Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.315
Filter
1.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731523

ABSTRACT

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Subject(s)
Cell Survival , Macrophages , Microplastics , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/metabolism , Animals , Mice , Nanoparticles/chemistry , Plastics/chemistry , RAW 264.7 Cells , Gene Expression/drug effects , Cell Line , Gene Expression Regulation/drug effects , Waste Products/analysis , Particle Size
2.
Anim Biotechnol ; 35(1): 2344208, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38741260

ABSTRACT

Garlic, known for its immune-modulating and antibiotic properties, contains lectins that possess antimicrobial and immunomodulatory effects. Galectins (Gals), which bind ß-galactosides, play a role in modulating immunity and pathological processes. It is hypothesized that garlic's lectin components interfere with animal lectins. St. Croix sheep, known for their resistance to parasites and adaptability, are influenced by dietary supplements for innate immunity. This study evaluated the impact of garlic drench on Galectin gene expression in St. Croix sheep. Adult non-lactating ewes received either garlic juice concentrate or sterile distilled water for four weeks. Blood samples were collected, and plasma and whole blood cells were separated. Galectin secretion was assessed using a Sheep-specific ELISA, while Galectin gene transcription was analyzed through real-time PCR. Garlic administration upregulated LGALS-3 gene expression and significantly increased total plasma protein concentration. Garlic supplementation also affected Galectin secretion, with Gal-1, Gal-3, and Gal-9 showing differential effects.


Subject(s)
Galectins , Garlic , Animals , Garlic/chemistry , Galectins/genetics , Galectins/metabolism , Sheep , Female , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Expression/drug effects , Animal Feed/analysis
3.
Chemosphere ; 358: 142213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697570

ABSTRACT

The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.


Subject(s)
Reproduction , Rotifera , Titanium , Ultraviolet Rays , Water Pollutants, Chemical , Animals , Rotifera/genetics , Rotifera/drug effects , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Reproduction/drug effects , Cinnamates , Sunscreening Agents/toxicity , Gene Expression/drug effects , Nanoparticles/toxicity
4.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667767

ABSTRACT

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Subject(s)
Animal Feed , Aquaculture , Chitosan , Cichlids , Intestines , Animals , Chitosan/pharmacology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Intestines/drug effects , Aquaculture/methods , Dietary Supplements , Antioxidants/pharmacology , Antioxidants/metabolism , Gene Expression/drug effects
5.
Environ Sci Pollut Res Int ; 31(19): 28754-28763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558345

ABSTRACT

Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.


Subject(s)
Herbicides , Marine Toxins , Microcystis , Oxazoles , Microcystis/drug effects , Herbicides/toxicity , Antioxidants/metabolism , Oxidative Stress/drug effects , Propionates , Gene Expression/drug effects , Microcystins
6.
Biomed Pharmacother ; 174: 116568, 2024 May.
Article in English | MEDLINE | ID: mdl-38599062

ABSTRACT

Adalimumab (ADA) is an anti-inflammatory antibody that has FDA approval as a systemic medication for treating noninfectious uveitis. It is also provisionally being investigated as an intravitreal injection for various retinal conditions. This study aimed to assess the effect of ADA on apoptotic, inflammatory, and fibrogenesis gene expression at mRNA and protein levels in retinal pigment epithelial (RPE) cells. RPEs were treated with serial concentrations of ADA (0.5x, x, 2x, and 4x; [x = 250 µg/mL]) for 24 hours. MTT assay was done and the mRNA and protein expressions were quantified using real-time PCR and ELISA assay, respectively. The mRNA levels of IL-1b and IL-6 were significantly increased in ADA-treated RPEs at 0.5x and x concentrations. However, the increase in cytokine secretion was observed only in IL-1b at x concentration. TGF-ß was significantly upregulated in the 0.5x and 4x doses of ADA both at mRNA and protein levels. MTT assay, along with an unchanged BCL-2/BAX ratio confirmed the safety of ADA on RPEs at all studied concentrations. In conclusion, despite its safety, the 2x concentration of ADA was the only dose that did not ignite the expression of any of the studied inflammatory and fibrogenesis genes. This dosage, which is roughly equal to 2 mg intravitreal dose in a clinical setting, might be referred to as a reference starting point for future in-vivo studies in ocular conditions.


