Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.999
Filter
1.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
2.
Curr Opin Obstet Gynecol ; 36(3): 200-207, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38572581

ABSTRACT

The purpose of this review is to address the critical need for standardization and clarity in the use of key performance indicators (KPIs) within the realm of in vitro fertilization (IVF), particularly emphasizing the integration of preimplantation genetic testing (PGT) processes. This review is timely and relevant given the persistently modest success rates of IVF treatments, which stand at approximately 30%, and the growing complexity of IVF procedures, including PGT practices. The review synthesizes recent findings across studies focusing on technical and clinical KPIs in embryology and genetic laboratories, identifying gaps in current research and practice, particularly the lack of standardized KPIs and terminology. Recent findings highlighted include the critical evaluation of technical KPIs such as Intracytoplasmic Sperm Injection (ICSI) fertilization rates, embryo development rates, and laboratory performance metrics, alongside clinical KPIs like the proportion of mature oocytes and clinical pregnancy rates. Notably, the review uncovers a significant gap in integrating and standardizing KPIs for PGT applications, which is essential for improving IVF outcomes and genetic diagnostic accuracy. The implications of these findings are profound for both clinical practice and research. For clinical practice, establishing a standardized set of KPIs, especially for PGT, could significantly enhance the success rates of IVF treatments by providing clearer benchmarks for quality and performance. For research, this review underscores the necessity for further studies to close the identified gaps, promoting a more integrated and standardized approach to KPIs in IVF and PGT processes. This comprehensive approach will not only aid in improving clinical outcomes but also in advancing the field of reproductive medicine.


Subject(s)
Embryology , Fertilization in Vitro , Preimplantation Diagnosis , Quality Control , Humans , Fertilization in Vitro/standards , Fertilization in Vitro/methods , Female , Pregnancy , Preimplantation Diagnosis/standards , Embryology/standards , Pregnancy Rate , Genetic Testing/standards , Sperm Injections, Intracytoplasmic/standards , Quality Indicators, Health Care
4.
Genes Chromosomes Cancer ; 63(4): e23236, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656617

ABSTRACT

OBJECTIVE: This study aims to evaluate the developments in the testing of Kirsten Rat Sarcoma viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations across different cancer types and regions in Denmark from 2010 to 2022. STUDY DESIGN AND SETTING: Using comprehensive data from the Danish health registries, we linked molecular test results from the Danish Pathology Registry with cancer diagnoses from the Danish National Patient Registry between 2010 and 2022. We assessed the frequency and distribution of KRAS and BRAF mutations across all cancer types, years of testing, and the five Danish regions. RESULTS: The study included records of KRAS testing for 30 671 patients and BRAF testing for 30 860 patients. Most KRAS testing was performed in colorectal (78%) and lung cancer (18%), and BRAF testing in malignant melanoma (13%), colorectal cancer (67%), and lung cancer (12%). Testing rates and documentation mutational subtypes increased over time. Reporting of wildtype results varied between lung and colorectal cancer, with underreporting in lung cancer. Regional variations in testing and reporting were observed. CONCLUSION: Our study highlights substantial progress in KRAS and BRAF testing in Denmark from 2010 to 2022, evidenced by increased and more specific reporting of mutational test results, thereby improving the precision of cancer diagnosis and treatment. However, persistent regional variations and limited testing for cancer types beyond melanoma, colorectal, and lung cancer highlight the necessity for a nationwide assessment of the optimal testing approach.


Subject(s)
Genetic Testing , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Female , Humans , Male , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Denmark , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Genetic Testing/standards , Mutation , Neoplasms/genetics , Neoplasms/diagnosis , Precision Medicine/methods , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Registries
5.
Science ; 383(6688): 1176-1179, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484067

ABSTRACT

Tests lack analytical and clinical validity, requiring more federal oversight to prevent consumer harm.


