Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 854
Filter
1.
J Transl Med ; 22(1): 441, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730481

ABSTRACT

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Subject(s)
Cell Death , Giant Cells , Interphase , Microtubules , Polyploidy , Humans , Interphase/drug effects , Microtubules/metabolism , Microtubules/drug effects , Cell Line, Tumor , Cell Death/drug effects , Giant Cells/drug effects , Giant Cells/metabolism , Giant Cells/pathology , Mitochondrial Dynamics/drug effects , Energy Metabolism/drug effects , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Gene Expression Regulation, Neoplastic/drug effects
2.
Clin Exp Dent Res ; 10(2): e870, 2024 04.
Article in English | MEDLINE | ID: mdl-38506305

ABSTRACT

OBJECTIVES: Giant cell granuloma is a local nonneoplastic lesion that is divided into two categories, based on its site of occurrence: Central and peripheral giant cell granuloma. Central giant cell granuloma is an intraosseous lesion that has a tendency to recure even in surgically treated cases. Several studies have proven that there is an association between different lesions clinical behavior and their histological features. The aim of this study was to evaluate the expression of AgNOR and Ki67 in lesions with and without recurrency. MATERIAL AND METHODS: Files and records of 35 patients who had been histologically diagnosed with central giant cell granuloma were investigated. Histological features were studied after performing AgNOR staining and Ki67 marker. The data were analyzed by chi-square, Fisher, and T-test. RESULTS: Acquired data indicated that the count of AgNOR staining and Ki67 marker was significantly higher in lesions with recurrency than the lesions with no recurrency. The same results were attained from Ki67 intensity. CONCLUSION: The current study indicated that AgNOR staining and Ki67 marker have prognostic value in predicting recurrency of central giant cell granuloma lesions.


Subject(s)
Antigens, Nuclear , Granuloma, Giant Cell , Humans , Granuloma, Giant Cell/surgery , Granuloma, Giant Cell/metabolism , Granuloma, Giant Cell/pathology , Ki-67 Antigen/metabolism , Giant Cells/metabolism , Giant Cells/pathology , Case-Control Studies
3.
J Biol Chem ; 300(4): 107136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447798

ABSTRACT

Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Polyploidy , Humans , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Transcriptome , Giant Cells/metabolism
5.
Clin Transl Med ; 14(2): e1567, 2024 02.
Article in English | MEDLINE | ID: mdl-38362620

ABSTRACT

Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Cell Line, Tumor , Giant Cells/metabolism , Giant Cells/pathology , Antineoplastic Agents/metabolism , Polyploidy , Neoplasms/pathology
6.
Antonie Van Leeuwenhoek ; 117(1): 39, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388985

ABSTRACT

Melioidosis, a human infectious disease with a high mortality rate in many tropical countries, is caused by the pathogen Burkholderia pseudomallei (B. pseudomallei). The function of the B. pseudomallei sigma S (RpoS) transcription factor in survival during the stationary growth phase and conditions of oxidative stress is well documented. Besides the rpoS, bioinformatics analysis of B. pseudomallei genome showed the existence of two rpoN genes, named rpoN1 and rpoN2. In this study, by using the mouse macrophage cell line RAW264.7 as a model of infection, the involvement of B. pseudomallei RpoS and RpoN2 in the invasion, intracellular survival leading to the reduction in multinucleated giant cell (MNGC) formation of RAW264.7 cell line were illustrated. We have demonstrated that the MNGC formation of RAW264.7 cell was dependent on a certain number of intracellular bacteria (at least 5 × 104). In addition, the same MNGC formation (15%) observed in RAW264.7 cells infected with either B. pseudomallei wild type with multiplicity of infection (MOI) 2 or RpoN2 mutant (∆rpoN2) with MOI 10 or RpoS mutant (∆rpoS) with MOI 100. The role of B. pseudomallei RpoS and RpoN2 in the regulation of type III secretion system on bipB-bipC gene expression was also illustrated in this study.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Animals , Mice , Humans , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/metabolism , Cell Line , Melioidosis/microbiology , Macrophages/metabolism , Giant Cells/metabolism , Giant Cells/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
7.
Nat Biomed Eng ; 8(3): 291-309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37996617

