ABSTRACT
BACKGROUND: Eugenol is an economically favorable substrate for the microbial biotransformation of aromatic compounds. Coniferyl aldehyde is one kind of aromatic compound that is widely used in condiment and medical industries; it is also an important raw material for producing other valuable products such as vanillin and protocatechuic acid. However, in most eugenol biotransformation processes, only a trace amount of coniferyl aldehyde is detected, thus making these processes economically unattractive. As a result, an investigation of new strains with the capability of producing more coniferyl aldehyde from eugenol is required. RESULTS: We screened a novel strain of Gibberella fujikuroi, labeled as ZH-34, which was capable of transforming eugenol to coniferyl aldehyde. The metabolic pathway was analyzed by high-performance liquid chromatographymass spectrometry and transformation kinetics. The culture medium and biotransformation conditions were optimized. At a 6 h time interval of eugenol fed-batch strategy, 3.76 ± 0.22 g/L coniferyl aldehyde was obtained, with the corresponding yield of 57.3%. CONCLUSIONS: This work improves the yield of coniferyl aldehyde with a biotechnological approach. Moreover, the fed-batch strategy offers possibility for controlling the target product and accumulating different metabolites
Subject(s)
Acrolein/analogs & derivatives , Eugenol/metabolism , Biotransformation , Gibberella/metabolism , Biodegradation, Environmental , Acrolein/metabolism , Biotechnology , Chromatography, High Pressure Liquid , Renewable Resources , Batch Cell Culture TechniquesABSTRACT
Background: Several studies have shown that (-)-Jasmonic acid, (+)-7-iso-Jasmonic acid and its methyl ester, methyl jasmonate, have anti-cancer activity in vitro and in vivo, exhibiting selective cytotoxicity towards cancer cells. The degree of activity of these molecules is strongly related to their stereochemistry. The biotransformation of known compounds, natural or synthesized, related to interesting biological activities, generates new molecules displaying new improved properties compared with the original ones, increasing its value and providing new more effective products. Therefore, based on the above rationales and observations, in this work a biotransformation protocol to modify the chemical structure of the plant hormone jasmonic acid by using the fungus Gibberella fujikuroi was established. Results: The three jasmonic acid derivatives obtained, 3(S)-Hydroxy-2(R)-(2Z-pentenyl)-cyclopentane-1(R)-acetic acid (1), 3(R)-Hydroxy-2(R)-(2Z-pentenyl)-cyclopentane-1(R)-acetic acid (2), 3-Hydroxy-2(S)-(2Z-pentenyl)-cyclopentane-1(S)-acetic acid (3), were tested for cell-growth inhibition activity towards the human cancer epithelial cell line, the oral squamous carcinoma cells (KB). The results obtained show that jasmonic acid derivatives (1-3) are active on human cancer cells examined in different concentration ranges, with IC50 value less than of 25 uM. The compound 3, with the same molecular structure of compounds 1 and 2, but with different stereochemistry, was more active confirming that the activity of jasmonate compounds is related to their stereochemistry and to substituents in the cyclopentane ring. In this study, we also tested the potential proapoptotic activity of compound 3, and our data suggest that it, as other jasmonate compounds, is able to trigger apoptotic death in cancer cells. This event may be correlated at an elevation of reactive oxygen species (ROS). Administration of N-acetylcysteine (NAC) prevented compound 3 cytotoxicity...