Subject(s)
Direct-To-Consumer Screening and Testing , Genetic Testing , Microbiota , Genetic Testing/standards , Humans , Direct-To-Consumer Screening and Testing/standards , Microbiota/genetics
6.
Eur J Hum Genet ; 32(5): 479-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38443545

ABSTRACT

Hereditary Breast and Ovarian Cancer (HBOC) is a genetic condition associated with increased risk of cancers. The past decade has brought about significant changes to hereditary breast and ovarian cancer (HBOC) diagnostic testing with new treatments, testing methods and strategies, and evolving information on genetic associations. These best practice guidelines have been produced to assist clinical laboratories in effectively addressing the complexities of HBOC testing, while taking into account advancements since the last guidelines were published in 2007. These guidelines summarise cancer risk data from recent studies for the most commonly tested high and moderate risk HBOC genes for laboratories to refer to as a guide. Furthermore, recommendations are provided for somatic and germline testing services with regards to clinical referral, laboratory analyses, variant interpretation, and reporting. The guidelines present recommendations where 'must' is assigned to advocate that the recommendation is essential; and 'should' is assigned to advocate that the recommendation is highly advised but may not be universally applicable. Recommendations are presented in the form of shaded italicised statements throughout the document, and in the form of a table in supplementary materials (Table S4). Finally, for the purposes of encouraging standardisation and aiding implementation of recommendations, example report wording covering the essential points to be included is provided for the most common HBOC referral and reporting scenarios. These guidelines are aimed primarily at genomic scientists working in diagnostic testing laboratories.


Subject(s)
Genetic Testing , Ovarian Neoplasms , Humans , Female , Genetic Testing/standards , Genetic Testing/methods , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Genetic Predisposition to Disease , Practice Guidelines as Topic
7.
Eur J Hum Genet ; 32(5): 489-497, 2024 May.
Article in English | MEDLINE | ID: mdl-38480795

ABSTRACT

With the introduction of Next Generation Sequencing (NGS) techniques increasing numbers of disease-associated variants are being identified. This ongoing progress might lead to diagnoses in formerly undiagnosed patients and novel insights in already solved cases. Therefore, many studies suggest introducing systematic reanalysis of NGS data in routine diagnostics. Introduction will, however, also have ethical, economic, legal and (psycho)social (ELSI) implications that Genetic Health Professionals (GHPs) from laboratories should consider before possible implementation of systematic reanalysis. To get a first impression we performed a scoping literature review. Our findings show that for the vast majority of included articles ELSI aspects were not mentioned as such. However, often these issues were raised implicitly. In total, we identified nine ELSI aspects, such as (perceived) professional responsibilities, implications for consent and cost-effectiveness. The identified ELSI aspects brought forward necessary trade-offs for GHPs to consciously take into account when considering responsible implementation of systematic reanalysis of NGS data in routine diagnostics, balancing the various strains on their laboratories and personnel while creating optimal results for new and former patients. Some important aspects are not well explored yet. For example, our study shows GHPs see the values of systematic reanalysis but also experience barriers, often mentioned as being practical or financial only, but in fact also being ethical or psychosocial. Engagement of these GHPs in further research on ELSI aspects is important for sustainable implementation.


Subject(s)
Genetic Testing , Humans , Genetic Testing/ethics , Genetic Testing/economics , Genetic Testing/legislation & jurisprudence , Genetic Testing/standards , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/ethics , Genomics/ethics , Genomics/legislation & jurisprudence , Genomics/methods , Laboratories, Clinical
9.
Value Health ; 27(5): 670-685, 2024 May.
Article in English | MEDLINE | ID: mdl-38403113

ABSTRACT

OBJECTIVES: To comprehensively identify and map an exhaustive list of value criteria for the assessment of next-generation sequencing/comprehensive genomic profiling (NGS/CGP), to be used as an aid in decision making. METHODS: We conducted a systematic review to identify existing value frameworks (VFs) applicable to any type of healthcare technology. VFs and criteria were mapped to a previously published Latin American (LA) VF to harmonize definitions and identify additional criteria and or subcriteria. Based on this analysis, we extracted a comprehensive, evidence-based list of criteria and subcriteria to be considered in the design of a NGS/CGP VF. RESULTS: A total of 42 additional VFs were compared with the LA VF, 88% were developed in high-income countries, 30% targeted genomic testing, and 16% specifically targeted oncology. A total of 242 criteria and subcriteria were extracted; 227 (94%) were fully/partially included in the LA VF; and 15 (6%) were new. Clinical benefit and economic aspects were the most common criteria. VFs oriented to genomic testing showed significant overlap with other VFs. Considering all criteria and subcriteria, a total of 18 criteria and 36 individual subcriteria were identified. CONCLUSIONS: Our study provides an evidence-based set of criteria and subcriteria for healthcare decision making useful for NGS/CGP as well as other health technologies. The resulting list can be beneficial to inform decision making and will serve as a foundation to co-create a multistakeholder NGS/CGP VF that is aligned with the needs and values of health systems and could help to improve patient access to high-value technologies.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/economics , Cost-Benefit Analysis , Genetic Testing/economics , Genetic Testing/standards , Genetic Testing/methods , Decision Making
10.
Eur J Hum Genet ; 32(5): 584-587, 2024 May.
Article in English | MEDLINE | ID: mdl-38308084

