Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Biochem Biophys Res Commun ; 707: 149783, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38493746

ABSTRACT

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Subject(s)
Adhesins, Bacterial , Porphyromonas gingivalis , Animals , Mice , Humans , Gingipain Cysteine Endopeptidases/metabolism , Caco-2 Cells , Porphyromonas gingivalis/physiology , Cytosol/metabolism , Occludin/metabolism , Adhesins, Bacterial/metabolism
2.
Mol Oral Microbiol ; 38(4): 321-333, 2023 08.
Article in English | MEDLINE | ID: mdl-37339018

ABSTRACT

The Gram-negative anaerobe, Porphyromonas gingivalis, is known to be a pathogen associated with chronic periodontitis. P. gingivalis possesses virulence factors such as fimbriae and gingipain proteinases. Fimbrial proteins are secreted to the cell surface as lipoproteins. In contrast, gingipain proteinases are secreted into the bacterial cell surface via the type IX secretion system (T9SS). The transport mechanisms of lipoproteins and T9SS cargo proteins are entirely different and remain unknown. Therefore, using the Tet-on system developed for the genus Bacteroides, we newly created a conditional gene expression system in P. gingivalis. We succeeded in establishing conditional expression of nanoluciferase and its derivatives for lipoprotein export, of FimA for a representative of lipoprotein export, and of T9SS cargo proteins such as Hbp35 and PorA for representatives of type 9 protein export. Using this system, we showed that the lipoprotein export signal, which has recently been found in other species in the phylum Bacteroidota, is also functional in FimA, and that a proton motive force inhibitor can affect type 9 protein export. Collectively, our conditional protein expression method is useful for screening inhibitors of virulence factors, and may be used to investigate the role of proteins essential to bacterial survival in vivo.


Subject(s)
Bacterial Proteins , Porphyromonas gingivalis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Peptide Hydrolases/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Gene Expression , Bacterial Secretion Systems/genetics
3.
Microbiol Spectr ; 11(3): e0476922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199607

ABSTRACT

Porphyromonas gingivalis is an important periodontal pathogen that can cause vascular injury and invade local tissues through the blood circulation, and its ability to evade leukocyte killing is critical to its distal colonization and survival. Transendothelial migration (TEM) is a series of that enable leukocytes to squeeze through endothelial barriers and migrate into local tissues to perform immune functions. Several studies have shown that P. gingivalis-mediated endothelial damage initiates a series of proinflammatory signals that promote leukocyte adhesion. However, whether P. gingivalis is involved in TEM and thus influences immune cell recruitment remains unknown. In our study, we found that P. gingivalis gingipains could increase vascular permeability and promote Escherichia coli penetration by downregulating platelet/endothelial cell adhesion molecule 1 (PECAM-1) expression in vitro. Furthermore, we demonstrated that although P. gingivalis infection promoted monocyte adhesion, the TEM capacity of monocytes was substantially impaired, which might be due to the reduced CD99 and CD99L2 expression on gingipain-stimulated endothelial cells and leukocytes. Mechanistically, gingipains mediate CD99 and CD99L2 downregulation, possibly through the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, our in vivo model confirmed the role of P. gingivalis in promoting vascular permeability and bacterial colonization in the liver, kidney, spleen, and lung and in downregulating PECAM-1, CD99, and CD99L2 expression in endothelial cells and leukocytes. IMPORTANCE P. gingivalis is associated with a variety of systemic diseases and colonizes in distal locations in the body. Here, we found that P. gingivalis gingipains degrade PECAM-1 to promote bacterial penetration while simultaneously reducing leukocyte TEM capacity. A similar phenomenon was also observed in a mouse model. These findings established P. gingivalis gingipains as the key virulence factor in modulating the permeability of the vascular barrier and TEM processes, which may provide a new rationale for the distal colonization of P. gingivalis and its associated systemic diseases.


