Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.560
Filter
1.
J Med Case Rep ; 18(1): 251, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741133

ABSTRACT

INTRODUCTION: Evaluating isolated extremity discomfort can be challenging when initial imaging and exams provide limited information. Though subtle patient history hints often underlie occult pathologies, benign symptoms are frequently miscategorized as idiopathic. CASE PRESENTATION: We present a case of retained glass obscuring as acute calcific periarthritis on imaging. A 48-year-old White male with vague fifth metacarpophalangeal joint pain had unrevealing exams, but radiographs showed periarticular calcification concerning inflammation. Surgical exploration unexpectedly revealed an encapsulated glass fragment eroding bone. Further history uncovered a forgotten glass laceration decade prior. The foreign body was removed, resolving symptoms. DISCUSSION: This case reveals two imperative diagnostic principles for nonspecific extremity pain: (1) advanced imaging lacks specificity to differentiate inflammatory arthropathies from alternate intra-articular processes such as foreign bodies, and (2) obscure patient history questions unearth causal subtleties that direct accurate diagnosis. Though initial scans suggested acute calcific periarthritis, exhaustive revisiting of the patient's subtle decade-old glass cut proved pivotal in illuminating the underlying driver of symptoms. CONCLUSION: Our findings underscore the critical limitations of imaging and the vital role that meticulous history-taking plays in clarifying ambiguous chronic limb presentations. They spotlight the imperative of probing even distant trauma when symptoms seem disconnected from causative events. This case reinforces the comprehensive evaluation of all subtle patient clues as key in illuminating elusive extremity pain etiologies.


Subject(s)
Calcinosis , Foreign Bodies , Glass , Humans , Male , Middle Aged , Foreign Bodies/diagnostic imaging , Foreign Bodies/complications , Calcinosis/diagnostic imaging , Calcinosis/diagnosis , Diagnosis, Differential , Metacarpophalangeal Joint/diagnostic imaging , Metacarpophalangeal Joint/injuries , Periarthritis/diagnostic imaging , Periarthritis/diagnosis , Arthralgia/etiology , Radiography
2.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722356

ABSTRACT

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Subject(s)
Dental Bonding , Glass , Materials Testing , Resin Cements , Silanes , Surface Properties , Tensile Strength , Water , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Silanes/chemistry , Water/chemistry , Dental Bonding/methods , Glass/chemistry , Microscopy, Electron, Scanning , Dental Stress Analysis
3.
Sci Rep ; 14(1): 10269, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704450

ABSTRACT

Thiamine (vitamin B1) is an essential vitamin serving in its diphosphate form as a cofactor for enzymes in the citric acid cycle and pentose-phosphate pathways. Its concentration reported in the pM and nM range in environmental and clinical analyses prompted our consideration of the components used in pre-analytical processing, including the selection of filters, filter apparatuses, and sample vials. The seemingly innocuous use of glass fiber filters, glass filter flasks, and glass vials, ubiquitous in laboratory analysis of clinical and environmental samples, led to marked thiamine losses. 19.3 nM thiamine was recovered from a 100 nM standard following storage in glass autosampler vials and only 1 nM of thiamine was obtained in the filtrate of a 100 nM thiamine stock passed through a borosilicate glass fiber filter. We further observed a significant shift towards phosphorylated derivatives of thiamine when an equimolar mixture of thiamine, thiamine monophosphate, and thiamine diphosphate was stored in glass (most notably non-silanized glass, where a reduction of 54% of the thiamine peak area was observed) versus polypropylene autosampler vials. The selective losses of thiamine could lead to errors in interpreting the distribution of phosphorylated species in samples. Further, some loss of phosphorylated thiamine derivatives selectively to amber glass vials was observed relative to other glass vials. Our results suggest the use of polymeric filters (including nylon and cellulose acetate) and storage container materials (including polycarbonate and polypropylene) for thiamine handling. Losses to cellulose nitrate and polyethersulfone filters were far less substantial than to glass fiber filters, but were still notable given the low concentrations expected in samples. Thiamine losses were negated when thiamine was stored diluted in trichloroacetic acid or as thiochrome formed in situ, both of which are common practices, but not ubiquitous, in thiamine sample preparation.


