Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.129
Filter
1.
Radiat Oncol ; 19(1): 61, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773620

ABSTRACT

PURPOSE: Accurate deformable registration of magnetic resonance imaging (MRI) scans containing pathologies is challenging due to changes in tissue appearance. In this paper, we developed a novel automated three-dimensional (3D) convolutional U-Net based deformable image registration (ConvUNet-DIR) method using unsupervised learning to establish correspondence between baseline pre-operative and follow-up MRI scans of patients with brain glioma. METHODS: This study involved multi-parametric brain MRI scans (T1, T1-contrast enhanced, T2, FLAIR) acquired at pre-operative and follow-up time for 160 patients diagnosed with glioma, representing the BraTS-Reg 2022 challenge dataset. ConvUNet-DIR, a deep learning-based deformable registration workflow using 3D U-Net style architecture as a core, was developed to establish correspondence between the MRI scans. The workflow consists of three components: (1) the U-Net learns features from pairs of MRI scans and estimates a mapping between them, (2) the grid generator computes the sampling grid based on the derived transformation parameters, and (3) the spatial transformation layer generates a warped image by applying the sampling operation using interpolation. A similarity measure was used as a loss function for the network with a regularization parameter limiting the deformation. The model was trained via unsupervised learning using pairs of MRI scans on a training data set (n = 102) and validated on a validation data set (n = 26) to assess its generalizability. Its performance was evaluated on a test set (n = 32) by computing the Dice score and structural similarity index (SSIM) quantitative metrics. The model's performance also was compared with the baseline state-of-the-art VoxelMorph (VM1 and VM2) learning-based algorithms. RESULTS: The ConvUNet-DIR model showed promising competency in performing accurate 3D deformable registration. It achieved a mean Dice score of 0.975 ± 0.003 and SSIM of 0.908 ± 0.011 on the test set (n = 32). Experimental results also demonstrated that ConvUNet-DIR outperformed the VoxelMorph algorithms concerning Dice (VM1: 0.969 ± 0.006 and VM2: 0.957 ± 0.008) and SSIM (VM1: 0.893 ± 0.012 and VM2: 0.857 ± 0.017) metrics. The time required to perform a registration for a pair of MRI scans is about 1 s on the CPU. CONCLUSIONS: The developed deep learning-based model can perform an end-to-end deformable registration of a pair of 3D MRI scans for glioma patients without human intervention. The model could provide accurate, efficient, and robust deformable registration without needing pre-alignment and labeling. It outperformed the state-of-the-art VoxelMorph learning-based deformable registration algorithms and other supervised/unsupervised deep learning-based methods reported in the literature.


Subject(s)
Brain Neoplasms , Deep Learning , Glioma , Magnetic Resonance Imaging , Unsupervised Machine Learning , Humans , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Glioma/diagnostic imaging , Glioma/radiotherapy , Glioma/pathology , Radiation Oncology/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
2.
J Transl Med ; 22(1): 320, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555449

ABSTRACT

BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.


Subject(s)
Blood-Brain Barrier , Glioma , Humans , Rats , Child , Male , Mice , Animals , Disease Models, Animal , Rats, Sprague-Dawley , Brain Stem , Drug Delivery Systems/methods , Magnetic Resonance Imaging , Glioma/radiotherapy , Microbubbles , Brain
3.
Strahlenther Onkol ; 200(6): 535-543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453699

ABSTRACT

PURPOSE: Vitexin can cooperate with hyperbaric oxygen to sensitize the radiotherapy of glioma by inhibiting the hypoxia-inducible factor (HIF)-1α. However, whether vitexin has a direct radiosensitization and how it affects the HIF-1α expression remain unclear. This study investigated these issues. METHODS: The SU3 cells-inoculated nude mice were divided into control, radiation, and vitexin + radiation groups. The vitexin + radiation-treated mice were intraperitoneally injected with 75 mg/kg vitexin daily for 21 days. On the 3rd, 10th, and 17th days during the vitexin treatment, the radiation-treated mice were locally irradiated with 10 Gy, respectively. In vitro, the microRNA (miR)-17-5p or miR-130b-3p mimics-transfected SU3 cells were used to examine the effects of vitexin plus radiation on expression of miR-17-5p- or miR-130b-3p-induced radioresistance-related pathway proteins. The effects of vitexin on miR-17-5p and miR-130b-3p expression in SU3 cells were also evaluated. RESULTS: Compared with the radiation group, the tumor volume, tumor weight, and expression of HIF-1α, vascular endothelial growth factor, and glucose transporter-1/3 proteins, miR-17-5p, and miR-130b-3p in tumor tissues in the vitexin + radiation group decreased, whereas the expression of phosphatase and tensin homolog (PTEN) protein increased. After treatment of miR-17-5p or miR-130b-3p mimics-transfected SU3 cells with vitexin plus radiation, the PTEN protein expression also increased, the HIF-1α protein expression decreased correspondingly. Moreover, vitexin decreased the miR-17-5p and miR-130b-3p expression in SU3 cells. CONCLUSION: Vitexin can enhance the radiosensitivity of glioma, and its mechanism may partly be related to the attenuation of HIF-1α pathway after lowering the inhibitory effect of miR-17-5p and miR-130b-3p on PTEN.