Subject(s)
Porphyromonas gingivalis , Transendothelial and Transepithelial Migration , Mice , Animals , Gingipain Cysteine Endopeptidases/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adhesins, Bacterial/metabolism
4.
Mol Oral Microbiol ; 38(4): 289-308, 2023 08.
Article in English | MEDLINE | ID: mdl-37134265

ABSTRACT

Porphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.9-fold. Isogenic mutants P. gingivalis FLL457 (ΔCdhR::ermF), FLL458 (ΔPG1236::ermF), and FLL459 (ΔPG1236-CdhR::ermF) were made by allelic exchange mutagenesis to determine the involvement of these genes in P. gingivalis W83 NO stress resistance. The mutants were black pigmented and ß hemolytic and their gingipain activities varied with strains. FLL457 and FLL459 mutants were more sensitive to NO compared to the wild type, and complementation restored NO sensitivity to that of the wild type. DNA microarray analysis of FLL457 showed that approximately 2% of the genes were upregulated and over 1% of the genes downregulated under NO stress conditions compared to the wild type. Transcriptome analysis of FLL458 and FLL459 under NO stress showed differences in their modulation patterns. Some similarities were also noticed between all mutants. The PG1236-CdhR gene cluster revealed increased expression under NO stress and may be part of the same transcriptional unit. Recombinant CdhR showed binding activity to the predicted promoter regions of PG1459 and PG0495. Taken together, the data indicate that CdhR may play a role in NO stress resistance and be involved in a regulatory network in P. gingivalis.


Subject(s)
Nitric Oxide , Porphyromonas gingivalis , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/metabolism , Nitric Oxide/metabolism , Hemin/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Gene Expression Profiling
5.
Mol Oral Microbiol ; 38(4): 275-288, 2023 08.
Article in English | MEDLINE | ID: mdl-37006135

ABSTRACT

Porphyromonas gingivalis is a keystone pathogen in periodontitis. Our previous study indicated that periodontitis induced by P. gingivalis increased the percentage of CD19+ B cells but decreased the ratio of IL-10-producing regulatory B cells (B10) in collagen-induced arthritis (CIA) mice. It is still unclear which virulence factors of P. gingivalis are involved in these processes. Here, we compared the effects of different components of P. gingivalis on the biogenesis of B10 cells and found that the decreased proportion of B10 cells mainly resulted from the undenatured proteins other than the DNA, RNA, or lipopolysaccharides of P. gingivalis. As gingipains are enzymes and virulence factors that play a vital role in the progression in periodontitis through affecting the innate and adaptive immune system, we then compared the influence of the wild-type (WT) strain of P. gingivalis (ATCC 33277) and its isogenic gingipain-null mutant (∆K∆RAB) on the differentiation of splenic B cells into B10 cells. Interestingly, compared to WT strain, ∆K∆RAB treatment increased the frequency of B10 cells as well as the expression of IL-6 in B cells. Furthermore, the acute peritonitis, an ideal model for the quick evaluation of immune effects of agents, induced by ∆K∆RAB, showed the higher IL-6 production and proportion of B10 cells compared with WT. Finally, we performed transcriptomic analysis to better understand the effects and possible mechanisms of gingipains on B cells. Compared with WT, ∆K∆RAB upregulated the PI3K-Akt pathway of B cells, which is important for IL-10 production and B10 cell biogenesis, and more activated Jak-STAT pathway, which is a classical signaling pathway mediated by IL-6. Cumulatively, this study preliminarily revealed that gingipains of P. gingivalis are vital virulence factors downregulating B10 cells and altering immune responses.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Animals , Mice , Gingipain Cysteine Endopeptidases/metabolism , Virulence Factors/metabolism , Interleukin-10/metabolism , Interleukin-6 , Phosphatidylinositol 3-Kinases/metabolism , Janus Kinases/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Signal Transduction , STAT Transcription Factors/metabolism
6.
Cancer Immunol Res ; 11(3): 290-305, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36633576