Subject(s)
Humans , Apoptosis , Cyclopentanes/metabolism , Gibberella/metabolism , Oxylipins/metabolism , Antineoplastic Agents , Biological Assay , Biotransformation , Cell Survival , Comet Assay , Reactive Oxygen Species , L-Lactate DehydrogenaseABSTRACT
Several isolates of three Fusarium species associated with the Gibberella fujikuroi species complex were characterized for their ability to synthesize gibberellins (GAs): Fusarium sacchari (mating population B), Fusarium konzum (mating population I) and Fusarium subglutinans (mating population E). Of these, F. sacchari is phylogenetically related to Fusarium fujikuroi and is grouped in the Asian clade of the complex, while F. konzum and F. subglutinans are only distantly related to Fusarium fujikuroi and belong to the American clade. Variability was found between the different F. sacchari strains tested. Five isolates (B-12756; B-1732, B-7610, B-1721 and B-1797) were active in GA biosynthesis and accumulated GA(3) in the culture fluid (2.76-28.4 microg/mL), while two others (B-3828 and B-1725) were inactive. GA(3) levels in strain B-12756 increased by 2.9 times upon complementation with ggs2 and cps-ks genes from F. fujikuroi. Of six F. konzum isolates tested, three (I-10653; I-11616; I-11893) synthesized GAs, mainly GA(1), at a low level (less than 0.1 microg/mL). Non-producing F. konzum strains contained no GA oxidase activities as found for the two F. subglutinans strains tested. These results indicate that the ability to produce GAs is present in other species of the G. fujikuroi complex beside F. fujikuroi, but might differ significantly in different isolates of the same species.
Subject(s)
Fusarium , Gibberella , Gibberellins/biosynthesis , Mixed Function Oxygenases/metabolism , Diterpenes, Kaurane/biosynthesis , Diterpenes, Kaurane/chemistry , Fusarium/chemistry , Fusarium/enzymology , Fusarium/genetics , Fusarium/metabolism , Gibberella/chemistry , Gibberella/enzymology , Gibberella/genetics , Gibberella/metabolism , Gibberellins/analysis , Gibberellins/chemistry , Molecular Structure , Species SpecificityABSTRACT
Optimum operation and automatic control of large-scale solid substrate fermentation (SSF) bioreactors is difficult. Though advanced control algorithms can handle most challenges encountered properly, for real-time SSF processes such controllers are expensive and time consuming to design and tune. With these considerations, advanced control algorithm tests using realistic simulations appear more appropriate. We used a phenomenological process model of an SSF pilot bioreactor, coupled with a realistic noise model, to test linear model predictive controllers. We focused on the effect noise has on the performance of the control algorithms, and how to enhance performance using a combination of low-pass (Butterworth) and outlier shaving (Hampel) filters. In simulations undertaken directly with the phenomenological model it was relatively straightforward to achieve good control performance. Nevertheless, control degraded sharply when the output of the phenomenological model was contaminated with noise using our realistic noise model, even with proper signal filtering.
Subject(s)
Bioreactors/microbiology , Cell Culture Techniques/instrumentation , Gibberella/metabolism , Gibberellins/metabolism , Models, Biological , Triticum/microbiology , Artifacts , Cell Culture Techniques/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis , Feedback/physiology , Fermentation/physiology , Stochastic ProcessesABSTRACT
In this work the growth of Gibberella fujikuroi and gibberellic acid (GA3) production were studied using coffee husk and cassava bagasse as substrates in a packed-bed column bioreactor connected to a gas chromatograph for exit gas analysis. With the respirometric data, a logarithmic correlation between accumulated CO2 and biomass production was determined, and the kinetics of the fungal growth was compared for estimated and experimental data. The solid medium consisted of coffee husk (pretreated with alkali solution), mixed with cassava bagasse (7:3 dry weight basis), with a substrate initial pH of 5.2 and moisture of 77%. Cultivation was carried out in glass columns, which were packed with preinoculated substrate and with forced aeration of 0.24 L of air/[h (g of substrate)] for the first 3 days, and 0.72 L of air/[h (g of substrate)] for the remaining period. The maximum specific growth rate (microm) obtained was 0.052 h(-1) (between 24 and 48 h of fermentation). A production of 0.925 g of GA3/kg of substrate was achieved after 6 days of fermentation.