Subject(s)
Adalimumab , Anti-Inflammatory Agents , Retinal Pigment Epithelium , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Humans , Adalimumab/pharmacology , Anti-Inflammatory Agents/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Apoptosis/drug effects , Cell Line , Gene Expression Regulation/drug effects , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Gene Expression/drug effects , Interleukin-6/metabolism , Interleukin-6/genetics , Dose-Response Relationship, Drug
7.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677782

ABSTRACT

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Subject(s)
Cell Differentiation , Cell Proliferation , Goblet Cells , Interleukin-13 , Medicine, Kampo , Metaplasia , Mucin 5AC , Mucus , Animals , Goblet Cells/drug effects , Goblet Cells/pathology , Goblet Cells/metabolism , Interleukin-13/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Cell Differentiation/drug effects , Guinea Pigs , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Cells, Cultured , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Male , Gene Expression/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mice , Trachea/cytology , Trachea/drug effects , Trachea/pathology , Trachea/metabolism
8.
Chemosphere ; 358: 142146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677604

ABSTRACT

Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17ß-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.


Subject(s)
Biodegradation, Environmental , Cold Temperature , Estradiol , Rhodococcus , Rhodococcus/genetics , Rhodococcus/physiology , Rhodococcus/metabolism , Estradiol/metabolism , Endocrine Disruptors/toxicity , Stress, Physiological/genetics , Gene Expression Regulation, Bacterial , Gene Expression/drug effects
9.
Exp Parasitol ; 261: 108751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604302

ABSTRACT

Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 µg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.


Subject(s)
Anisakis , Anthelmintics , Ivermectin , Larva , Pyrantel , Animals , Anisakis/drug effects , Anisakis/genetics , Anisakis/growth & development , Ivermectin/pharmacology , Larva/drug effects , Larva/genetics , Anthelmintics/pharmacology , Pyrantel/pharmacology , Actins/metabolism , Actins/genetics , Actins/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/drug effects , Xenobiotics/pharmacology , Xenobiotics/metabolism , Gene Expression/drug effects , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Anisakiasis/parasitology , Anisakiasis/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/drug effects , Catalase/genetics , Catalase/metabolism , Catalase/drug effects , Fishes/parasitology , Fish Diseases/parasitology
10.
Mult Scler Relat Disord ; 86: 105597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598954

ABSTRACT

BACKGROUND: Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES: We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS: Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS: Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS: While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.


Subject(s)
Antibodies, Monoclonal, Humanized , B-Lymphocytes , Endogenous Retroviruses , Leukocytes, Mononuclear , Humans , Endogenous Retroviruses/drug effects , Female , Male , Adult , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , B-Lymphocytes/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Middle Aged , Immunologic Factors/pharmacology , RNA, Viral , Multiple Sclerosis/drug therapy , Multiple Sclerosis/virology , Multiple Sclerosis/immunology , Herpesvirus 4, Human , Gene Expression/drug effects
11.
Environ Sci Pollut Res Int ; 31(19): 27679-27688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38517630

ABSTRACT

To evaluate the potential ecotoxicity of ethiprole and early warning to earthworms (Eisenia fetida), different concentrations (0 mg·kg-1, 416 mg·kg-1, 625 mg·kg-1, and 1000 mg·kg-1) of ethiprole were added to artificial soil. The key bioindicators were measured and screened at 3 days, 7 days, 14 days, 21 days, and 28 days. The results show that the activity of catalase (CAT) was inhibited for all treatments during the whole exposure period. Besides, the olive tail moment (OTM) value increased gradually as the concentration got higher, which exhibited a dose-time-dependent relationship. Superoxide dismutase (SOD) gene reached the maximum on the 7th day. Mitochondrial large ribosomal RNA (l-rRNA) subunit gene was always in a downregulated state as the concentration increased. Our results show that different concentrations of ethiprole induced certain oxidative stress, DNA damage, and genotoxicity in earthworms. The CAT activity, OTM, and SOD gene could be the most sensitive biomarkers to monitor the toxicity of ethiprole in the soil.