ABSTRACT

Mapping mutations and discovering cellular determinants that cause the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce infected cells to form syncytia would facilitate the development of strategies for blocking the formation of such cell-cell fusion. Here we describe high-throughput screening methods based on droplet microfluidics and the size-exclusion selection of syncytia, coupled with large-scale mutagenesis and genome-wide knockout screening via clustered regularly interspaced short palindromic repeats (CRISPR), for the large-scale identification of determinants of cell-cell fusion. We used the methods to perform deep mutational scans in spike-presenting cells to pinpoint mutable syncytium-enhancing substitutions in two regions of the spike protein (the fusion peptide proximal region and the furin-cleavage site). We also used a genome-wide CRISPR screen in cells expressing the receptor angiotensin-converting enzyme 2 to identify inhibitors of clathrin-mediated endocytosis that impede syncytium formation, which we validated in hamsters infected with SARS-CoV-2. Finding genetic and cellular determinants of the formation of syncytia may reveal insights into the physiological and pathological consequences of cell-cell fusion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , High-Throughput Screening Assays , Spike Glycoprotein, Coronavirus/genetics , COVID-19/pathology , Giant Cells/metabolism , Giant Cells/pathology
8.
Genesis ; 62(1): e23585, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38124435

ABSTRACT

The placenta plays a pivotal role in the maintenance of normal pregnancy, but how it forms, matures, and performs its function remains poorly understood. Here, we describe a novel mouse line (Prl3d1-iCre) that expresses iCre recombinase under the control of the endogenous prl3d1 promoter. Prl3d1 has been proposed as a marker for distinguishing trophoblast giant cells (TGCs) from other trophoblast cells in the placenta. The in vivo efficiency and specificity of the Cre line were analyzed by interbreeding Prl3d1-iCre mice with B6-G/R reporter mice. Through anatomical studies of the placenta and other tissues of Prl3d1-iCre/+; B6-G/R mouse mice, we found that the tdTomato signal was expressed in parietal trophoblast giant cells (P-TGCs). Thus, we report a mouse line with ectopic Cre expression in P-TGCs, which provides a valuable tool for studying human pathological pregnancies caused by implantation failure or abnormal trophoblast secretion due to aberrant gene regulation.


Subject(s)
Placenta , Red Fluorescent Protein , Trophoblasts , Animals , Female , Mice , Pregnancy , Giant Cells/metabolism , Integrases/genetics , Integrases/metabolism , Mice, Transgenic , Placenta/metabolism
9.
Biomolecules ; 13(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136560

ABSTRACT

The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells-interstitial cells of Cajal-PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on colon motility during postnatal development. Colonic samples of postnatal 1-week-old (PW1), 3-week-old (PW3), and 5-week-old (PW5) mice were characterized by RNA sequencing, qPCR, Western blotting, isometric force recordings (IFR), and colonic motor complex (CMC) force measurements. Our study showed that the transcriptional expression of Pdgfrα, c-Kit, P2ry1, Nos1, and Slc18a3, and the protein expression of nNOS, c-Kit, and ANO1 significantly increased with age from PW1 to PW5. In PW1 and PW3 mice, colonic migrating movement was not fully developed. In PW5 mice, rhythmic CMCs were recorded, similar to the CMC pattern described previously in adult mice. The inhibition of nNOS revealed excitatory and non-propulsive responses which are normally suppressed due to ongoing nitrergic inhibition. During postnatal development, molecular data demonstrated the establishment and expansion of ICC and PDGFRα+ cells, along with nitrergic and cholinergic nerves and purinergic receptors. Our findings are important for understanding the role of the SIP syncytium in generating and establishing CMCs in postnatal, developing murine colons.


Subject(s)
Enteric Nervous System , Receptor, Platelet-Derived Growth Factor alpha , Animals , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Colon/metabolism , Enteric Nervous System/metabolism , Giant Cells/metabolism , Gene Expression Profiling
10.
J Transl Med ; 21(1): 719, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833712