Subject(s)
Glass , Thiamine , Thiamine/analysis , Thiamine/chemistry , Glass/chemistry , Adsorption , Humans , Filtration
4.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714634

ABSTRACT

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Subject(s)
Crystallization , Griseofulvin , Polymers , Transition Temperature , Griseofulvin/chemistry , Crystallization/methods , Polymers/chemistry , Drug Stability , Hydrogen Bonding , Polyvinyls/chemistry , Polyethylene Glycols/chemistry , Povidone/chemistry , Glass/chemistry
5.
BMC Oral Health ; 24(1): 523, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702708

ABSTRACT

BACKGROUND: The rising demand for improved aesthetics has driven the utilization of recently introduced aesthetic materials for creating custom post and core restorations. However, information regarding the fracture resistance of these materials remains unclear, which limits their practical use as custom post and core restorations in clinical applications. AIM OF THE STUDY: This study aimed to evaluate the fracture resistance of three non-metallic esthetic post and core restorations and their modes of failure. MATERIALS AND METHODS: Thirty-nine single-rooted human maxillary central incisors were endodontically treated. A standardized post space preparation of 9mm length was performed to all teeth to receive custom-made post and core restorations. The prepared teeth were randomly allocated to receive a post and core restoration made of one of the following materials (n=13): glass fiber-reinforced composite (FRC), polyetheretherketone (PEEK) and polymer-infiltrated ceramic-network (PICN). An intraoral scanner was used to scan all teeth including the post spaces. Computer-aided design and computer-aided manufacturing (CAD-CAM) was used to fabricate post and core restorations. Post and core restorations were cemented using self-adhesive resin cement. All specimens were subjected to fracture resistance testing using a universal testing machine. Failure mode analysis was assessed using a stereomicroscope and SEM. The data was statistically analyzed using One-Way ANOVA test followed by multiple pairwise comparisons using Bonferroni adjusted significance level. RESULTS: Custom PEEK post and core restorations displayed the least fracture load values at 286.16 ± 67.09 N. In contrast, FRC exhibited the highest average fracture load at 452.60 ± 105.90 N, closely followed by PICN at 426.76 ± 77.99 N. In terms of failure modes, 46.2% of specimens with PICN were deemed non-restorable, while for PEEK and FRC, these percentages were 58.8% and 61.5%, respectively. CONCLUSIONS: Within the limitation of this study, both FRC and PICN demonstrated good performance regarding fracture resistance, surpassing that of PEEK.


Subject(s)
Composite Resins , Computer-Aided Design , Dental Restoration Failure , Esthetics, Dental , Post and Core Technique , Humans , Ceramics , Dental Stress Analysis , Benzophenones , Incisor/injuries , Dental Materials/chemistry , Polyethylene Glycols , Ketones/chemistry , Polymers , Glass , Materials Testing , Dental Prosthesis Design
6.
Environ Sci Technol ; 58(19): 8393-8403, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691770

ABSTRACT

The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.


Subject(s)
Air Pollution, Indoor , Cooking , Glass , Ozone , Volatile Organic Compounds , Ozone/chemistry , Glass/chemistry , Air Pollutants
7.
Anal Chem ; 96(19): 7470-7478, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696229

ABSTRACT

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Subject(s)
Glass , MicroRNAs , Nanowires , Peptide Nucleic Acids , Silicon Dioxide , MicroRNAs/analysis , Peptide Nucleic Acids/chemistry , Silicon Dioxide/chemistry , Humans , Nanowires/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection
8.
ACS Biomater Sci Eng ; 10(5): 2935-2944, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38627890

ABSTRACT

Ti-Au intermetallic-based material systems are being extensively studied as next-generation thin film coatings to extend the lifetime of implant devices. These coatings are being developed for application to the articulating surfaces of total joint implants and, therefore, must have excellent biocompatibility combined with superior mechanical hardness and wear resistance. However, these key characteristics of Ti-Au coatings are heavily dependent upon factors such as the surface properties and temperature of the underlying substrate during thin film deposition. In this work, Ti3Au thin films were deposited by magnetron sputtering on both glass and Ti6Al4V substrates at an ambient and elevated substrate temperature of 275 °C. These films were studied for their mechanical properties by the nanoindentation technique in both variable load and fixed load mode using a Berkovich tip. XRD patterns and cross-sectional SEM images detail the microstructure, while AFM images present the surface morphologies of these Ti3Au thin films. The biocompatibility potential of the films is assessed by cytotoxicity tests in L929 mouse fibroblast cells using Alamar blue assay, while leached ion concentrations in the film extracts are quantified using ICPOEMS. The standard deviation for hardness of films deposited on glass substrates is ∼4 times lower than that on Ti6Al4V substrates and is correlated with a corresponding increase in surface roughness from 2 nm for glass to 40 nm for Ti6Al4V substrates. Elevating substrate temperature leads to an increase in film hardness from 5.1 to 8.9 GPa and is related to the development of a superhard ß phase of the Ti3Au intermetallic. The standard deviation of this peak mechanical hardness value is reduced by ∼3 times when measured in fixed load mode compared to the variable load mode due to the effect of nanoindentation tip penetration depth. All tested Ti-Au thin films also exhibit excellent biocompatibility against L929 fibroblast cells, as viability levels are above 95% and leached Ti, Al, V, and Au ion concentrations are below 0.1 ppm. Overall, this work demonstrates a novel Ti3Au thin film system with a unique combination of high hardness and excellent biocompatibility with potential to be developed into a new wear-resistant coating to extend the lifetime of articulating total joint implants.