Subject(s)
DNA Damage , Oligochaeta , Oxidative Stress , Animals , Oligochaeta/drug effects , Oligochaeta/genetics , Oxidative Stress/drug effects , Gene Expression/drug effects , Soil Pollutants/toxicity , Superoxide Dismutase/metabolism , Catalase/metabolism
12.
Poult Sci ; 103(5): 103654, 2024 May.
Article in English | MEDLINE | ID: mdl-38537403

ABSTRACT

Extensive mechanistic evidence to support the beneficial function of dietary phytobiotic applications for broiler performance, gut function and health is highly warranted. In particular, for isoquinoline alkaloids (IQ) the underlying mechanisms related to critical gut homeostasis components such as cytoprotection and gut barrier are scarce, especially for young broilers at the starter growth stage (d1-10). The aim of this study was to investigate the effect of a standardized blend of IQs on the relative gene expression of critical biomarkers relevant for antioxidant response and barrier function along the intestine of young broilers at the end of starter growth phase. For this purpose, 182 one-day-old Ross 308 broilers were allocated in 2 treatments with 7 replicates of 13 broilers each: control diet-no other additions (NC), and control diet containing a standardized blend of IQs at 200 mg/kg of diet (M) for the starter growth period (1-10d). The results revealed that the IQs blend significantly upregulated (P < 0.05) the expression of genes related to antioxidant response in all intestinal segments. Moreover, the IQs blend enhanced (P < 0.05) gut barrier components primarily at duodenal level. In conclusion, the blend of IQs beneficially affected critical pathway components relevant for the gut antioxidant capacity and barrier along the intestine of young broilers.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Isoquinolines , Animals , Chickens/physiology , Chickens/growth & development , Diet/veterinary , Antioxidants/metabolism , Isoquinolines/administration & dosage , Isoquinolines/pharmacology , Animal Feed/analysis , Dietary Supplements/analysis , Alkaloids/administration & dosage , Alkaloids/pharmacology , Intestines/drug effects , Intestines/physiology , Random Allocation , Male , Gene Expression/drug effects
13.
J Ultrasound Med ; 43(6): 1131-1141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38414281

ABSTRACT

OBJECTIVES: Diabetes mellitus is a complex heterogenous metabolic disease that significantly affects the world population. Although many treatments exist, including medications such as metformin, sulfonylureas, and glucagon-like peptide-1 (GLP) receptor agonist, there is growing interest in finding alternative methods to noninvasively treat this disease. It has been previously shown that low-intensity ultrasound stimulation of pancreatic ß-cells in mice can elicit insulin secretion as a potential treatment for this disease. This is desirable as therapeutic ultrasound has the ability to induce bioeffects while selectively focusing deep within tissues, allowing for modulation of hormone secretion in the pancreas to mitigate insufficient levels of insulin. METHODS: Exactly 800 kHz ultrasound with intensity 0.5 W/cm2 was administered 5 minutes continuously, that is, 100% duty cycle, to donor pancreatic human islets, followed by 1 hour incubation and RT-qPCR to assess the effect of ultrasound stimulation on gene expression. The genes were insulin (INS), glucagon (Glu), amylin (Amy), and binding immunoglobulin protein (BiP). Nine donor pancreatic human islets were used to assess insulin and glucagon secretion, while eight samples were used for amylin and BiP. Fold change (FC) was calculated to analyze the effect of ultrasound stimulation on the gene expression of the donor islet cells. High-glucose and thapsigargin-treated islets were utilized as positive controls. Cell viability testing was done using a Trypan Blue Exclusion Test. RESULTS: Ultrasound stimulation did not cause a statistically significant upregulation in any of the tested genes (INS FC = 1.15, P-value = .5692; Glu FC = 1.60, P-value = .2231; Amy FC, P-value = .2863; BiP FC = 2.68, P-value = .3907). CONCLUSIONS: The results of this study show that the proposed ultrasound treatment parameters do not appear to significantly affect gene expression of any gene tested.


Subject(s)
Insulin , Islets of Langerhans , Ultrasonic Therapy , Humans , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Ultrasonic Therapy/methods , Glucagon , Gene Expression/drug effects , Islet Amyloid Polypeptide/pharmacology
14.
Environ Res ; 250: 118509, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38408628

ABSTRACT

Glyphosate (GLY) is among the most widely used pesticides in the world. However, there are a lot of unknowns about chronic exposure to GLY's effects on Honeybee (HB) behavior and physiology. To address this, we carried out five experiments to study the impact of chronic exposure to 5 mg/kg GLY on sugar consumption, survival, gene expression, gut microbiota, and metabolites of HB workers. Our results find a significant decrease in sugar consumption and survival probability of HB after chronic exposure to GLY. Further, genes associated with immune response, energy metabolism, and longevity were conspicuously altered. In addition, a total of seven metabolites were found to be differentially expressed in the metabolomic profiles, mainly related the sucrose metabolism. There was no significant difference in the gut microbiota. Results suggest that chronic exposure to field-level GLY altered the health of HB and the intricate toxic mechanisms. Our data provided insights into the chronic effects of GLY on HB behavior in food intake and health, which represents the field conditions where HB are exposed to pesticides over extended periods.