Subject(s)
Apigenin , Glioma , Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Nude , MicroRNAs , PTEN Phosphohydrolase , Radiation Tolerance , Animals , MicroRNAs/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Apigenin/pharmacology , Apigenin/therapeutic use , PTEN Phosphohydrolase/genetics , Mice , Glioma/radiotherapy , Glioma/pathology , Glioma/genetics , Glioma/drug therapy , Radiation Tolerance/drug effects , Cell Line, Tumor , Humans , Signal Transduction/drug effects , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Radiation-Sensitizing Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
4.
Clin Oncol (R Coll Radiol) ; 36(6): 343-352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553362

ABSTRACT

AIMS: Despite relatively favourable outcomes associated with IDH-mutant grade 3 gliomas, many patients present with diffuse non-enhancing disease involving multiple brain regions, prompting concern over both durable disease control and the morbidity associated with large volume radiation therapy. This study audits volumetric response, survival and functional outcomes in this 'large volume' subgroup that undergoes intensity modulated radiation therapy (IMRT). MATERIALS AND METHODS: From a prospective database of 187 patients with IDH-mutant grade 3 gliomas managed with IMRT between 2008 and 2020, recorded PTV was divided into quartiles. The top quartile, termed the 'large volume cohort' (LVC), was identified. IMRT involved FET-FDG guided integrated boost (59.4/54Gy in 33 fractions). Manual volumetric segmentation of baseline, four months and 13 months post-IMRT tumour were performed for T1, T2 and T1gd MRI sequences. The primary endpoint was volumetric reduction on the T1 and T2 sequences at 13 months and analysed with relapse-free survival (RFS) and overall survival (OS). Morbidity endpoints were assessed at year four post-IMRT and included performance status (ECOG PS) and employment outcomes. RESULTS: The fourth quartile (LVC) identified 44 patients for whom volumetric analysis was available. The LVC had median PTV of 320cm3 compared to 186.2cm3 for the total group. Anaplastic astrocytoma and oligodendroglioma were equally distributed and tumour sites were frontal (54%), temporal (18%) and parietal lobes (16%). Median follow-up for survivors was 71.5 months. Projected 10-year RFS and OS in LVC was 40% and 62%, compared to 53% and 62% respectively in the overall cohort. The RFS (p = 0.06) and OS (p = 0.65) of the LVC was not significantly different to other PTV quartiles; however the impact of PTV volume reached significance when analysed as a continuous variable (RFS p < 0.01; OS p = 0.02). Median T1 volumes were 26.1cm3, 8.0cm3 and 5.3cm3 at months +0, +3 and +12, respectively. The corresponding T2 volumes were 120.8cm3, 29.1cm3 and 26.3cm3. The median T1 and T2 volume reductions were 77% (q1-3: 57-92%) and 78% (q1-3: 60-85%) at 13 months post-IMRT. Initial T2 volume was associated with worse RFS (p = 0.04) but not OS (p = 0.96). There was no association between median T2 volume reduction and RFS (p = 0.77). For patients assessable at year 4 post-IMRT, no late CTCAE Grade 3/4 toxicity events were recognised. 92% of patients were ECOG PS 0-1, 45% were employed at prior capacity and 28% were working with impairment. CONCLUSION: Patients with large volume IDH-mutant Grade 3 glioma demonstrated significant tumour reduction post-IMRT, and good long-term outcomes with respect to survival and functional status. Although larger IMRT volumes were associated with poorer RFS, this was also associated with the initial volume of non-enhancing tumour.