Subject(s)
Bioreactors/microbiology , Carbon Dioxide/metabolism , Cell Culture Techniques/methods , Gibberella/growth & development , Gibberella/metabolism , Gibberellins/metabolism , Models, Biological , Carbon Dioxide/analysis , Cell Culture Techniques/instrumentation , Cell Proliferation , Computer Simulation , Fermentation/physiology , KineticsABSTRACT
The production of fumonisins, fusaproliferin and beauvericin by Gibberella fujikuroi different mating populations isolated from maize in Argentina was evaluated. From 203 strains of Fusarium verticillioides (G. fujikuroi mating population A), 193 were fumonisin producers. Among members of mating population A, female fertile strains produced 20% more toxin than female sterile ones. Among 78 Fusarium proliferatum strains (G. fujikuroi mating population D) 65 produced fumonisins. The percentage of strains that were high, intermediate and low level toxin producers varied according to the species evaluated and the area from which the strains were isolated. Fusarium subglutinans (G. fujikuroi mating population E) strains produced low levels or were no fumonisin producers. Strains from both G. fujikuroi mating populations D and E were able to produce fusaproliferin and beauvericin. Among the members of F. subglutinans (G. fujikuroi mating population E) the fusaproliferin production was more constant. Co-production of fumonisin, fusaproliferin and beauvericin among the strains belonging to G. fujikuroi D and E was also observed. The co-production of fumonisin, beauvericin and fusaproliferin in maize need to be considered, since from the toxicological point of view interactions between these toxins could occur. The toxigenic ability of the strains evaluated prompt us that is necessary to determine the natural occurrence of fusaproliferin and beauvericin in Argentinean maize.
Subject(s)
Crosses, Genetic , Depsipeptides , Gibberella/metabolism , Mycotoxins/metabolism , Argentina , Fumonisins/metabolism , Gibberella/genetics , Gibberella/physiology , Peptides/metabolism , Phenotype , Terpenes/metabolism , Zea mays/microbiologyABSTRACT
The steps involved in kaurenolide and fujenoic acids biosynthesis, from ent-kauradienoic acid and ent-6alpha,7alpha-dihydroxykaurenoic acid, respectively, are demonstrated in the gibberellin (GA)-deficient Gibberella fujikuroi mutant SG139, which lacks the entire GA-biosynthesis gene cluster, complemented with the P450-1 gene of GA biosynthesis (SG139-P450-1). ent-[2H]Kauradienoic acid was efficiently converted into 7beta-hydroxy[2H]kaurenolide and 7beta,18-dihydroxy[2H]kaurenolide by the cultures while 7beta-hydroxy[2H]kaurenolide was transformed into 7beta,18-dihydroxy[2H]kaurenolide. The limiting step was found to be hydroxylation at C-18. In addition, SG139-P450-1 transformed ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid into [14C4]fujenoic acid and [14C4]fujenoic triacid. Fujenal was also converted into the same products but was demonstrated not to be an intermediate in this sequence. All the above reactions were absent in the mutant SG139 and were suppressed in the wild-type strain ACC917 by disruption of the P450-1 gene. Kaurenolide and fujenoic acids synthesis were associated with the microsomal fraction and showed an absolute requirement for NADPH or NADH, all properties of cytochrome P450 monooxygenases. Only 7beta-hydroxy[14C4]kaurenolide synthesis and not further 18-hydroxylation was detected in the microsomal fraction. The substrates for the P450-1 monooxygenase, ent-kaurenoic acid and [2H]GA12, efficiently inhibited kaurenolide synthesis with I50 values of 3 and 6 microM, respectively. Both substrates also inhibited ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid metabolism by SG139-P450-1. Conversely, [14C4]GA14 synthesis from [14C4]GA12-aldehyde was inhibited by ent-[2H]kauradienoic acid and fujenal with I50 values of 10 and 30 microM, respectively. These results demonstrate that kaurenolides and seco-ring B kaurenoids are formed by the P450-1 monooxygenase (GA14 synthase) of G. fujikuroi and are thus side products that probably result from stabilization of radical intermediates involved in GA14 synthesis.
