waves as dispersal rates increase. Overall, wide, slow-moving drive waves were much less prone to failure. Our results point to the complexity inherent in using a genetic system to effect demographic outcomes and speak to a clear need for ecological and evolutionary modelling to inform the drive design process.


Subject(s)
Gene Drive Technology , Biological Evolution , Gene Drive Technology/methods , Stochastic Processes
17.
PLoS Genet ; 18(6): e1010244, 2022 06.
Article in English | MEDLINE | ID: mdl-35653396

ABSTRACT

Gene drives for mosquito population modification are novel tools for malaria control. Strategies to safely test antimalarial effectors in the field are required. Here, we modified the Anopheles gambiae zpg locus to host a CRISPR/Cas9 integral gene drive allele (zpgD) and characterized its behaviour and resistance profile. We found that zpgD dominantly sterilizes females but can induce efficient drive at other loci when it itself encounters resistance. We combined zpgD with multiple previously characterized non-autonomous payload drives and found that, as zpgD self-eliminates, it leads to conversion of mosquito cage populations at these loci. Our results demonstrate how self-eliminating drivers could allow safe testing of non-autonomous effector-traits by local population modification. They also suggest that after engendering resistance, gene drives intended for population suppression could nevertheless serve to propagate subsequently released non-autonomous payload genes, allowing modification of vector populations initially targeted for suppression.


Subject(s)
Anopheles , Antimalarials , Gene Drive Technology , Malaria , Animals , Anopheles/genetics , Female , Gene Drive Technology/methods , Malaria/genetics , Mosquito Control/methods , Mosquito Vectors/genetics
18.
BMC Biol ; 20(1): 119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35606745

ABSTRACT

BACKGROUND: Homing gene drives hold great promise for the genetic control of natural populations. However, current homing systems are capable of spreading uncontrollably between populations connected by even marginal levels of migration. This could represent a substantial sociopolitical barrier to the testing or deployment of such drives and may generally be undesirable when the objective is only local population control, such as suppression of an invasive species outside of its native range. Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive. RESULTS: Here, we demonstrate the engineering of a tethered drive system in Drosophila, using a regionally confined CRISPR Toxin-Antidote Recessive Embryo (TARE) drive to support modification and suppression homing drives. Each drive was able to bias inheritance in its favor, and the TARE drive was shown to spread only when released above a threshold frequency in experimental cage populations. After the TARE drive had established in the population, it facilitated the spread of a subsequently released split homing modification drive (to all individuals in the cage) and of a homing suppression drive (to its equilibrium frequency). CONCLUSIONS: Our results show that the tethered drive strategy is a viable and easily engineered option for providing confinement of homing drives to target populations.


Subject(s)
Gene Drive Technology , Animals , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Drosophila/genetics , Gene Drive Technology/methods
19.
Risk Anal ; 42(12): 2835-2846, 2022 12.
Article in English | MEDLINE | ID: mdl-35568962

ABSTRACT

Gene drive technology has been proposed to control invasive rodent populations as an alternative to rodenticides. However, this approach has not undergone risk assessment that meets criteria established by Gene Drives on the Horizon, a 2016 report by the National Academies of Sciences, Engineering, and Medicine. To conduct a risk assessment of gene drives, we employed the Bayesian network-relative risk model to calculate the risk of mouse eradication on Southeast Farallon Island using a CRISPR-Cas9 homing gene drive construct. We modified and implemented the R-based model "MGDrivE" to simulate and compare 60 management strategies for gene drive rodent management. These scenarios spanned four gene drive mouse release schemes, three gene drive homing rates, three levels of supplemental rodenticide dose, and two timings of rodenticide application relative to gene drive release. Simulation results showed that applying a supplemental rodenticide simultaneously with gene drive mouse deployment resulted in faster eradication of the island mouse population. Gene drive homing rate had the highest influence on the overall probability of successful eradication, as increased gene drive accuracy reduces the likelihood of mice developing resistance to the CRISPR-Cas9 homing mechanism.


Subject(s)
Gene Drive Technology , Rodenticides , Animals , Mice , CRISPR-Cas Systems , Gene Drive Technology/methods , Rodentia/genetics , Synthetic Biology , Bayes Theorem , Risk Assessment
20.
Pan Afr Med J ; 41: 109, 2022.
Article in English | MEDLINE | ID: mdl-35432707

ABSTRACT

Despite major developments in malaria control over the past two decades, the disease continues to scourge the human population across the globe. Rising concerns such as insecticide resistance amongst vector mosquitoes are a cause of huge fear amongst healthcare providers and policymakers. Amidst such dire circumstances, a recent development may form the blueprint for future malaria control as for the first time ever researchers were able to decimate an entire mosquito population using gene-drive technology within a span of one year in a multi-generation, ecologically challenging study. Despite some concerns, the technology displayed a high potential of becoming a powerful tool in malaria control.


Subject(s)
Culicidae , Gene Drive Technology , Insecticides , Malaria , Animals , Culicidae/genetics , Gene Drive Technology/methods , Humans , Insecticide Resistance/genetics , Malaria/epidemiology , Mosquito Control/methods , Mosquito Vectors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...