ABSTRACT

Accumulating evidence shows that PD-L1 expression on dendritic cells (DC) is critical for cancer immunotherapy and that Porphyromonas gingivalis (Pg) colonization aggravates the progression of upper gastrointestinal cancers. However, the effects of Pg infection on PD-L1 expression on DCs and related immune consequences in the infection milieu of oral cancer remain unexplored. Here, we found that Pg infection robustly enhanced PD-L1 expression on DCs in a gingipain-dependent manner in cultured cell and systemic infection assays. Pg infection suppressed antigen-specific CD8+ T cells through upregulation of PD-L1 expression on ovalbumin (OVA)-pulsed DCs. This suppression was manifested by decreased IFNγ, perforin, granzyme B, and CD107a. Further analysis showed that Pg drastically reduced CD8+ T cells' ability to lyse OVA-pulsed target cells. Additionally, Pg infection increased the phosphorylation of Akt and STAT3, leading to a significant increase in PD-L1 expression. This was substantiated by using siRNA, overexpression plasmids, and pharmacologic inhibitors. Consistent with the in vitro observations, in a syngeneic mouse oral cancer model, Pg infection significantly enhanced PD-L1 expression on DCs from intratumoral tissues and cervical lymph nodes and exacerbated oral cancer progression, whereas a Pg lysine-specific, gingipain-defective mutant failed to do so. These influences of Pg were largely diminished when tumor cells were pretreated with antibiotics or a STAT3 inhibitor. Therefore, we demonstrated that Pg infection upregulates PD-L1 expression on DCs through Akt-STAT3 signaling, suppresses CD8+ T-cell cytotoxicity, and aggravates oral cancer growth, suggesting targeting Pg, and/or its mediated signaling, could be a therapeutic strategy to improve the efficacy of checkpoint blockade immunotherapy.


Subject(s)
B7-H1 Antigen , Mouth Neoplasms , Animals , Mice , Gingipain Cysteine Endopeptidases/metabolism , Gingipain Cysteine Endopeptidases/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells
7.
J Chem Inf Model ; 63(3): 950-958, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36648276

ABSTRACT

Alzheimer's disease represents one of the most ambitious challenges for biomedical sciences due to the growing number of cases worldwide in the elderly population and the lack of efficient treatments. One of the recent attempts to develop a treatment points to the cysteine protease RgpB as a promising drug target. In this attempt, several small-molecule covalent inhibitors of this enzyme have been proposed. Here, we report a computational study at the atomic level of the inhibition mechanism of the most promising reported compounds. Molecular dynamics simulations were performed on six of them, and their binding energies in the active site of the protein were computed. Contact maps and interaction energies were decomposed by residues to disclose those key interactions with the enzyme. Finally, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were performed to evaluate the reaction mechanism by which these drug candidates lead to covalently bound complexes, inhibiting the RgpB protease. The results provide a guide for future re-design of prospective and efficient inhibitors for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Gingipain Cysteine Endopeptidases , Aged , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cysteine Proteases/chemistry , Gingipain Cysteine Endopeptidases/adverse effects , Gingipain Cysteine Endopeptidases/antagonists & inhibitors , Gingipain Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation
8.
Int J Oral Sci ; 15(1): 3, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36631446

ABSTRACT

Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.


Subject(s)
Bacteremia , Blood-Brain Barrier , Caveolin 1 , Porphyromonas gingivalis , Animals , Rats , Bacteremia/complications , Bacteremia/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Caveolin 1/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Permeability , Porphyromonas gingivalis/pathogenicity , Transcytosis , Virulence Factors/metabolism
9.
Mol Oral Microbiol ; 38(1): 48-57, 2023 02.
Article in English | MEDLINE | ID: mdl-36349810

ABSTRACT

Porphyromonas gingivalis is a keystone pathogen for periodontitis. The function of the GntR family transcription factor is poorly studied in P. gingivalis. Numerous processes govern bacterial growth. The survival and pathogenicity of P. gingivalis depend heavily on its capacity to acquire amino acids as nutritional sources. In this investigation, a GntR transcription factor, pg1007, was identified in P. gingivalis, the deletion of which significantly inhibited bacterial growth. The mutant strain also exhibited an increased extracellular activity of gingipains and acylpeptidyl oligopeptidase (AOP). Global gene expression profiling revealed that the expression levels of 59 genes were significantly altered in the Δpg1007 mutant, with an upregulation in gene expression for AOP, ABC transporters, and some membrane proteins. In addition, His-PG1007 protein was purified as a recombinant protein from Escherichia coli, and the conserved DNA sequence bound by it was determined using electrophoretic mobility shift assays and DNase I footprinting assays. Consequently, this study demonstrated that pg1007 is a crucial transcription factor in P. gingivalis and regulates the bacterial growth and activity of gingipains and AOP. These findings may enhance our understanding of the regulation of bacterial proliferation and protease activity in P. gingivalis.