ABSTRACT

BACKGROUND: Polyploid giant cancer cells (PGCCs), a specific type of cancer stem cells (CSCs), can be induced by hypoxic microenvironments, chemical reagents, radiotherapy, and Chinese herbal medicine. Moreover, PGCCs can produce daughter cells that undergo epithelial-mesenchymal transition, which leads to cancer recurrence and disseminated metastasis. Vimentin, a mesenchymal cell marker, is highly expressed in PGCCs and their daughter cells (PDCs) and drives migratory persistence. This study explored the molecular mechanisms by which vimentin synergistically regulates PGCCs to generate daughter cells with enhanced invasive and metastatic properties. METHODS: Arsenic trioxide (ATO) was used to induce the formation of PGCCs in Hct116 and LoVo cells. Immunocytochemical and immunohistochemical assays were performed to determine the subcellular localization of vimentin. Cell function assays were performed to compare the invasive metastatic abilities of the PDCs and control cells. The molecular mechanisms underlying vimentin expression and nuclear translocation were investigated by real-time polymerase chain reaction, western blotting, cell function assays, cell transfection, co-immunoprecipitation, and chromatin immunoprecipitation, followed by sequencing. Finally, animal xenograft experiments and clinical colorectal cancer samples were used to study vimentin expression in tumor tissues. RESULTS: Daughter cells derived from PGCCs showed strong proliferative, migratory, and invasive abilities, in which vimentin was highly expressed and located in both the cytoplasm and nucleus. Vimentin undergoes small ubiquitin-like modification (SUMOylation) by interacting with SUMO1 and SUMO2/3, which are associated with nuclear translocation. P62 regulates nuclear translocation of vimentin by controlling SUMO1 and SUMO2/3 expression. In the nucleus, vimentin acts as a transcription factor that regulates CDC42, cathepsin B, and cathepsin D to promote PDC invasion and migration. Furthermore, animal experiments and human colorectal cancer specimens have confirmed the nuclear translocation of vimentin. CONCLUSION: P62-dependent SUMOylation of vimentin plays an important role in PDC migration and invasion. Vimentin nuclear translocation and overexpressed P62 of cancer cells may be used to predict patient prognosis, and targeting vimentin nuclear translocation may be a promising therapeutic strategy for metastatic cancers.


Subject(s)
Colorectal Neoplasms , Giant Cells , Animals , Humans , Vimentin/metabolism , Cell Line, Tumor , Giant Cells/metabolism , Giant Cells/pathology , Epithelial-Mesenchymal Transition , Colorectal Neoplasms/pathology , Polyploidy , Cell Movement , Tumor Microenvironment
11.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37902109

ABSTRACT

Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.


Subject(s)
Sea Urchins , Transcription Factors , Animals , Transcription Factors/metabolism , Giant Cells/metabolism , Mesoderm/metabolism , Gene Expression Regulation, Developmental
12.
Sci Rep ; 13(1): 12763, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550397

ABSTRACT

Docetaxel (Doc) is a cornerstone of chemotherapy; however, treatment with Doc often and inevitably leads to drug resistance and the formation of polyploid giant cancer cells (PGCCs). In this study, we investigated the effect of Doc on non-small cell lung cancer to explore the role of PGCCs in drug resistance and the molecular mechanisms that regulate this resistance. We found that Doc induced G2/M cell cycle arrest and cell death in A549 and NCI-H1299 cells. However, many cells remained alive and became PGCCs by decreasing the expression of key regulatory proteins related to the cell cycle and proliferation. Notably, the PGCCs showed typical features of senescence, especially upregulation of p21 and p-histone H2A.X expression. Moreover, the mRNA level of IL-1ß in the senescence-associated secretory phenotype was increased significantly with the development of PGCCs. Inhibition of IL-1ß reduced the expression of p-histone H2A.X and promoted polyploidy to enhance the proapoptotic effect of Doc. Taken together, our results suggested that IL-1ß was involved in the formation of PGCCs and regulated the senescence of PGCCs, which contributed to drug resistance to Doc. Therefore, targeting IL-1ß in PGCCs may be a novel approach to overcome drug resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Docetaxel/pharmacology , Histones/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Giant Cells/metabolism , Polyploidy
13.
Int J Mol Sci ; 24(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37511291

ABSTRACT

Single cell biology has revealed that solid tumors and tumor-derived cell lines typically contain subpopulations of cancer cells that are readily distinguishable from the bulk of cancer cells by virtue of their enormous size. Such cells with a highly enlarged nucleus, multiple nuclei, and/or multiple micronuclei are often referred to as polyploid giant cancer cells (PGCCs), and may exhibit features of senescence. PGCCs may enter a dormant phase (active sleep) after they are formed, but a subset remain viable, secrete growth promoting factors, and can give rise to therapy resistant and tumor repopulating progeny. Here we will briefly discuss the prevalence and prognostic value of PGCCs across different cancer types, the current understanding of the mechanisms of their formation and fate, and possible reasons why these tumor repopulating "monsters" continue to be ignored in most cancer therapy-related preclinical studies. In addition to PGCCs, other subpopulations of cancer cells within a solid tumor (such as oncogenic caspase 3-activated cancer cells and drug-tolerant persister cancer cells) can also contribute to therapy resistance and pose major challenges to the delivery of cancer therapy.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Giant Cells/metabolism , Polyploidy
14.
Genetics ; 224(4)2023 08 09.
Article in English | MEDLINE | ID: mdl-37313736

ABSTRACT

A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.