Subject(s)
Brain Neoplasms , Fluorodeoxyglucose F18 , Glioma , Isocitrate Dehydrogenase , Radiotherapy, Intensity-Modulated , Humans , Male , Female , Radiotherapy, Intensity-Modulated/methods , Middle Aged , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Glioma/radiotherapy , Glioma/pathology , Glioma/diagnostic imaging , Glioma/genetics , Glioma/mortality , Isocitrate Dehydrogenase/genetics , Adult , Aged , Mutation , Prospective Studies , Radiopharmaceuticals/therapeutic use , Neoplasm Grading
5.
Nat Cancer ; 5(4): 590-600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429413

ABSTRACT

Pediatric glioma therapy has evolved to delay or eliminate radiation for low-grade tumors. This study examined these temporal changes in therapy with long-term outcomes in adult survivors of childhood glioma. Among 2,501 5-year survivors of glioma in the Childhood Cancer Survivor Study diagnosed 1970-1999, exposure to radiation decreased over time. Survivors from more recent eras were at lower risk of late mortality (≥5 years from diagnosis), severe/disabling/life-threatening chronic health conditions (CHCs) and subsequent neoplasms (SNs). Adjusting for treatment exposure (surgery only, chemotherapy, or any cranial radiation) attenuated this risk (for example, CHCs (1990s versus 1970s), relative risk (95% confidence interval), 0.63 (0.49-0.80) without adjustment versus 0.93 (0.72-1.20) with adjustment). Compared to surgery alone, radiation was associated with greater than four times the risk of late mortality, CHCs and SNs. Evolving therapy, particularly avoidance of cranial radiation, has improved late outcomes for childhood glioma survivors without increased risk for late recurrence.


Subject(s)
Brain Neoplasms , Cancer Survivors , Glioma , Humans , Glioma/mortality , Glioma/therapy , Glioma/radiotherapy , Cancer Survivors/statistics & numerical data , Male , Female , Adult , Child , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Brain Neoplasms/radiotherapy , Adolescent , Young Adult , Child, Preschool , Morbidity , Time Factors , Middle Aged
6.
Sci Rep ; 14(1): 4831, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38413663

ABSTRACT

Focused Ultrasound (FUS) has been shown to sensitize tumors outside the brain to Radiotherapy (RT) through increased ceramide-mediated apoptosis. This study investigated the effects of FUS + RT in healthy rodent brains and F98 gliomas. Tumors, or striata in healthy rats, were targeted with microbubble-mediated, pulsed FUS (220 kHz, 102-444 kPa), followed by RT (4, 8, 15 Gy). FUS + RT (8, 15 Gy) resulted in ablative lesions, not observed with FUS or RT only, in healthy tissue. Lesions were visible using Magnetic Resonance Imaging (MRI) within 72 h and persisted until 21 days post-treatment, indicating potential applications in ablative neurosurgery. In F98 tumors, at 8 and 15 Gy, where RT only had significant effects, FUS + RT offered limited improvements. At 4 Gy, where RT had limited effects compared with untreated controls, FUS + RT reduced tumor volumes observed on MRI by 45-57%. However, survival benefits were minimal (controls: 27 days, RT: 27 days, FUS + RT: 28 days). Histological analyses of tumors 72 h after FUS + RT (4 Gy) showed 93% and 396% increases in apoptosis, and 320% and 336% increases in vessel-associated ceramide, compared to FUS and RT only. Preliminary evidence shows that FUS + RT may improve treatment of glioma, but additional studies are required to optimize effect size.


Subject(s)
Brain Neoplasms , Glioma , Rats , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Microbubbles , Cell Line, Tumor , Glioma/diagnostic imaging , Glioma/radiotherapy , Brain/diagnostic imaging , Brain/pathology , Ceramides/pharmacology , Blood-Brain Barrier
7.
Sci Rep ; 14(1): 3118, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326438

ABSTRACT

In this study, we provide a comprehensive clinical and molecular biological characterization of radiation-induced gliomas (RIG), including a risk assessment for developing gliomas. A cohort of 12 patients who developed RIG 9.5 years (3-31 years) after previous cranial radiotherapy for brain tumors or T-cell acute lymphoblastic leukemia was established. The derived risk of RIG development based on our consecutive cohort of 371 irradiated patients was 1.6% at 10 years and 3.02% at 15 years. Patients with RIG glioma had a dismal prognosis with a median survival of 7.3 months. We described radiology features that might indicate the suspicion of RIG rather than the primary tumor recurrence. Typical molecular features identified by molecular biology examination included the absence of Histon3 mutation, methylation profile of pedHGG-RTK1 and the presence of recurrent PDGFRA amplification and CDKN2A/B deletion. Of the two long-term surviving patients, one had gliomatosis cerebri, and the other had pleomorphic xanthoastrocytoma with BRAF V600E mutation. In summary, our experience highlights the need for tissue diagnostics to allow detailed molecular biological characterization of the tumor, differentiation of the secondary tumor from the recurrence of the primary disease and potentially finding a therapeutic target.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Proto-Oncogene Proteins B-raf/genetics , Glioma/genetics , Glioma/radiotherapy , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Astrocytoma/pathology , Mutation
8.
Ann Nucl Med ; 38(4): 305-314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38356008