ABSTRACT

To date, approximately 50 short tandem repeat (STR) disorders have been identified; yet, clinical laboratories rarely conduct STR analysis on exomes. To assess its diagnostic value, we analyzed STRs in 6099 exomes from 2510 families with mostly suspected neurogenetic disorders. We employed ExpansionHunter and REViewer to detect pathogenic repeat expansions, confirming them using orthogonal methods. Genotype-phenotype correlations led to the diagnosis of thirteen individuals in seven previously undiagnosed families, identifying three autosomal dominant disorders: dentatorubral-pallidoluysian atrophy (n = 3), spinocerebellar ataxia type 7 (n = 2), and myotonic dystrophy type 1 (n = 2), resulting in a diagnostic gain of 0.28% (7/2510). Additionally, we found expanded ATXN1 alleles (≥39 repeats) with varying patterns of CAT interruptions in twelve individuals, accounting for approximately 0.19% in the Korean population. Our study underscores the importance of integrating STR analysis into exome sequencing pipeline, broadening the application of exome sequencing for STR assessments.


Subject(s)
Exome Sequencing , Microsatellite Repeats , Humans , Exome Sequencing/methods , Exome Sequencing/standards , Female , Male , Myotonic Dystrophy/genetics , Myotonic Dystrophy/diagnosis , Genetic Testing/methods , Genetic Testing/standards , Ataxin-1/genetics , Exome , Adult , DNA Repeat Expansion
11.
Eur J Hum Genet ; 32(5): 529-538, 2024 May.
Article in English | MEDLINE | ID: mdl-38355963

ABSTRACT

It is believed that >95% of people with Lynch syndrome (LS) remain undiagnosed. Within the National Health Service (NHS) in England, formal guidelines issued in 2017 state that all colorectal cancers (CRC) should be tested for DNA Mismatch Repair deficiency (dMMR). We used a comprehensive population-level national dataset to analyse implementation of the agreed diagnostic pathway at a baseline point 2 years post-publication of official guidelines. Using real-world data collected and curated by the National Cancer Registration and Analysis Service (NCRAS), we retrospectively followed up all people diagnosed with CRC in England in 2019. Nationwide laboratory diagnostic data incorporated somatic (tumour) testing for dMMR (via immunohistochemistry or microsatellite instability), somatic testing for MLH1 promoter methylation and BRAF status, and constitutional (germline) testing of MMR genes. Only 44% of CRCs were screened for dMMR; these figures varied over four-fold with respect to geography. Of those CRCs identified as dMMR, only 51% underwent subsequent diagnostic testing. Overall, only 1.3% of patients with colorectal cancer had a germline MMR genetic test performed; up to 37% of these tests occurred outside of NICE guidelines. The low rates of molecular diagnostic testing in CRC support the premise that Lynch syndrome is underdiagnosed, with significant attrition at all stages of the testing pathway. Applying our methodology to subsequent years' data will allow ongoing monitoring and analysis of the impact of recent investment. If the diagnostic guidelines were fully implemented, we estimate that up to 700 additional people with LS could be identified each year.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , England , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Female , Genetic Testing/standards , Genetic Testing/methods , Male , DNA Mismatch Repair , MutL Protein Homolog 1/genetics , Microsatellite Instability , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Aged , Adult
13.
Clin Imaging ; 107: 110066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228024