Subject(s)
Neurospora crassa , Neurospora , Neurospora crassa/genetics , Neurospora crassa/metabolism , Genes, Fungal , Permissiveness , Phenotype , Giant Cells/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Neurospora/genetics
15.
Genes (Basel) ; 14(4)2023 03 26.
Article in English | MEDLINE | ID: mdl-37107559

ABSTRACT

Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"


Subject(s)
Giant Cells , Neoplasm Recurrence, Local , Humans , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Giant Cells/metabolism , Giant Cells/pathology , Polyploidy , Computational Biology
16.
J Oral Biosci ; 65(2): 175-185, 2023 06.
Article in English | MEDLINE | ID: mdl-37088151

ABSTRACT

OBJECTIVES: We examined mice with gene deletion of Receptor activator of nuclear factor-κB (Rank) ligand (Rankl) to histologically clarify whether they contained progenitor cells committed to osteoclastic differentiation up to the stage requiring RANK/RANKL signaling. METHODS: The tibiae and femora of ten-week-old male wild-type, c-fos-/-, and Rankl-/- mice were used for immunohistochemistry and transmission electron microscopy (TEM). RESULTS: In Rankl-/- mice, we observed osteoclast-like giant cells, albeit in low numbers, with single or two nuclei, engulfing the mineralized extracellular matrix. TEM revealed that these giant cells contained large numbers of mitochondria, vesicles/vacuoles, and clear zone-like structures but no ruffled borders. They often engulfed fragmented bony/cartilaginous components of the extracellular matrix that had been degraded. Additionally, osteoclast-like giant cells exhibited immunoreactivity for vacuolar H+-ATPase, galectin-3, and siglec-15 but not for tartrate-resistant acid phosphatase, cathepsin K, or MMP-9, all of which are classical hallmarks of osteoclasts. Furthermore, osteoclast-like giant cells were ephrinB2-positive as they were near EphB4-positive osteoblasts that are also positive for alkaline phosphatase and Runx2 in Rankl-/- mice. Unlike Rankl-/- mice, c-fos-/- mice lacking osteoclast progenitors and mature osteoclasts had no ephrinB2-positive osteoclast-like cells or alkaline phosphatase-positive/Runx2-reactive osteoblasts. This suggests that similar to authentic osteoclasts, osteoclast-like giant cells might have the potential to activate osteoblasts in Rankl-/- mice. CONCLUSIONS: It seems plausible that osteoclast-like giant cells may have acquired some osteoclastic traits and the ability to resorb mineralized matrices even when the absence of RANK/RANKL signaling halted the osteoclastic differentiation cascade.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteoclasts , Mice , Male , Animals , Osteoclasts/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Alkaline Phosphatase/metabolism , Osteoblasts/metabolism , Carrier Proteins/metabolism , Giant Cells/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Immunoglobulins/metabolism , Membrane Proteins
18.
PLoS One ; 18(2): e0280944, 2023.
Article in English | MEDLINE | ID: mdl-36758060

ABSTRACT

Melioidosis is an infectious disease with high mortality rates in human, caused by the bacterium Burkholderia pseudomallei. As an intracellular pathogen, B. pseudomallei can escape from the phagosome and induce multinucleated giant cells (MNGCs) formation resulting in antibiotic resistance and immune evasion. A novel strategy to modulate host response against B. pseudomallei pathogenesis is required. In this study, an active metabolite of vitamin D3 (1α,25-dihydroxyvitamin D3 or 1α,25(OH)2D3) was selected to interrupt pathogenesis of B. pseudomallei in a human lung epithelium cell line, A549. The results demonstrated that pretreatment with 10-6 M 1α,25(OH)2D3 could reduce B. pseudomallei internalization to A549 cells at 4 h post infection (P < 0.05). Interestingly, the presence of 1α,25(OH)2D3 gradually reduced MNGC formation at 8, 10 and 12 h compared to that of the untreated cells (P < 0.05). Furthermore, pretreatment with 10-6 M 1α,25(OH)2D3 considerably increased hCAP-18/LL-37 mRNA expression (P < 0.001). Additionally, pro-inflammatory cytokines, including MIF, PAI-1, IL-18, CXCL1, CXCL12 and IL-8, were statistically decreased (P < 0.05) in 10-6 M 1α,25(OH)2D3-pretreated A549 cells by 12 h post-infection. Taken together, this study indicates that pretreatment with 10-6 M 1α,25(OH)2D3 has the potential to reduce the internalization of B. pseudomallei into host cells, decrease MNGC formation and modulate host response during B. pseudomallei infection by minimizing the excessive inflammatory response. Therefore, 1α,25(OH)2D3 supplement may provide an effective supportive treatment for melioidosis patients to combat B. pseudomallei infection and reduce inflammation in these patients.