ABSTRACT

OBJECTIVE: To investigate differences in uptake regions between methyl-11C-L-methionine positron emission tomography (11C-MET PET) and gadolinium (Gd)-enhanced magnetic resonance imaging (MRI), and their impact on dose distribution, including changing of the threshold for tumor boundaries. METHODS: Twenty consecutive patients with grade 3 or 4 glioma who had recurrence after postoperative radiotherapy (RT) between April 2016 and October 2017 were examined. The study was performed using simulation with the assumption that all patients received RT. The clinical target volume (CTV) was contoured using the Gd-enhanced region (CTV(Gd)), the tumor/normal tissue (T/N) ratios of 11C-MET PET of 1.3 and 2.0 (CTV (T/N 1.3), CTV (T/N 2.0)), and the PET-edge method (CTV(P-E)) for stereotactic RT planning. Differences among CTVs were evaluated. The brain dose at each CTV and the dose at each CTV defined by 11C-MET PET using MRI as the reference were evaluated. RESULTS: The Jaccard index (JI) for concordance of CTV (Gd) with CTVs using 11C-MET PET was highest for CTV (T/N 2.0), with a value of 0.7. In a comparison of pixel values of MRI and PET, the correlation coefficient for cases with higher JI was significantly greater than that for lower JI cases (0.37 vs. 0.20, P = 0.007). D50% of the brain in RT planning using each CTV differed significantly (P = 0.03) and that using CTV (T/N 1.3) were higher than with use of CTV (Gd). V90% and V95% for each CTV differed in a simulation study for actual treatment using CTV (Gd) (P = 1.0 × 10-7 and 3.0 × 10-9, respectively) and those using CTV (T/N 1.3) and CTV (P-E) were lower than with CTV (Gd). CONCLUSIONS: The region of 11C-MET accumulation is not necessarily consistent with and larger than the Gd-enhanced region. A change of the tumor boundary using 11C-MET PET can cause significant changes in doses to the brain and the CTV.


Subject(s)
Brain Neoplasms , Glioma , Humans , Methionine , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/radiotherapy , Glioma/pathology , Positron-Emission Tomography/methods , Racemethionine , Magnetic Resonance Imaging/methods
9.
Adv Healthc Mater ; 13(9): e2303394, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38288911

ABSTRACT

Due to the inherent radiation tolerance, patients who suffered from glioma frequently encounter tumor recurrence and malignant progression within the radiation target area, ultimately succumbing to treatment ineffectiveness. The precise mechanism underlying radiation tolerance remains elusive due to the dearth of in vitro models and the limitations associated with animal models. Therefore, a bioprinted glioma model is engineered, characterized the phenotypic traits in vitro, and the radiation tolerance compared to 2D ones when subjected to X-ray radiation is assessed. By comparing the differential gene expression profiles between the 2D and 3D glioma model, identify functional genes, and analyze distinctions in gene expression patterns. Results showed that 3D glioma models exhibited substantial alterations in the expression of genes associated with the stromal microenvironment, notably a significant increase in the radiation tolerance gene ITGA2 (integrin subunit A2). In 3D glioma models, the knockdown of ITGA2 via shRNA resulted in reduced radiation tolerance in glioma cells and concomitant inhibition of the p-AKT pathway. Overall, 3D bioprinted glioma model faithfully recapitulates the in vivo tumor microenvironment (TME) and exhibits enhanced resistance to radiation, mediated through the ITGA2/p-AKT pathway. This model represents a superior in vitro platform for investigating glioma radiotherapy tolerance.


Subject(s)
Glioma , Proto-Oncogene Proteins c-akt , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Cell Proliferation , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Signal Transduction , Tumor Microenvironment
11.
Neurosurg Rev ; 47(1): 47, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38221545