ABSTRACT

Women from racial and ethnic minorities are at a higher risk for developing breast cancer. Despite significant advancements in breast cancer screening, treatment, and overall survival rates, disparities persist among Black and Hispanic women. These disparities manifest as breast cancer at an earlier age with worse prognosis, lower rates of genetic screening, higher rates of advanced-stage diagnosis, and higher rates of breast cancer mortality compared to Caucasian women. The underutilization of available resources, such as genetic testing, counseling, and risk assessment tools, by Black and Hispanic women is one of many reasons contributing to these disparities. This review aims to explore the racial disparities that exist in genetic testing among Black and Hispanic women. Barriers that contribute to racial disparities include limited access to resources, insufficient knowledge and awareness, inconsistent care management, and slow progression of incorporation of genetic data and information from women of racial/ethnic minorities into risk assessment models and genetic databases. These barriers continue to impede rates of genetic testing and counseling among Black and Hispanic mothers. Consequently, it is imperative to address these barriers to promote early risk assessment, genetic testing and counseling, early detection rates, and ultimately, lower mortality rates among women belonging to racial and ethnic minorities.


Subject(s)
Black or African American , Breast Neoplasms , Genetic Testing , Healthcare Disparities , Hispanic or Latino , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Genetic Testing/standards , Healthcare Disparities/ethnology , Hispanic or Latino/genetics , United States/epidemiology , White , Black or African American/genetics
14.
Genet Med ; 26(5): 101075, 2024 May.
Article in English | MEDLINE | ID: mdl-38251460

ABSTRACT

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Subject(s)
DNA Methylation , Genetic Testing , Rare Diseases , Humans , DNA Methylation/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Genetic Testing/standards , Genetic Testing/methods , Female , Promoter Regions, Genetic/genetics , Male , DNA Copy Number Variations/genetics , Child , Adult , Child, Preschool , Genomic Imprinting/genetics
15.
Genet Med ; 26(5): 101077, 2024 May.
Article in English | MEDLINE | ID: mdl-38275146

ABSTRACT

PURPOSE: Gene selection for genomic newborn screening (gNBS) underpins the validity, acceptability, and ethical application of this technology. Existing gNBS gene lists are highly variable despite being based on shared principles of gene-disease validity, treatability, and age of onset. This study aimed to curate a gNBS gene list that builds upon existing efforts and provide a core consensus list of gene-disease pairs assessed by multiple expert groups worldwide. METHODS: Our multidisciplinary expert team curated a gene list using an open platform and multiple existing curated resources. We included severe treatable disorders with age of disease onset <5 years with established gene-disease associations and reliable variant detection. We compared the final list with published lists from 5 other gNBS projects to determine consensus genes and to identify areas of discrepancy. RESULTS: We reviewed 1279 genes and 604 met our inclusion criteria. Metabolic conditions comprised the largest group (25%), followed by immunodeficiencies (21%) and endocrine disorders (15%). We identified 55 consensus genes included by all 6 gNBS research projects. Common reasons for discrepancy included variable definitions of treatability and strength of gene-disease association. CONCLUSION: We have identified a consensus gene list for gNBS that can be used as a basis for systematic harmonization efforts internationally.


Subject(s)
Genetic Testing , Genomics , Neonatal Screening , Humans , Neonatal Screening/methods , Infant, Newborn , Genetic Testing/methods , Genetic Testing/standards , Genomics/methods , Consensus
16.
Eur J Hum Genet ; 32(5): 521-528, 2024 May.
Article in English | MEDLINE | ID: mdl-38212661

ABSTRACT

Automating reanalysis of genomic data for undiagnosed rare disease patients presents a paradigm shift in how clinical genomics is delivered. We aimed to map the current manual and proposed automated approach to reanalysis and identify possible implementation strategies to address clinical and laboratory staff's perceived challenges to automation. Fourteen semi-structured interviews guided by a simplified process map were conducted with clinical and laboratory staff across Australia. Individual process maps were integrated into an overview of the current process, noting variation in service delivery. Participants then mapped an automated approach and were invited to discuss perceived challenges and possible supports to automation. Responses were analysed using the Consolidated Framework for Implementation Research, linking to the Expert Recommendations for Implementing Change framework to identify theory-informed implementation strategies. Process mapping demonstrates how automation streamlines processes with eleven steps reduced to seven. Although participants welcomed automation, challenges were raised at six of the steps. Strategies to overcome challenges include embedding project champions, developing education materials, facilitating clinical innovation and quality monitoring tools, and altering reimbursement structures. Future work can build on these findings to develop context specific implementation strategies to guide translation of an automated approach to reanalysis to improve clinical care and patient outcomes.