Subject(s)
Melioidosis , Humans , Melioidosis/drug therapy , Vitamin D , Vitamins , Epithelial Cells/metabolism , Lung/metabolism , Giant Cells/metabolism , Dietary Supplements
19.
Plant Cell ; 35(6): 2349-2368, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36814410

ABSTRACT

Proper cell-type identity relies on highly coordinated regulation of gene expression. Regulatory elements such as enhancers can produce cell type-specific expression patterns, but the mechanisms underlying specificity are not well understood. We previously identified an enhancer region capable of driving specific expression in giant cells, which are large, highly endoreduplicated cells in the Arabidopsis thaliana sepal epidermis. In this study, we use the giant cell enhancer as a model to understand the regulatory logic that promotes cell type-specific expression. Our dissection of the enhancer revealed that giant cell specificity is mediated primarily through the combination of two activators and one repressor. HD-ZIP and TCP transcription factors are involved in the activation of expression throughout the epidermis. High expression of HD-ZIP transcription factor genes in giant cells promoted higher expression driven by the enhancer in giant cells. Dof transcription factors repressed the activity of the enhancer such that only giant cells maintained enhancer activity. Thus, our data are consistent with a conceptual model whereby cell type-specific expression emerges from the combined activities of three transcription factor families activating and repressing expression in epidermal cells.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation , Arabidopsis/metabolism , Giant Cells/metabolism , Enhancer Elements, Genetic/genetics
20.
Circ Res ; 132(2): 238-250, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656970

ABSTRACT

Giant cell arteritis is an autoimmune disease of medium and large arteries, characterized by granulomatous inflammation of the three-layered vessel wall that results in vaso-occlusion, wall dissection, and aneurysm formation. The immunopathogenesis of giant cell arteritis is an accumulative process in which a prolonged asymptomatic period is followed by uncontrolled innate immunity, a breakdown in self-tolerance, the transition of autoimmunity from the periphery into the vessel wall and, eventually, the progressive evolution of vessel wall inflammation. Each of the steps in pathogenesis corresponds to specific immuno-phenotypes that provide mechanistic insights into how the immune system attacks and damages blood vessels. Clinically evident disease begins with inappropriate activation of myeloid cells triggering the release of hepatic acute phase proteins and inducing extravascular manifestations, such as muscle pains and stiffness diagnosed as polymyalgia rheumatica. Loss of self-tolerance in the adaptive immune system is linked to aberrant signaling in the NOTCH pathway, leading to expansion of NOTCH1+CD4+ T cells and the functional decline of NOTCH4+ T regulatory cells (Checkpoint 1). A defect in the endothelial cell barrier of adventitial vasa vasorum networks marks Checkpoint 2; the invasion of monocytes, macrophages and T cells into the arterial wall. Due to the failure of the immuno-inhibitory PD-1 (programmed cell death protein 1)/PD-L1 (programmed cell death ligand 1) pathway, wall-infiltrating immune cells arrive in a permissive tissues microenvironment, where multiple T cell effector lineages thrive, shift toward high glycolytic activity, and support the development of tissue-damaging macrophages, including multinucleated giant cells (Checkpoint 3). Eventually, the vascular lesions are occupied by self-renewing T cells that provide autonomy to the disease process and limit the therapeutic effectiveness of currently used immunosuppressants. The multi-step process deviating protective to pathogenic immunity offers an array of interception points that provide opportunities for the prevention and therapeutic management of this devastating autoimmune disease.


Subject(s)
Giant Cell Arteritis , Humans , Inflammation/metabolism , Arteries/metabolism , Immunity, Innate , Giant Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...