ABSTRACT

BACKGROUND AND OBJECTIVES: High-grade gliomas (HGGs) are aggressive tumors of the central nervous system that cause significant morbidity and mortality. Despite advances in surgery and radiation therapy (RT), HGG still has a high incidence of recurrence and treatment failure. Intraoperative radiotherapy (IORT) has emerged as a promising therapeutic approach to achieve local tumor control while sparing normal brain tissue from radiation-induced damage. METHODS: A systematic review and meta-analysis were conducted following PRISMA guidelines to evaluate the use of IORT for HGG. Eligible studies were included based on specific criteria, and data were independently extracted. Outcomes of interest included complications, IORT failure, survival rates at 12 and 24 months, and mortality. RESULTS: Sixteen studies comprising 436 patients were included. The overall complication rate after IORT was 17%, with significant heterogeneity observed. The IORT failure rate was 77%, while the survival rates at 12 and 24 months were 74% and 24%, respectively. The mortality rate was 62%. CONCLUSION: This meta-analysis suggests that IORT may be a promising adjuvant treatment for selected patients with HGG. Despite the high rate of complications and treatment failures, the survival outcomes were comparable or even superior to conventional methods. However, the limitations of the study, such as the lack of a control group and small sample sizes, warrant further investigation through prospective randomized controlled trials to better understand the specific patient populations that may benefit most from IORT. However, the limitations of the study, such as the lack of a control group and small sample sizes, warrant further investigation. Notably, the ongoing RP3 trial (NCT02685605) is currently underway, with the aim of providing a more comprehensive understanding of IORT. Moreover, future research should focus on managing complications associated with IORT to improve its safety and efficacy in treating HGG.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/drug therapy , Prospective Studies , Glioma/radiotherapy , Glioma/surgery , Neoplasm Recurrence, Local , Radiotherapy/adverse effects
12.
Cancer Lett ; 583: 216605, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38218171

ABSTRACT

Radiotherapy alters the tumor microenvironment and reprograms cellular metabolism. Transition of tumor cell phenotypes contributes to post-radiotherapy tumor recurrence. Low radiosensitivity of glioma stem cells is one of the reasons for radiotherapy failure. Here, we found that radiotherapy resulted in a higher proportion of infiltration of inflammatory macrophages in glioma non-stem cell grafts compared with that in glioma stem cell-transplanted tumors in a mouse model, where immunosuppressive macrophages dominated in the tumor microenvironment. In radioresistant glioma stem cells, ionizing radiation upregulated CD47 expression by AMP-activated protein kinase (AMPK), resulting in the inhibition of phagocytosis and the promotion of M2-like polarization in macrophages. Ionizing radiation promoted H3K4 methylation on CD47 promotor by downregulating KDM5A. Hyper-phosphorylated retinoblastoma protein RB maintained its dissociation status with KDM5A following AMPK activation, which inhibited the demethylated function of KDM5A. In contrast, in radiosensitive glioma non-stem cells, RB S807/S811 hypo-phosphorylation contributed to the binding of RB with KDM5A, which suppressed H3K4 methylation on CD47 promotor. In addition, ionizing radiation promoted H3K27 acetylation on CD47 promotor by HDAC7 in glioma stem cells. These data suggested that glioma stem cells reprogrammed the tumor immune microenvironment by epigenetic editing to escape macrophage phagocytosis after ionizing radiation. Targeting CD47 might be a potential strategy to sensitize glioblastoma to radiotherapy.


Subject(s)
CD47 Antigen , Glioma , Mice , Animals , CD47 Antigen/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local , Phagocytosis , Glioma/genetics , Glioma/radiotherapy , Neoplastic Stem Cells/metabolism , Methylation , Tumor Microenvironment
13.
BMC Cancer ; 24(1): 37, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183008

ABSTRACT

PURPOSE: To investigate the indications and efficacy of gamma knife radiosurgery (GKRS) as a salvage treatment for recurrent low-and high-grade glioma. METHODS: This retrospective study of 107 patients with recurrent glioma treated with GKRS between 2009 and 2022, including 68 high-grade glioma (HGG) and 39 low-grade glioma (LGG) cases. The Kaplan-Meier method was used to calculate the overall survival (OS) and progression-free survival (PFS). The log-rank test was used to analyze the multivariate prognosis of the Cox proportional hazards model. Adverse reactions were evaluated according to the Common Terminology Criteria for Adverse Events version 4.03. The prognostic value of main clinical features was estimated, including histopathology, Karnofsky performance status (KPS), recurrence time interval, target location, two or more GKRS, surgery for recurrence, site of recurrence, left or right side of the brain and so on. RESULTS: The median follow-up time was 74.5 months. The median OS and PFS were 17.0 months and 5.5 months for all patients. The median OS and PFS were 11.0 months and 5.0 months for HGG, respectively. The median OS and PFS were 49.0 months and 12.0 months for LGG, respectively. Multivariate analysis showed that two or more GKRS, left or right side of the brain and brainstem significantly affected PFS. Meanwhile, the KPS index, two or more GKRS, pathological grade, and brainstem significantly affected OS. Stratified analysis showed that surgery for recurrence significantly affected OS and PFS for LGG. KPS significantly affected OS and PFS for HGG. No serious adverse events were noted post-GKRS. CONCLUSION: GKRS is a safe and effective salvage treatment for recurrent glioma. Moreover, it can be applied after multiple recurrences with tolerable adverse effects.