Subject(s)
Alloys , Glass , Materials Testing , Surface Properties , Titanium , Titanium/chemistry , Alloys/chemistry , Animals , Mice , Glass/chemistry , Coated Materials, Biocompatible/chemistry , Cell Line , Fibroblasts/drug effects , Biocompatible Materials/chemistry , Hardness , Gold/chemistry
9.
ACS Sens ; 9(4): 2050-2056, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38632929

ABSTRACT

DNA carries genetic information and can serve as an important biomarker for the early diagnosis and assessment of the disease prognosis. Here, we propose a bottom-up assembly method for a silica nanowire-filled glass microporous (SiNWs@GMP) sensor and develop a universal sensing platform for the ultrasensitive and specific detection of DNA. The three-dimensional network structure formed by SiNWs provides them with highly abundant and accessible binding sites, allowing for the immobilization of a large amount of capture probe DNA, thereby enabling more target DNA to hybridize with the capture probe DNA to improve detection performance. Therefore, the SiNWs@GMP sensor achieves ultrasensitive detection of target DNA. In the detection range of 1 aM to 100 fM, there is a good linear relationship between the decrease rate of current signal and the concentration of target DNA, and the detection limit is as low as 1 aM. The developed SiNWs@GMP sensor can distinguish target DNA sequences that are 1-, 3-, and 5-mismatched, and specifically recognize target DNA from complex mixed solution. Furthermore, based on this excellent selectivity and specificity, we validate the universality of this sensing strategy by detecting DNA (H1N1 and H5N1) sequences associated with the avian influenza virus. By replacing the types of nucleic acid aptamers, it is expected to achieve a wide range and low detection limit sensitive detection of various biological molecules. The results indicate that the developed universal sensing platform has ultrahigh sensitivity, excellent selectivity, stability, and acceptable reproducibility, demonstrating its potential application in DNA bioanalysis.


Subject(s)
Biosensing Techniques , Glass , Limit of Detection , Nanowires , Silicon Dioxide , Glass/chemistry , Silicon Dioxide/chemistry , Nanowires/chemistry , Biosensing Techniques/methods , DNA/chemistry , Porosity , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H1N1 Subtype/isolation & purification , DNA, Viral/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
11.
J Dent Res ; 103(5): 526-535, 2024 May.
Article in English | MEDLINE | ID: mdl-38581240

ABSTRACT

Bioglass 45S5, a silica-based glass, has pioneered a new field of biomaterials. Bioglass 45S5 promotes mineralization through calcium ion release and is widely used in the dental field, including toothpaste formulations. However, the use of Bioglass 45S5 for bone grafting is limited owing to the induction of inflammation, as well as reduced degradation and ion release. Phosphate-based glasses exhibit higher solubility and ion release than silica-based glass. Given that these glasses can be synthesized at low temperatures (approximately 1,000°C), they can easily be doped with various metal oxides to confer therapeutic properties. Herein, we fabricated zinc- and fluoride-doped phosphate-based glass (multicomponent phosphate [MP] bioactive glass) and further doped aluminum oxide into the MP glass (4% Al-MP glass) to overcome the striking solubility of phosphate-based glass. Increased amounts of zinc and fluoride ions were detected in water containing the MP glass. Doping of aluminum oxide into the MP glass suppressed the striking dissolution in water, with 4% Al-MP glass exhibiting the highest stability in water. Compared with Bioglass 45S5, 4% Al-MP glass in water had a notably reduced particle size, supporting the abundant ion release of 4% Al-MP glass. Compared with Bioglass 45S5, 4% Al-MP glass enhanced the osteogenesis of mouse bone marrow-derived mesenchymal stem cells. Mouse macrophages cultured with 4% Al-MP glass displayed enhanced induction of anti-inflammatory M2 macrophages and reduced proinflammatory M1 macrophages, indicating M2 polarization. Upon implanting 4% Al-MP glass or Bioglass 45S5 in a mouse calvarial defect, 4% Al-MP glass promoted significant bone regeneration when compared with Bioglass 45S5. Hence, we successfully fabricated zinc- and fluoride-releasing bioactive glasses with improved osteogenic and anti-inflammatory properties, which could serve as a promising biomaterial for bone regeneration.