Subject(s)
Gastrointestinal Microbiome , Glycine , Glyphosate , Herbicides , Bees/drug effects , Bees/microbiology , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Gastrointestinal Microbiome/drug effects , Herbicides/toxicity , Gene Expression/drug effects , Eating/drug effects , Metabolome/drug effects , Metabolomics
15.
J Biol Chem ; 300(3): 105691, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280429

ABSTRACT

Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.


Subject(s)
Forkhead Transcription Factors , Gene Expression , Hepatic Stellate Cells , Liver Cirrhosis , Transforming Growth Factor beta , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/diagnosis , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Disease Models, Animal , Gene Expression/drug effects , Gene Expression/genetics , Biomarkers/metabolism , Gene Knockout Techniques , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction/genetics
16.
Acta Parasitol ; 69(1): 526-532, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38227108

ABSTRACT

BACKGROUND: Cutaneous leishmaniasis is among the neglected diseases in the world. Pentavalent antimonial compounds are considered the first-line treatment for this disease. However, using alternative natural products has received great attention due to the side effects of chemical drugs and drug resistance of the Leishmania parasite. The present study aims to investigate the effect of Satureja khuzestanica essential oil (SKEO) on MDR1 gene expression. METHODS: In this study, standard strains of Leishmania major promastigotes were exposed to 5, 10, 15, and 20 µg/ml of SKEO. MDR1 gene expression of parasites exposed to essential oil was evaluated using real-time PCR. GAPDH was employed as the housekeeping gene for internal control. RESULTS: Despite the increase, no statistically significant difference was observed in the relative expression of the MDR1 gene between the control group and the groups containing 5, 10, and 20 µg/ml of SKEO (P > 0.05). The relative expression of the MDR1 gene significantly increased in the group containing 15 µg/ml of essential oil compared to the control one (P < 0.05). CONCLUSION: This study showed that the use of essential oil of Satureja khuzestanica plant can have an increasing effect on the expression of MDR1 gene of Leishmania promastigotes, which is the best case if Satureja khuzestanica essential oil reduces the expression of MDR1 gene. So it seems that the use of essential oil of Satoria plant is effective in controlling Leishmania parasite, but its concentrations induce drug resistance. As a result, concentrations of essential oil should be used that have a controlling effect on the growth and proliferation of Leishmania parasite and also have the least effect on the induction of MDR1 gene expression.


Subject(s)
Leishmania major , Oils, Volatile , Satureja , Leishmania major/drug effects , Leishmania major/genetics , Oils, Volatile/pharmacology , Satureja/chemistry , Gene Expression/drug effects , Plant Oils/pharmacology , Antiprotozoal Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
17.
J Virol ; 97(10): e0069623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796129

ABSTRACT

IMPORTANCE: Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.


Subject(s)
Antibodies, Neutralizing , Cytomegalovirus Infections , Cytomegalovirus , Gene Expression , Nerve Growth Factors , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cytomegalovirus/drug effects , Cytomegalovirus/immunology , Cytomegalovirus/physiology , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Gene Expression/drug effects , Gene Expression/immunology , Induced Pluripotent Stem Cells/cytology , Nerve Growth Factors/pharmacology , Nerve Growth Factors/therapeutic use , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Organoids/cytology , Organoids/metabolism , Organoids/virology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects
18.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446202