Subject(s)
Glioma , Radiosurgery , Humans , Radiosurgery/adverse effects , Retrospective Studies , Glioma/radiotherapy , Glioma/surgery , Brain , Brain Stem
14.
Neurosurgery ; 94(4): 780-787, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37955438

ABSTRACT

BACKGROUND AND OBJECTIVES: Tectal plate gliomas (TPGs) are midbrain tumors that grow slowly and have a benign clinical course. Most TPGs are low-grade astrocytomas, but they can encompass various histological tumor types. Gamma Knife radiosurgery (GKRS) is being explored as a potentially safe and effective treatment option for TPGs, although research in this area is limited. This study aims to evaluate GKRS's efficacy and safety in patients with TPG and provide a comprehensive review of existing literature on the topic. METHODS: This retrospective, single-center study included 48 patients with consecutive TPG who underwent GKRS between September 2005 and June 2022. Patients diagnosed with TPGs based on radiological or tissue-based criteria and who had a minimum follow-up period of 12 months were eligible for inclusion. The primary end points were local control and the absence of GKRS-associated or tumor-associated mortality and morbidity. RESULTS: During a median follow-up of 28.5 months (range, 12-128), the radiological assessment showed tumor control in all cases, with 16.7% achieving a complete response and 68.8% achieving a partial response. Pseudoprogression occurred in 6.2% of cases, with onset ranging from 3 to 8 months. Clinical outcomes revealed no permanent neurological deterioration, with symptoms improving in 14.6% of patients and remaining stable in the others. One patient in the pseudoprogression group experienced transient Parinaud syndrome. One patient died during follow-up because of unrelated causes. The mean survival time after GKRS was 123.7 months. None of the clinical, radiological, or radiosurgical variables showed a correlation with partial/complete response, clinical improvement, or overall survival. CONCLUSION: There is limited research available on the management of TPGs, and this study presents the largest patient cohort treated with GKRS, along with a substantial follow-up duration. Despite its limitations, this study demonstrates the efficacy and low-risk profile of GKRS for TPGs.


Subject(s)
Glioma , Meningeal Neoplasms , Radiosurgery , Humans , Follow-Up Studies , Retrospective Studies , Treatment Outcome , Glioma/radiotherapy , Glioma/surgery , Meningeal Neoplasms/surgery
15.
J Appl Clin Med Phys ; 25(3): e14197, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37933891

ABSTRACT

PURPOSE: The aim of this study is to reduce treatment planning time by predicting the intensity-modulated radiotherapy 3D dose distribution using deep learning for brain cancer patients. "For this purpose, two different approaches in dose prediction, i.e., first only planning target volume (PTV) and second PTV with organs at risk (OARs) as input of the U-net model, are employed and their results are compared." METHODS AND MATERIALS: The data of 99 patients with glioma tumors referred for IMRT treatment were used so that the images of 90 patients were regarded as training datasets and the others were for the test. All patients were manually planned and treated with sixth-field IMRT; the photon energy was 6MV. The treatment plans were done with the Collapsed Cone Convolution algorithm to deliver 60 Gy in 30 fractions. RESULTS: The obtained accuracy and similarity for the proposed methods in dose prediction when compared to the clinical dose distributions on test patients according to MSE, dice metric and SSIM for the Only-PTV and PTV-OARs methods are on average (0.05, 0.851, 0.83) and (0.056, 0.842, 0.82) respectively. Also, dose prediction is done in an extremely short time. CONCLUSION: The same results of the two proposed methods prove that the presence of OARs in addition to PTV does not provide new knowledge to the network and only by defining the PTV and its location in the imaging slices, does the dose distribution become predictable. Therefore, the Only-PTV method by eliminating the process of introducing OARs can reduce the overall designing time of treatment by IMRT in patients with glioma tumors.


Subject(s)
Brain Neoplasms , Glioma , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Neural Networks, Computer , Organs at Risk , Glioma/radiotherapy , Glioma/etiology
16.
Oncol Rep ; 51(2)2024 02.
Article in English | MEDLINE | ID: mdl-38099414

ABSTRACT

The radioresistance of glioma is an important cause of treatment failure and tumor aggressiveness. In the present study, under performed with linear accelerator, the effects of 0.3 and 3.0 Gy low­dose radiation (LDR) on the proliferation and migration of C6 glioma stem cells in vitro were examined by flow cytometric analysis, immunocytochemistry and western blot analysis. It was found that low­dose ionizing radiation (0.3 Gy) stimulated the proliferation and migration of these cells, while 3.0 Gy ionizing radiation inhibited the proliferation of C6 glioma stem cells, which was mediated through enhanced Wnt/ß­catenin signaling, which is associated with glioma tumor aggressiveness. LDR treatment increased the expression of the DNA damage marker γ­H2AX but promoted cell survival with a significant reduction in apoptotic and necrotic cells. When LDR cells were also treated with an inhibitor of Wnt receptor 1 (IWR1), cell proliferation and migration were significantly reduced. IWR1 treatment significantly inhibited Wnt1, Wnt3a and ß­catenin protein expression. Collectively, the current results demonstrated that IWR1 treatment effectively radio­sensitizes glioma stem cells and helps to overcome the survival advantages promoted by LDR, which has significant implications for targeted treatment in radioresistant gliomas.