Subject(s)
Porphyromonas gingivalis , Transcription Factors , Gingipain Cysteine Endopeptidases/metabolism , Peptide Hydrolases/metabolism , Adhesins, Bacterial/metabolism
10.
Oral Dis ; 29(5): 2297-2309, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35509129

ABSTRACT

OBJECTIVE: It aims to explore the effect of dental follicle cells-derived small extracellular vesicles (D-sEVs) with or without lipopolysaccharides (LPS) pretreating on the pathogenicity of Porphyromonas gingivalis (P. gingivalis). METHODS: The antibacterial effects of D-sEV were evaluated by measuring the growth, biofilm formation, gingipains, and type IX secretion system (T9SS) expression of P. gingivalis. And the influence of D-sEV on P. gingivalis adhesion, invasion, cytotoxicity, and host immune response was examined in gingival epithelial cells (GECs). Then P. gingivalis treated with D-sEV was applied to investigate the pathogenicity in experimental periodontitis of mice. RESULTS: It showed that both D-sEV and P. gingivalis LPS-pretreated D-sEV (L-D-sEV) could target P. gingivalis, inhibit their growth and biofilm formation, and hinder the attachment and invasion in GECs, therefore remarkably decreasing P. gingivalis cytotoxicity and the expression of IL-1ß and IL-6 in GECs. In addition, they significantly reduced the expression of P. gingivalis virulence factors (gingipains and T9SS). In vivo, it showed that the bacteria in the gingiva were significantly decreased after sEV treatment. Meanwhile, less bone loss and fewer inflammatory cells infiltration and osteoclast formation in D-sEV and L-D-sEV groups. CONCLUSION: Both D-sEV and L-D-sEV were proven to inhibit the pathogenicity of P. gingivalis and thus prevented the development of periodontitis.


Subject(s)
Extracellular Vesicles , Periodontitis , Animals , Mice , Porphyromonas gingivalis/metabolism , Virulence , Gingipain Cysteine Endopeptidases/metabolism , Lipopolysaccharides/pharmacology , Dental Sac , Periodontitis/metabolism , Gingiva
11.
Article in English | WPRIM (Western Pacific) | ID: wpr-971594

ABSTRACT

Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.


Subject(s)
Animals , Rats , Bacteremia/metabolism , Blood-Brain Barrier/microbiology , Caveolin 1/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Permeability , Porphyromonas gingivalis/pathogenicity , Transcytosis , Virulence Factors/metabolism
12.
J Immunol ; 208(5): 1146-1154, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110422

ABSTRACT

Porphyromonas gingivalis is commonly known as one of the major pathogens contributing to periodontitis, and its persistent infection may increase the risk for the disease. The proinflammatory mediators, including IL-6, TNF-α, and cyclooxygenase-2 (COX-2)/PGE2, are closely associated with progression of periodontitis. In this study, we focused on the cysteine protease "gingipains," lysine-specific gingipain, arginine-specific gingipain (Rgp) A, and RgpB, produced by P. gingivalis, and used the wild-type strain and several gene-deletion mutants (rgpA, rgpB, kgp, and fimA) to elucidate the involvement of gingipains in COX-2 expression and PGE2 production. We infected human monocytes, which are THP-1 cells and primary monocytes, with these bacterial strains and found that gingipains were involved in induction of COX-2 expression and PGE2 production. We have shown that the protease activity of gingipains was crucial for these events by using gingipain inhibitors. Furthermore, activation of ERK1/2 and IκB kinase was required for gingipain-induced COX-2 expression/PGE2 production, and these kinases activated two transcription factors, c-Jun/c-Fos (AP-1) and NF-κB p65, respectively. In particular, these data suggest that gingipain-induced c-Fos expression via ERK is essential for AP-1 formation with c-Jun, and activation of AP-1 and NF-κB p65 plays a central role in COX-2 expression/PGE2 production. Thus, we show the (to our knowledge) novel finding that gingipains with the protease activity from P. gingivalis induce COX-2 expression and PGE2 production via activation of MEK/ERK/AP-1 and IκB kinase/NF-κB p65 in human monocytes. Hence it is likely that gingipains closely contribute to the inflammation of periodontal tissues.