Subject(s)
Aldehydes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Diterpenes/metabolism , Gibberella/enzymology , Gibberellins/biosynthesis , Aldehydes/chemistry , Carbon Radioisotopes , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/genetics , Diterpenes/chemistry , Diterpenes/pharmacology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Flavin-Adenine Dinucleotide/metabolism , Gibberella/genetics , Gibberella/metabolism , Isoenzymes , Microsomes/metabolism , NADP/metabolism , Substrate Specificity , Transformation, GeneticABSTRACT
A novel method for the quantitative determination of gibberellic acid in fermentation broths has been developed. It is based on the kinetic of the reaction of conversion of gibberellic acid to gibberellenic acid. The method is simple, reliable, faster than most of methods known, and free of the interferences which commonly affect spectrophotometric methods currently in use. Its threshold sensitivity is 0.1 g and its accuracy is greater than 97% for concentrations of gibberellic acid ranging from 0.1 to 1 g l(-1).
Subject(s)
Culture Media/analysis , Culture Media/metabolism , Gibberella/growth & development , Gibberella/metabolism , Gibberellins/analysis , Gibberellins/biosynthesis , Spectrophotometry/methods , Fermentation/physiology , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Five strains of Gibberella fujikuroi and one of Fusarium moniliforme were screened for the production of gibberellic acid (GA3) in coffee husk, and based on the results, one strain, G. fujikuroi LPB-06, was selected. The comparative production of GA3 by solid-state fermentation and submerged fermentation indicated better productivity with the former technique, mainly with pretreated substrate. The GA3 accumulation was 6.1 times higher in the case of solid-state fermentation. Considering the C:N relation, higher yields of GA3 were achieved using a mixed substrate comprising coffee husk and cassava bagasse (7:3, dry wt), increasing the results twice. Supplementation of an optimized saline solution containing 0.03% FeSO4 and 0.01% (NH4)2SO4 enhanced the accumulation of GA3 1.7 times in the fermented substrate. Under the finally optimized condition, the culture gave a maximum of 492.5 mg of GA3/kg of dry substrate, with a pH of 5.3, moisture of 75%, and incubation temperature of 29 degrees C. GA3 yield was almost 13 times more than the initial results.
Subject(s)
Coffee/metabolism , Fusarium/metabolism , Gibberella/metabolism , Gibberellins/biosynthesis , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Coffee/chemistry , Coffee/microbiology , Fermentation , Hydrogen-Ion Concentration , Kinetics , Manihot/metabolism , Salts/chemistry , Salts/pharmacology , Solutions , Temperature , Water/analysisABSTRACT
A lack of models and sensors for describing and monitoring large-scale solid substrate cultivation (SSC) bioreactors has hampered industrial development and application of this type of process. This study presents an indirect dynamic measurement model for a 200-kg-capacity fixed-bed SSC bioreactor under periodic agitation. Growth of the filamentous fungus Gibberella fujikuroi on wheat bran was used as a case study. Real data were preprocessed using previously reported methodology. The model uses CO2 production rate and inlet air conditions to estimate average bed water content and average bed temperature. The model adequately reproduces the evolution of the average bed water content and can therefore be used as an on-line estimator in pilot-scale SSC bioreactors. To obtain a reasonable fit of the bed temperature, however, inlet air humidity measurements will have to be adjusted with a data reconciliation algorithm. Good estimation of temperature is important for the future design of improved water content estimation using state observers. The model also provides insight into understanding the complex behavior of the dynamic system, which could prove useful when establishing advanced model-based operational and control strategies.
Subject(s)
Bioreactors , Biotechnology/instrumentation , Gibberella/growth & development , Water/analysis , Biotechnology/methods , Calibration , Carbon Dioxide/metabolism , Equipment Design , Gibberella/metabolism , Kinetics , Models, Biological , Pilot Projects , Time Factors , TriticumABSTRACT
An orthogonal experimental design L9 (3(4)) was used to investigate effects of temperature, pH, C:N ratio (glucose-C, NH4Cl-N) and concentrations of rice flour on production of gibberellic acid by Gibberella fujikuroi in 3.5 l fluidized bioreactors. The gibberellic acid production in a fluidized bioreactor could reach 3.90 g l(-1), more than 3-times greater than previously reported for submerged and solid fermentations. pH, rice flour concentration and C:N ratio were the factors that most influenced the production of gibberellic acid; pH being the most important. The response surface of gibberellic acid production to changes in pH and C:N ratio or rice flour concentration indicated that greatest production was found with a C:N ratio of 36.8 and pH 5 while the optimum concentration for rice flour was 2 g l(-1) and production increased with increased pH. The effect of temperature on the production of gibberellic acid was also significant and greatest production was at 30 degrees C.