Subject(s)
Glioma , beta Catenin , Humans , beta Catenin/genetics , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Wnt Signaling Pathway , Cell Survival , Cell Proliferation , Cell Line, Tumor
17.
J Neurooncol ; 165(3): 535-545, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060066

ABSTRACT

INTRODUCTION: Blood-brain barrier (BBB) remains to be the major obstacle to conquer in treating patients with malignant brain tumors. Radiation therapy (RT), despite being the mainstay adjuvant modality regardless of BBB, the effect of radiation induced cell death is hindered by the hypoxic microenvironment. Focused ultrasound (FUS) combined with systemic microbubbles has been shown not only to open BBB but also potentially increased regional perfusion. However, no clinical study has investigated the combination of RT with FUS-BBB opening (RT-FUS). METHODS: We aimed to provide preclinical evidence of RT-FUS combination in GBM animal model, and to report an interim analysis of an ongoing single arm, prospective, pilot study (NCT01628406) of combining RT-FUS for recurrent malignant high grade glioma patients, of whom re-RT was considered for disease control. In both preclinical and clinical studies, FUS-BBB opening was conducted within 2 h before RT. Treatment responses were evaluated by objective response rate (ORR) using magnetic resonance imaging, progression free survival, and overall survival, and adverse events (AE) in clinical study. Survival analysis was performed in preclinical study and descriptive analysis was performed in clinical study. RESULTS: In mouse GBM model, the survival analysis showed RT-FUS (2 Gy) group was significantly longer than RT (2 Gy) group and control, but not RT (5 Gy) group. In the pilot clinical trial, an interim analysis of six recurrent malignant high grade glioma patients underwent a total of 24 RT-FUS treatments was presented. Three patients had rapid disease progression at a mean of 33 days after RT-FUS, while another three patients had at least stable disease (mean 323 days) after RT-FUS with or without salvage chemotherapy or target therapy. One patient had partial response after RT-FUS, making the ORR of 16.7%. There was no FUS-related AEs, but one (16.7%) re-RT-related grade three radiation necrosis. CONCLUSION: Reirradiation is becoming an option after disease recurrence for both primary and secondary malignant brain tumors since systemic therapy significantly prolongs survival in cancer patients. The mechanism behind the synergistic effect of RT-FUS in preclinical model needs further study. The clinical evidence from the interim analysis of an ongoing clinical trial (NCT01628406) showed a combination of RT-FUS was safe (no FUS-related adverse effect). A comprehensive analysis of radiation dosimetry and FUS energy distribution is expected after completing the final recruitment.


Subject(s)
Brain Neoplasms , Glioma , Mice , Animals , Humans , Prospective Studies , Pilot Projects , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Recurrence, Local/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/drug therapy , Blood-Brain Barrier/metabolism , Glioma/diagnostic imaging , Glioma/radiotherapy , Tumor Microenvironment
18.
Radiat Oncol ; 18(1): 198, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087368

