Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Zootaxa ; 5380(5): 461-474, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38221298

ABSTRACT

There are currently 163 species of Geodia Lamarck, 1815 described worldwide, many of which are found in deep waters, but none of which have been recorded from the Southwest Indian Ridge (SWIR). Spicule morphology and barcodes (Folmer COI, 28S (C2D2), partial 18S) suggest that a specimen of Geodia collected on the SWIR at a depth of 2236 m is closely comparable to Geodia barretti Bowerbank, 1858. Geodia barretti is the most studied and thus well-known deep-sea Geodia species, due to its wide North Atlantic distribution and key role in boreal sponge grounds. This unexpected and markedly disjunct record would extend the distribution range of this species considerably, consequently challenging our knowledge about interoceanic deep-sea sponges.


Subject(s)
Geodia , Porifera , Animals
2.
Peptides ; 27(9): 2047-2057, 2006.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065269

ABSTRACT

Crude extracts of the marine sponge Geodia corticostylifera from Brazilian Coast have previously shown antibacterial, antifungal, cytotoxic, haemolytic and neurotoxic activities. The present work describes the isolation of the cyclic peptides geodiamolides A, B, H and I (1–4) from G. corticostylifera and their anti-proliferative effects against sea urchin eggs and human breast cancer cell lineages. Its structure–activity relationship is discussed as well. In an initial series of experiments these peptides inhibited the first cleavage of sea urchin eggs (Lytechinus variegatus). Duplication of nuclei without complete egg cell division indicated the mechanism of action might be related to microfilament disruption. Further studies showed that the geodiamolides have anti-proliferative activity against human breast cancer cell lines (T47D and MCF7). Using fluorescence techniques and confocal microscopy, we found evidence that the geodiamolides A, B, H and I act by disorganizing actin filaments of T47D and MCF7 cancer cells, in a way similar to other depsipeptides (such as jaspamide 5 and dolastatins), keeping the normal microtubule organization. Normal cells lines (primary culture human fibroblasts and BRL3A rat liver epithelial cells) were not affected by the treatment as tumor cells were, thus indicating the biomedical potential of these compounds.


Subject(s)
Humans , Cytoskeleton , Geodia/classification , Breast Neoplasms , Depsipeptides
3.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1062150

ABSTRACT

In our search for marine bioactive compounds we chose a Brazilian Coast sponge, Geodia corticostylifera (Demospongiae), whose extracts showed previously antibacterial and antifungal activities. In the present work we studied the following toxic properties of G. corticostylifera extract: neurotoxic (in mouse neuromuscular junction); mouse acute toxicity (IP) and haemolytic (against mouse and frog erythrocytes). Insertion of ionic channels in planar lipid bilayers in presence of a haemolytic purified fraction of the extract was observed. The toxic activities of G. corticostylifera crude extract are related to the formation of ionic pores in the cell membrane, which induce the release of haemoglobin from erythrocytes, and depolarization of nerve and muscle membranes. These last physiological effects cause the blockade of the diaphragm contractions, leading to death through respiratory arrest.


Subject(s)
Animals , Geodia/classification , Porifera/classification , Hemolysin Proteins/classification , Hemolysin Proteins/toxicity , Neurotoxins
SELECTION OF CITATIONS
SEARCH DETAIL