Subject(s)
Cyclooxygenase 2/biosynthesis , Dinoprostone/biosynthesis , Gingipain Cysteine Endopeptidases/metabolism , MAP Kinase Signaling System/physiology , Periodontitis/pathology , Porphyromonas gingivalis/metabolism , Bacterial Proteins/genetics , Cell Line , Cysteine Endopeptidases/genetics , Fimbriae Proteins/genetics , Gingipain Cysteine Endopeptidases/genetics , Humans , I-kappa B Kinase/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Monocytes/microbiology , Periodontitis/microbiology , THP-1 Cells , Transcription Factor AP-1/metabolism , Transcription Factor RelA/metabolism
13.
ACS Appl Mater Interfaces ; 13(31): 36880-36893, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34324286

ABSTRACT

Existing local drug delivery systems for periodontitis suffer from poor antibacterial effect and unsatisfied periodontal regeneration. In this study, a smart gingipain-responsive hydrogel (PEGPD@SDF-1) was synthesized as an environmentally sensitive carrier for on-demand drug delivery. The PEGPD@SDF-1 hydrogel was synthesized from polyethylene glycol diacrylate (PEG-DA) based scaffolds, dithiothreitol (DTT), and a novel designed functional peptide module (FPM) via Michael-type addition reaction, and the hydrogel was further loaded with stromal cell derived factor-1 (SDF-1). The FPM exhibiting a structure of anchor peptide-short antimicrobial peptide (SAMP)-anchor peptide could be cleaved by gingipain specifically, and the SAMP was released out of the hydrogel for antibacterial effect in response to gingipain. The hydrogel properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling ratio analysis, degradation evaluation, and release curve description of the SAMP and SDF-1. Results in vitro indicated the PEGPD@SDF-1 hydrogel exhibited preferable biocompatibility and could promote the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Antibacterial testing demonstrated that the PEGPD@SDF-1 hydrogel released the SAMP stressfully in response to gingipain stimulation, thereby strongly inhibiting the growth of Porphyromonas gingivalis. Furthermore, the study in vivo indicated that the PEGPD@SDF-1 hydrogel inhibited P. gingivalis reproduction, created a low-inflammatory environment, facilitated the recruitment of CD90+/CD34- stromal cells, and induced osteogenesis. Taken together, these results suggest that the gingipain-responsive PEGPD@SDF-1 hydrogel could facilitate in situ periodontal tissue regeneration and is a promising candidate for the on-demand local drug delivery system for periodontitis.


Subject(s)
Bone Regeneration/drug effects , Chemokine CXCL12/therapeutic use , Drug Carriers/chemistry , Gingipain Cysteine Endopeptidases/metabolism , Hydrogels/chemistry , Periodontitis/drug therapy , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/therapeutic use , Cell Differentiation/drug effects , Cell Movement , Chemokine CXCL12/chemistry , Drug Carriers/chemical synthesis , Drug Liberation , Hydrogels/chemical synthesis , Male , Osteogenesis/drug effects , Periodontal Ligament/cytology , Periodontitis/metabolism , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemical synthesis , Polymethacrylic Acids/chemistry , Porphyromonas gingivalis/drug effects , Rats, Wistar , Stem Cells
15.
Innate Immun ; 27(2): 158-169, 2021 02.
Article in English | MEDLINE | ID: mdl-33445998

ABSTRACT

Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Periodontitis/immunology , Porphyromonas gingivalis/physiology , Receptors, Pattern Recognition/metabolism , Acetaldehyde/chemistry , Acetaldehyde/metabolism , Animals , Antibodies, Monoclonal/isolation & purification , Clone Cells , Epitopes, B-Lymphocyte/metabolism , Fimbriae Proteins/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Immunity, Innate , Immunoglobulin G/isolation & purification , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Malondialdehyde/chemistry , Malondialdehyde/metabolism , Mice , Mice, Knockout , Oxidation-Reduction , Receptors, LDL/genetics , Receptors, Pattern Recognition/isolation & purification
16.
Methods Mol Biol ; 2210: 97-112, 2021.
Article in English | MEDLINE | ID: mdl-32815131