Subject(s)
Genomics , Humans , Genomics/methods , Genomics/standards , Qualitative Research , Genetic Testing/standards , Genetic Testing/methods , Australia , Automation
17.
Cancer Control ; 30: 10732748231170483, 2023.
Article in English | MEDLINE | ID: mdl-37057688

ABSTRACT

Currently, genetic tests that predict cancer risk or risk of recurrence in patients who have had their cancer treated with curative intent must have proven "clinical utility" to be recommended by the organizations responsible for publishing the standard-of-care guidelines for cancer care.Based on the current definition of clinical utility, most patients are denied testing for cancer-predisposing genes or pathogenic germline variants even though germline testing has been proven as highly accurate in identifying pathogenic germline variant carriers, there are measures recommended to prevent and diagnose early cancers associated with particular PGVs, and disparities in patient access to genetic tests are well described.Similarly, despite dozens of studies demonstrating that detected circulating tumor DNA (ctDNA) after curative intention therapy of different cancer types is a highly accurate biomarker that predicts recurrence, the major organizations that publish guidelines for cancer monitoring after curative intention therapy recommend against using ctDNA assays to detect minimal residual disease and thereby predict recurrence for all solid tumor malignancies.Here, the primary reasons that these genetic tests are considered to lack proven clinical utility and the primary evidence suggesting that a broader definition of clinical utility should be considered are discussed. By expanding the definition of clinical utility, many patients will benefit from the information gained from having these genetic tests.


Subject(s)
Early Detection of Cancer , Genetic Predisposition to Disease , Genetic Testing , Neoplasm Recurrence, Local , Neoplasms , Patient Access to Records , Germ-Line Mutation , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Early Detection of Cancer/standards , Genetic Testing/standards , Risk , Circulating Tumor DNA/blood , Evidence-Based Practice/standards , Standard of Care , Neoplasm, Residual/blood , Neoplasm, Residual/diagnosis , Practice Guidelines as Topic , Precision Medicine/standards , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Patient Satisfaction
18.
Sci Rep ; 12(1): 2507, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190596

ABSTRACT

Genetic testing for cancer predisposition has been curtailed by the cost of sequencing, and testing has been restricted by eligibility criteria. As the cost of sequencing decreases, the question of expanding multi-gene cancer panels to a broader population arises. We evaluated how many additional actionable genetic variants are returned by unrestricted panel testing in the private sector compared to those which would be returned by adhering to current NHS eligibility criteria. We reviewed 152 patients referred for multi-gene cancer panels in the private sector between 2014 and 2016. Genetic counselling and disclosure of all results was standard of care provided by the Consultant. Every panel conducted was compared to current eligibility criteria. A germline pathogenic / likely pathogenic variant (P/LP), in a gene relevant to the personal or family history of cancer, was detected in 15 patients (detection rate of 10%). 46.7% of those found to have the P/LP variants (7 of 15), or 4.6% of the entire set (7 of 152), did not fulfil NHS eligibility criteria. 46.7% of P/LP variants in this study would have been missed by national testing guidelines, all of which were actionable. However, patients who do not fulfil eligibility criteria have a higher Variant of Uncertain Significance (VUS) burden. We demonstrated that the current England NHS threshold for genetic testing is missing pathogenic variants which would alter management in 4.6%, nearly 1 in 20 individuals. However, the clinical service burden that would ensue is a detection of VUS of 34%.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Counseling/standards , Genetic Testing/standards , Neoplasms/epidemiology , State Medicine/standards , Adolescent , Adult , Aged , Aged, 80 and over , England/epidemiology , Female , Genetic Counseling/statistics & numerical data , Genetic Predisposition to Disease , Genetic Testing/statistics & numerical data , Germ-Line Mutation , Humans , Incidence , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/genetics , Retrospective Studies , Risk Assessment/standards , Risk Assessment/statistics & numerical data , Young Adult
19.
Clin J Am Soc Nephrol ; 17(1): 143-154, 2022 01.
Article in English | MEDLINE | ID: mdl-34930753

ABSTRACT

Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.


Subject(s)
Autoantigens/genetics , Collagen Type IV/genetics , Genetic Testing/standards , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/genetics , Nephritis, Hereditary/therapy , Humans , Practice Guidelines as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...