Subject(s)
Bone Substitutes , Ceramics , Fluorides , Glass , Zinc , Fluorides/chemistry , Animals , Mice , Ceramics/chemistry , Bone Substitutes/chemistry , Glass/chemistry , Osteogenesis/drug effects , Biocompatible Materials/chemistry , Materials Testing
12.
PLoS One ; 19(4): e0301865, 2024.
Article in English | MEDLINE | ID: mdl-38669284

ABSTRACT

Circular reinforced concrete wound glass fiber reinforced polymer (GFRP) columns and reinforced concrete filled GFRP columns are extensively utilized in civil engineering practice. Various factors influence the performance of these two types of GFRP columns, thereby impacting the whole project. Therefore, it is highly significant to establish the prediction models for ultimate displacement and ultimate bearing capacity to optimize the design of the two types of GFRP columns. In this study, based on the experiments conducted under different conditions on the two kinds of GFRP columns, automatic machine learning along with four other commonly used machine learning methods were employed for modeling to analyze how the column parameters (cross section shape, concrete strength, height of GFRP column, wound GFRP wall thickness, inner diameter of wound GFRP column) affect their performance. The differences in performance among these five machine learning methods were analyzed after modeling. Subsequently, we obtained the variation patterns in ultimate displacement and ultimate bearing capacity of the columns influenced by each parameter by testing the data using the optimal model. Based on these findings, the optimal design schemes for the two types of GFRP columns are proposed. The contribution of this paper is three-fold. First, AutoML sheds light on the automatic prediction of ultimate displacement and ultimate bearing capacity of GFRP column. Second, in this paper, two optimal design schemes of GFRP columns are proposed. Third, for AEC industrial practitioners, the whole process is automatic, accurate and less reliant on data expertise and the optimization design scheme proposed in the article is relatively scientific.


Subject(s)
Machine Learning , Construction Materials , Glass/chemistry , Polymers/chemistry , Materials Testing/methods
13.
J Biomed Mater Res B Appl Biomater ; 112(5): e35406, 2024 May.
Article in English | MEDLINE | ID: mdl-38676957

ABSTRACT

The field of tissue engineering has witnessed significant advancements in recent years, driven by the pursuit of innovative solutions to address the challenges of bone regeneration. In this study, we developed an electrospun composite scaffold for bone tissue engineering. The composite scaffold is made of a blend of poly(L-lactide-co-ε-caprolactone) (PLCL) and polyethylene glycol (PEG), with the incorporation of calcined and lyophilized silicate-chlorinated bioactive glass (BG) particles. Our investigation involved a comprehensive characterization of the scaffold's physical, chemical, and mechanical properties, alongside an evaluation of its biological efficacy employing alveolar bone-derived mesenchymal stem cells. The incorporation of PEG and BG resulted in elevated swelling ratios, consequently enhancing hydrophilicity. Thermal gravimetric analysis confirmed the efficient incorporation of BG, with the scaffolds demonstrating thermal stability up to 250°C. Mechanical testing revealed enhanced tensile strength and Young's modulus in the presence of BG; however, the elongation at break decreased. Cell viability assays demonstrated improved cytocompatibility, especially in the PLCL/PEG+BG group. Alizarin red staining indicated enhanced osteoinductive potential, and fluorescence analysis confirmed increased cell adhesion in the PLCL/PEG+BG group. Our findings suggest that the PLCL/PEG/BG composite scaffold holds promise as an advanced biomaterial for bone tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Polyesters , Polyethylene Glycols , Tissue Engineering , Tissue Scaffolds , Polyethylene Glycols/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Glass/chemistry , Materials Testing
14.
Luminescence ; 39(4): e4746, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644460

ABSTRACT

The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.