ABSTRACT

Porphyromonas gingivalis is a gram-negative, rod-shaped, nonmotile bacterium belonging to the phylum Bacteroidetes. It produces abundant amounts of proteases in both cell-associated and secretory forms, including a group of cysteine proteases referred to as gingipains, which have attracted much attention due to their high proteolytic activity associated with pathogenicity. Gingipains are grouped into arginine (R)-specific (RgpA and RgpB) and lysine (K)-specific (Kgp) types. Both Rgp (collective term for RgpA and RgpB) and Kgp gingipains play crucial roles in the virulence of P. gingivalis, including the degradation of host periodontal tissues, disruption of host defense mechanisms, and loss of viability in host cells, such as fibroblasts and endothelial cells. In addition to their function in virulence, gingipains are also essential for the growth and survival of P. gingivalis in periodontal pockets through the acquisition of amino acids and heme groups. Furthermore, Rgp and Kgp gingipains are critical in processing fimbriae and several bacterial proteins that contribute to hemagglutination, coaggregation, and hemoglobin binding. This chapter describes the methods used to analyze gingipains.


Subject(s)
Bacterial Proteins/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Porphyromonas gingivalis/metabolism , Animals , Arginine/metabolism , Cysteine Endopeptidases/metabolism , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Fimbriae, Bacterial/metabolism , Guinea Pigs , Hemagglutination/physiology , Hemagglutinins/metabolism , Lysine/metabolism , Virulence/physiology
17.
Methods Mol Biol ; 2210: 123-133, 2021.
Article in English | MEDLINE | ID: mdl-32815133

ABSTRACT

The type IX secretion system (T9SS) is a protein secretion system for gingipain proteases and is found on the cell surface of Porphyromonas gingivalis. Proteins secreted by T9SS contain a signal peptide, functional domains, an immunoglobulin (Ig)-like domain, and a C-terminal domain (CTD). Thirty genes on the P. gingivalis chromosome encode proteins that possess the CTD, which is important for T9SS-mediated translocation to the cell surface across the outer membrane. In T9SS mutant strains, proteins accumulate as precursors in the cell and therefore exhibit a phenotype similar to that of secreted protein-deficient mutants. Black pigment productivity and hemagglutination are phenotypic features of P. gingivalis associated with the activity of gingipains. In P. gingivalis T9SS mutants, unprocessed gingipains with high molecular weights accumulate in the cell, and colony pigmentation and hemagglutination are not observed in the same phenotype as a gingipain null mutant.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Porphyromonas gingivalis/metabolism , Adhesins, Bacterial/metabolism , Animals , Gingipain Cysteine Endopeptidases/metabolism , Hemagglutination/physiology , Rabbits , Virulence Factors/metabolism
18.
FEBS Open Bio ; 11(2): 446-455, 2021 02.
Article in English | MEDLINE | ID: mdl-33332733

ABSTRACT

Porphyromonas gingivalis (Pg) is a periodontopathic pathogen that may affect MUC5AC-related mucus hypersecretion along airway epithelial cells. Here, we attempted to establish whether Pg virulence factors (lipopolysaccharide, FimA fimbriae, gingipains) affect MUC5AC in immortalized and primary bronchial cells. We report that MUC5AC gene expression and protein levels are affected by Pg culture supernatant, but not by lipopolysaccharide or FimA fimbriae. Cells treated with either Pg single (Kgp or Rgp) or double (Kgp/Rgp) mutants had altered levels of MUC5AC gene expression and protein levels, and MUC5AC staining of double mutant-treated mouse lung cells showed that MUC5AC protein levels were unaffected. Taken together, we propose that Pg gingipains may be the primary virulence factor that influences both MUC5AC gene expression and protein levels.