Subject(s)
Bioreactors , Biotechnology/methods , Gibberella/metabolism , Gibberellins/biosynthesis , Plant Growth Regulators/biosynthesis , Biotechnology/instrumentation , Carbon/chemistry , Culture Media , Glucose/metabolism , Hydrogen-Ion Concentration , Nitrogen/chemistry , Oryza/metabolism , TemperatureABSTRACT
Gibberellins, fatty acids and the polyketides bikaverin and fusarin C are synthesized from a common precursor, acetyl-CoA. The production of these compounds in Gibberella fujikuroi was strongly influenced by aeration, determined by the air/medium ratio in shaken batch cultures. Higher aeration resulted in increased growth and the production of bikaverin and gibberellins. Low aeration stimulated fatty acid and fusarin C production. Feeding experiments with labeled leucine or acetate resulted in different proportions of labeled palmitic acid and bikaverin, indicating that these compounds are synthesized from independent acetate pools.
Subject(s)
Acetates/metabolism , Gibberella/metabolism , Xanthones , Air , Fatty Acids/metabolism , Gibberella/growth & development , Gibberellins/metabolism , Hydrogen-Ion Concentration , Leucine/metabolism , Polyenes/metabolism , Xanthenes/metabolismABSTRACT
Sterols, carotenoids and gibberellins are synthesized after the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate in different subcellular compartments of the fungus Gibberella fujikuroi. Lovastatin inhibits growth in many organisms, presumably because of the inhibition of the synthesis of essential terpenoids. However, in G. fujikuroi growth of the mycelia and sterol and carotenoid content were not affected by the presence of lovastatin. Nevertheless, lovastatin did inhibit the accumulation of gibberellins in the culture medium; this inhibition, however, was counteracted by the addition of mevalonate to the medium. The conversion of HMG-CoA to mevalonate in cell-free extracts was inhibited by 10 nM lovastatin. Since G. fujikuroi apparently possesses a single gene for HMG-CoA reductase, as shown by Southern hybridization and PCR amplification, it was concluded that the biosynthesis of sterols, carotenoids and gibberellins shares a single HMG-CoA reductase, but the respective subcellular compartments are differentially accessible to lovastatin.
Subject(s)
Carotenoids/biosynthesis , Gibberella/drug effects , Gibberellins/antagonists & inhibitors , Gibberellins/biosynthesis , Lovastatin/pharmacology , Sterols/biosynthesis , Acyl Coenzyme A/metabolism , Amino Acid Sequence , Blotting, Southern , DNA, Fungal , Fungal Proteins , Gibberella/growth & development , Gibberella/metabolism , Mevalonic Acid/pharmacology , Molecular Sequence Data , Physical Chromosome Mapping , Polymerase Chain Reaction , Sequence Alignment , Time FactorsABSTRACT
Substrate flows in the sterol, carotenoid and gibberellin pathways of Gibberella fujikuroi were examined by isotope-dilution experiments. The wild type and two carotenoid mutants of this fungus were grown in minimal medium with abundant glucose, limiting ammonium nitrate and a radioactively labelled precursor (either acetate, mevalonate or leucine). The precursors did not affect growth or terpenoid production, with two exceptions; leucine allowed additional growth, as expected from the nitrogen limitation in the medium, and mevalonate inhibited the accumulation of gibberellins, but only if added before the onset of gibberellin production. The relative contributions of glucose, mevalonate, leucine and acetate as terpenoid precursors, calculated from the specific radioactivities of ergosterol, neurosporaxanthin and phytoene, were different for different products and different precursors. We conclude that the biosyntheses of sterols, gibberellins and carotenoids in Gibberella are physically separated in different subcellular compartments with independent substrate pools. The same results were obtained with the three strains, except for carotenoid production, indicating that this pathway is regulated independently from other terpenoid pathways.