Subject(s)
Glass , Nanofibers , Polyethylene Glycols , Ultraviolet Rays , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Glass/chemistry , Particle Size , Surface Properties
15.
ACS Appl Mater Interfaces ; 16(15): 18327-18343, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588343

ABSTRACT

58S bioactive glass (BG) has effective biocompatibility and bioresorbable properties for bone tissue engineering; however, it has limitations regarding antibacterial, antioxidant, and mechanical properties. Therefore, we have developed BGAC biocomposites by reinforcing 58S BG with silver and ceria nanoparticles, which showed effective bactericidal properties by forming inhibited zones of 2.13 mm (against Escherichia coli) and 1.96 mm (against Staphylococcus aureus; evidenced by disc diffusion assay) and an increment in the antioxidant properties by 39.9%. Moreover, the elastic modulus, hardness, and fracture toughness were observed to be increased by ∼84.7% (∼51.9 GPa), ∼54.5% (∼3.4 GPa), and ∼160% (∼1.3 MPam1/2), whereas the specific wear rate was decreased by ∼55.2% (∼1.9 × 10-11 m3/Nm). X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy confirmed the fabrication of biocomposites and the uniform distribution of the nanomaterials in the BG matrix. The addition of silver nanoparticles in the 58S BG matrix (in BGA) increased mechanical properties by composite strengthening and bactericidal properties by damaging the cytoplasmic membrane of bacterial cells. The addition of nanoceria in 58S BG (BGC) increased the antioxidant properties by 44.5% (as evidenced by the 2,2-diphenyl-1-picrylhydrazyl assay). The resazurin reduction assay and MTT assay confirmed the effective cytocompatibility for BGAC biocomposites against mouse embryonic fibroblast cells (NIH3T3) and mouse bone marrow stromal cells. Overall, BGAC resulted in mechanical properties comparable to those of cancellous bone, and its effective antibacterial and cytocompatibility properties make it a good candidate for bone healing.


Subject(s)
Cerium , Metal Nanoparticles , Silver , Animals , Mice , Antioxidants , NIH 3T3 Cells , Fibroblasts , Anti-Bacterial Agents/pharmacology , Glass
16.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672498

ABSTRACT

Inorganic-organic hybrid biomaterials have been proposed for bone tissue repair, with improved mechanical flexibility compared with scaffolds fabricated from bioceramics. However, obtaining hybrids with osteoinductive properties equivalent to those of bioceramics is still a challenge. In this work, we present for the first time the synthesis of a class II hybrid modified with bioactive glass nanoparticles (nBGs) with osteoinductive properties. The nanocomposite hybrids were produced by incorporating nBGs in situ into a polytetrahydrofuran (PTHF) and silica (SiO2) hybrid synthesis mixture using a combined sol-gel and cationic polymerization method. nBGs ~80 nm in size were synthesized using the sol-gel technique. The structure, composition, morphology, and mechanical properties of the resulting materials were characterized using ATR-FTIR, 29Si MAS NMR, SEM-EDX, AFM, TGA, DSC, mechanical, and DMA testing. The in vitro bioactivity and degradability of the hybrids were assessed in simulated body fluid (SBF) and PBS, respectively. Cytocompatibility with mesenchymal stem cells was assessed using MTS and cell adhesion assays. Osteogenic differentiation was determined using the alkaline phosphatase activity (ALP), as well as the gene expression of Runx2 and Osterix markers. Hybrids loaded with 5, 10, and 15% of nBGs retained the mechanical flexibility of the PTHF-SiO2 matrix and improved its ability to promote the formation of bone-like apatite in SBF. The nBGs did not impair cell viability, increased the ALP activity, and upregulated the expression of Runx2 and Osterix. These results demonstrate that nBGs are an effective osteoinductive nanoadditive for the production of class II hybrid materials with enhanced properties for bone tissue regeneration.


Subject(s)
Biocompatible Materials , Glass , Mesenchymal Stem Cells , Nanocomposites , Nanoparticles , Osteogenesis , Nanocomposites/chemistry , Nanoparticles/chemistry , Glass/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Silicon Dioxide/chemistry , Cell Differentiation/drug effects , Tissue Engineering/methods
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673834