ABSTRACT

This study uses personalized chronic lymphoblastic leukemia (CLL) cybrid cells to test various drugs/agents designed to improve mitochondrial function and cell longevity. Age-matched control (NL) and CLL cybrids were created. The NL and CLL cybrids were treated with ibrutinib (Ibr-10 µM), mitochondrial-targeted nutraceuticals such as alpha lipoic acid (ALA-1 mM), amla (Aml-300 µg), melatonin (Mel-1 mM), resveratrol (Res-100 µM) alone, or a combination of ibrutinib with nutraceuticals (Ibr + ALA, Ibr + Aml, Ibr + Mel, or Ibr + Res) for 48 h. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide), H2DCFDA(2',7' Dichlorodihydrofluorescein diacetate), and JC1 assays were used to measure the cellular metabolism, intracellular ROS levels, and mitochondrial membrane potential (∆ψm), respectively. The expression levels of genes associated with antioxidant enzymes (SOD2, GPX3, and NOX4), apoptosis (BAX and CASP3), and inflammation (IL6, IL-1ß, TNFα, and TGFß) were measured using quantitative real-time PCR (qRT-PCR). CLL cybrids treated with Ibr + ALA, Ibr + Aml, Ibr + Mel, and Ibr + Res had (a) reduced cell survivability, (b) increased ROS production, (c) increased ∆ψm levels, (d) decreased antioxidant gene expression levels, and (e) increased apoptotic and inflammatory genes in CLL cybrids when compared with ibrutinib-alone-treated CLL cybrids. Our findings show that the addition of nutraceuticals makes the CLL cybrids more pro-apoptotic with decreased cell survival compared with CLL cybrids exposed to ibrutinib alone.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Mitochondria , Humans , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Drug Resistance, Neoplasm/drug effects , Hybrid Cells , Dietary Supplements , Membrane Potential, Mitochondrial/drug effects , Gene Expression/drug effects
19.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2522-2529, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282881

ABSTRACT

This study aimed to investigate the effects of Erxian Decoction(EXD)-containing serum on the proliferation and osteogenic differentiation of MC3T3-E1 cells under oxidative stress through BK channels. The oxidative stress model was induced in MC3T3-E1 cells by H_2O_2, and 3 mmol·L~(-1) tetraethylammonium(TEA) chloride was used to block the BK channels in MC3T3-E1 cells. MC3T3-E1 cells were divided into a control group, a model group, an EXD group, a TEA group, and a TEA+EXD group. After MC3T3-E1 cells were treated with corresponding drugs for 2 days, 700 µmol·L~(-1) H_2O_2 was added for treatment for another 2 hours. CCK-8 assay was used to detect cell proliferation activity. The alkaline phosphatase(ALP) assay kit was used to detect the ALP activity of cells. Western blot and real-time fluorescence-based quantitative PCR(RT-qPCR) were used to detect protein and mRNA expression, respectively. Alizarin red staining was used to detect the mineralization area of osteoblasts. The results showed that compared with the control group, the model group showed significantly blunted cell proliferation activity and ALP activity, reduced expression of BK channel α subunit(BKα), collagen Ⅰ(COL1), bone morphogenetic protein 2(BMP2), osteoprotegerin(OPG), and phosphorylated Akt, decreased mRNA expression levels of Runt-related transcription factor 2(RUNX2), BMP2, and OPG, and declining area of calcium nodules. EXD-containing serum could significantly potentiate the cell proliferation activity and ALP activity, up-regulate the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt, and forkhead box protein O1(FoxO1), promote the mRNA expression of RUNX2, BMP2, and OPG, and enlarge the area of calcium nodules. However, BK channel blockage by TEA reversed the effects of EXD-containing serum in promoting the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt and FoxO1, increasing the mRNA expression of RUNX2, BMP2, and OPG, and enlarging the area of calcium nodules. EXD-containing serum could improve the proliferation activity, osteogenic differentiation, and mineralization ability of MC3T3-E1 cells under oxidative stress, which might be related to the regulation of BK channels and downstream Akt/FoxO1 signaling pathway.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 1 Subunit , Large-Conductance Calcium-Activated Potassium Channels , Osteogenesis , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/pharmacology , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Osteogenesis/drug effects , RNA, Messenger/genetics , Drugs, Chinese Herbal/pharmacology , Gene Expression/drug effects , Animals , Mice , Cell Line
20.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2203-2211, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282908

ABSTRACT

This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1ß and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.


Subject(s)
Arthritis, Experimental , Plant Extracts , Zanthoxylum , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/drug effects , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Cytokines/genetics , Cytokines/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plant Bark/chemistry , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Plant Roots/chemistry , Zanthoxylum/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Synoviocytes/drug effects , Gene Expression/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...