Subject(s)
Mucin 5AC/metabolism , Periodontal Diseases/complications , Porphyromonas gingivalis/immunology , Respiratory Tract Infections/immunology , Animals , Bronchi/immunology , Bronchi/metabolism , Bronchi/pathology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Gingipain Cysteine Endopeptidases/metabolism , Host-Pathogen Interactions , Humans , Male , Mice , Mucin 5AC/analysis , Periodontal Diseases/immunology , Periodontal Diseases/microbiology , Porphyromonas gingivalis/metabolism , Primary Cell Culture , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology , Specific Pathogen-Free Organisms , Virulence Factors/metabolism
19.
Sci Rep ; 10(1): 18313, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110205

ABSTRACT

Porphyromonas gingivalis is a causative agent in the onset and progression of periodontal disease. This study aims to investigate the effects of quercetin, a natural plant product, on P. gingivalis virulence properties including gingipain, haemagglutinin and biofilm formation. Antimicrobial effects and morphological changes of quercetin on P. gingivalis were detected. The effects of quercetin on gingipains activities and hemolytic, hemagglutination activities were evaluated using chromogenic peptides and sheep erythrocytes. The biofilm biomass and metabolism with different concentrations of quercetin were assessed by the crystal violet and MTT assay. The structures and thickness of the biofilms were observed by confocal laser scanning microscopy. Bacterial cell surface properties including cell surface hydrophobicity and aggregation were also evaluated. The mRNA expression of virulence and iron/heme utilization was assessed using real time-PCR. Quercetin exhibited antimicrobial effects and damaged the cell structure. Quercetin can inhibit gingipains, hemolytic, hemagglutination activities and biofilm formation at sub-MIC concentrations. Molecular docking analysis further indicated that quercetin can interact with gingipains. The biofilm became sparser and thinner after quercetin treatment. Quercetin also modulate cell surface hydrophobicity and aggregation. Expression of the genes tested was down-regulated in the presence of quercetin. In conclusion, our study demonstrated that quercetin inhibited various virulence factors of P. gingivalis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Periodontal Diseases/microbiology , Porphyromonas gingivalis/drug effects , Quercetin/pharmacology , Biofilms/drug effects , Gingipain Cysteine Endopeptidases/metabolism , Hemagglutinins/metabolism , Humans , Microbial Sensitivity Tests , Microscopy, Confocal , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Porphyromonas gingivalis/ultrastructure , Virulence/drug effects
20.
Microbiologyopen ; 9(12): e1128, 2020 12.
Article in English | MEDLINE | ID: mdl-33047890

ABSTRACT

The black pigmentation-related genes in Porphyromonas gingivalis are primarily involved in regulating gingipain functions. In this study, we identified a pigmentation-related gene, designated as pgn_0361. To characterize the role of pgn_0361 in regulating P. gingivalis-mediated epithelial cell detachment and inhibition of wound closure, PgΔ0361, an isogenic pgn_0361-defective mutant strain, and PgΔ0361C, a complementation strain, were constructed using P. gingivalis ATCC 33277. The gingipain and hemagglutination activities, as well as biofilm formation, were examined in all three strains. The effect of P. gingivalis strains on epithelial cell detachment was investigated using the HO-1-N-1 and Ca9-22 epithelial cell lines. The inhibition of wound closure by heat-killed P. gingivalis cells and culture supernatant was analyzed using an in vitro wound closure assay. Compared to the wild-type strain, the PgΔ0361 strain did not exhibit gingipain or hemagglutination activity but exhibited enhanced biofilm formation. Additionally, the PgΔ0361 strain exhibited attenuated ability to detach the epithelial cells and to inhibit wound closure in vitro. Contrastingly, the culture supernatant of PgΔ0361 exhibited high gingipain activity and strong inhibition of wound closure. The characteristics of PgΔ0361C and wild-type strains were comparable. In conclusion, the pgn_0361 gene is involved in regulating gingipains. The PGN_0361-defective strain exhibited reduced virulence in terms of epithelial cell detachment and inhibition of wound closure. The culture supernatant of the mutant strain highly inhibited wound closure, which may be due to high gingipain activity.


Subject(s)
Adhesins, Bacterial/genetics , Cell Adhesion/genetics , Gingipain Cysteine Endopeptidases/genetics , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/metabolism , Wound Healing/genetics , Biofilms/growth & development , Cell Line , Culture Media, Conditioned/pharmacology , Epithelial Cells/microbiology , Gene Deletion , Gingipain Cysteine Endopeptidases/metabolism , Hemagglutination/genetics , Humans , Pigmentation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...