ABSTRACT

In this paper, the in vivo behavior of orthopedic implants covered with thin films obtained by matrix-assisted pulsed laser evaporation and containing bioactive glass, a polymer, and natural plant extract was evaluated. In vivo testing was performed by carrying out a study on guinea pigs who had coated metallic screws inserted in them and also controls, following the regulations of European laws regarding the use of animals in scientific studies. After 26 weeks from implantation, the guinea pigs were subjected to X-ray analyses to observe the evolution of osteointegration over time; the guinea pigs' blood was collected for the detection of enzymatic activity and to measure values for urea, creatinine, blood glucose, alkaline phosphatase, pancreatic amylase, total protein, and glutamate pyruvate transaminase to see the extent to which the body was affected by the introduction of the implant. Moreover, a histopathological assessment of the following vital organs was carried out: heart, brain, liver, and spleen. We also assessed implanted bone with adjacent tissue. Our studies did not find significant variations in biochemical and histological results compared to the control group or significant adverse effects caused by the implant coating in terms of tissue compatibility, inflammatory reactions, and systemic effects.


Subject(s)
Plant Extracts , Animals , Guinea Pigs , Plant Extracts/chemistry , Plant Extracts/pharmacology , Nanostructures/chemistry , Biocompatible Materials/chemistry , Materials Testing , Glass/chemistry , Prostheses and Implants , Male , Osseointegration/drug effects
18.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673856

ABSTRACT

Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.


Subject(s)
Coated Materials, Biocompatible , Glass , Magnetite Nanoparticles , Naproxen , Naproxen/pharmacology , Naproxen/chemistry , Glass/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Magnetite Nanoparticles/chemistry , Animals , Mice , Humans , Nitric Oxide/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Silicon Dioxide/chemistry , Cell Survival/drug effects , RAW 264.7 Cells , Osteogenesis/drug effects
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674086

ABSTRACT

Biomaterials are extensively used as replacements for damaged tissue with bioactive glasses standing out as bone substitutes for their intrinsic osteogenic properties. However, biomaterial implantation has the following risks: the development of implant-associated infections and adverse immune responses. Thus, incorporating metallic ions with known antimicrobial properties can prevent infection, but should also modulate the immune response. Therefore, we selected silver, copper and tellurium as doping for bioactive glasses and evaluated the immunophenotype and cytokine profile of human T-cells cultured on top of these discs. Results showed that silver significantly decreased cell viability, copper increased the T helper (Th)-1 cell percentage while decreasing that of Th17, while tellurium did not affect either cell viability or immune response, as evaluated via multiparametric flow cytometry. Multiplex cytokines assay showed that IL-5 levels were decreased in the copper-doped discs, compared with its undoped control, while IL-10 tended to be lower in the doped glass, compared with the control (plastic) while undoped condition showed lower expression of IL-13 and increased MCP-1 and MIP-1ß secretion. Overall, we hypothesized that the Th1/Th17 shift, and specific cytokine expression indicated that T-cells might cross-activate other cell types, potentially macrophages and eosinophils, in response to the scaffolds.


Subject(s)
Cytokines , Glass , Humans , Glass/chemistry , Cytokines/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Metals/chemistry , Copper/chemistry , Ions , Cells, Cultured , Th17 Cells/immunology , Th1 Cells/immunology , Th1 Cells/drug effects
20.
BMC Oral Health ; 24(1): 487, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658909

ABSTRACT

BACKGROUND: Zinc-oxide eugenol (ZOE) cements are among the most used temporary materials in dentistry. Although ZOE has advantages over other temporary fillers, its mechanical strength is weaker, so researchers are working to improve it. E-glass fibers have emerged as promising reinforcing fibers in recent years due to their strong mechanical behavior, adequate bonding, and acceptable aesthetics. OBJECTIVES: To evaluate and compare the compressive strength, surface microhardness, and solubility of the ZOE and those reinforced with 10 wt.% E-glass fibers. METHODS: A total of 60 ZEO specimens were prepared; 30 specimens were reinforced with 10 wt.% E-glass fibers, considered modified ZOE. The characterization of the E-glass fibers was performed by XRF, SEM, and PSD. The compressive strength, surface microhardness, and solubility were evaluated. Independent sample t-tests were used to statistically assess the data and compare mean values (P ≤ 0.05). RESULTS: The results revealed that the modified ZOE showed a significantly higher mean value of compressive strength and surface microhardness while having a significantly lower mean value of solubility compared to unmodified ZOE (P ≤ 0.05). CONCLUSION: The modified ZOE with 10 wt.% E-glass fibers had the opportunity to be used as permanent filling materials.


Subject(s)
Compressive Strength , Glass , Hardness , Materials Testing , Solubility , Zinc Oxide-Eugenol Cement , Zinc Oxide-Eugenol Cement/chemistry , Glass/chemistry , Surface Properties , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...