ABSTRACT

BACKGROUND: Radiation-induced damage (RID) after radiotherapy (RT) of primary brain tumors and metastases can be challenging to clinico-radiographically distinguish from tumor progression. RID includes pseudoprogression and radiation necrosis; the latter being irreversible and often associated with severe symptoms. While histopathology constitutes the diagnostic gold standard, biopsy-controlled clinical studies investigating RID remain limited. Whether certain brain areas are potentially more vulnerable to RID remains an area of active investigation. Here, we analyze histopathologically confirmed cases of RID in relation to the temporal and spatial dose distribution. METHODS: Histopathologically confirmed cases of RID after photon-based RT for primary or secondary central nervous system malignancies were included. Demographic, clinical, and dosimetric data were collected from patient records and treatment planning systems. We calculated the equivalent dose in 2 Gy fractions (EQD22) and the biologically effective dose (BED2) for normal brain tissue (α/ß ratio of 2 Gy) and analyzed the spatial and temporal distribution using frequency maps. RESULTS: Thirty-three patients were identified. High-grade glioma patients (n = 18) mostly received one normofractionated RT series (median cumulative EQD22 60 Gy) to a large planning target volume (PTV) (median 203.9 ccm) before diagnosis of RID. Despite the low EQD22 and BED2, three patients with an accelerated hyperfractionated RT developed RID. In contrast, brain metastases patients (n = 15; 16 RID lesions) were often treated with two or more RT courses and with radiosurgery or fractionated stereotactic RT, resulting in a higher cumulative EQD22 (median 162.4 Gy), to a small PTV (median 6.7 ccm). All (n = 34) RID lesions occurred within the PTV of at least one of the preceding RT courses. RID in the high-grade glioma group showed a frontotemporal distribution pattern, whereas, in metastatic patients, RID was observed throughout the brain with highest density in the parietal lobe. The cumulative EQD22 was significantly lower in RID lesions that involved the subventricular zone (SVZ) than in lesions without SVZ involvement (median 60 Gy vs. 141 Gy, p = 0.01). CONCLUSIONS: Accelerated hyperfractionated RT can lead to RID despite computationally low EQD22 and BED2 in high-grade glioma patients. The anatomical location of RID corresponded to the general tumor distribution of gliomas and metastases. The SVZ might be a particularly vulnerable area.


Subject(s)
Brain Neoplasms , Glioma , Radiosurgery , Humans , Brain/pathology , Brain Neoplasms/secondary , Glioma/radiotherapy , Glioma/pathology , Radiosurgery/methods , Biopsy
19.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958683

ABSTRACT

The median survival time has been reported to vary between 5 and 8 years in low-grade (WHO grade 2) astrocytoma, and between 10 and 15 years for grade 2 oligodendroglioma. Targeted alpha therapy (TAT), using the modified peptide vector [213Bi]Bi/[225Ac]Ac-DOTA-substance P, has been developed to treat glioblastoma (GBM), a prevalent malignant brain tumor. In order to assess the risk of late neurotoxicity, assuming that reduced tumor cell proliferation and invasion should directly translate into good responses in low-grade gliomas (LGGs), a limited number of patients with diffuse invasive astrocytoma (n = 8) and oligodendroglioma (n = 3) were offered TAT. In two oligodendroglioma patients, TAT was applied as a second-line treatment for tumor progression, 10 years after targeted beta therapy using [90Y]Y-DOTA-substance P. The radiopharmaceutical was locally injected directly into the tumor via a stereotactic insertion of a capsule-catheter system. The activity used for radiolabeling was 2-2.5 GBq of Bismuth-213 and 17 to 35 MBq of Actinium-225, mostly applied in a single fraction. The recurrence-free survival times were in the range of 2 to 16 years (median 11 years) in low-grade astrocytoma (n = 8), in which TAT was administered following a biopsy or tumor debulking. Regarding oligodendroglioma, the recurrence-free survival time was 24 years in the first case treated, and 4 and 5 years in the two second-line cases. In conclusion, TAT leads to long-term tumor control in the majority of patients with LGG, and recurrence has so far not manifested in patients with low-grade (grade 2) astrocytomas who received TAT as a first-line therapy. We conclude that targeted alpha therapy has the potential to become a new treatment paradigm in LGG.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Humans , Oligodendroglioma/drug therapy , Oligodendroglioma/pathology , Substance P , Glioma/drug therapy , Glioma/radiotherapy , Astrocytoma/drug therapy , Astrocytoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology
20.
Sci Rep ; 13(1): 19659, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37952042

ABSTRACT

The prognosis for the WHO grade 4 IDH-mutant astrocytoma is better than IDH-wildtype glioblastoma (GBM) patients. The purpose of this study is to explore the potential mechanism of how IDH1 mutation can increase the efficacy of radiotherapy and to establish a risk-score model to predict the efficacy of radiotherapy in WHO grade 4 gliomas. First, we conducted experimental study on the effect of IDH1R132H mutation on glioma cells in vitro. Radiosensitivity of glioma cells was detected by γ-H2AX after 5 Gy radiation. Cell proliferation, migration and invasion were determined respectively by CCK-8, EDU, monolayer cell migration scratch assay and Transwell assay. Then we analyzed IDH1 gene status and the survival of WHO grade 4 glioma patients received radiotherapy in our center and verified our results by analyzing CGGA and TCGA database. For the risk-score model, we use CGGA data to find genetic differences between WHO grade 4 IDH-mutant astrocytoma and IDH-wildtype GBM patients, and determined a 4-gene radiotherapy-related signature through survival analysis by R software. Evaluation and verification through different glioma validation sets and different statistical methods. For in vitro experiments, we established glioma cells stably overexpressing IDH1 wild-type and IDH1-mutant proteins. γ-H2AX assay showed that IDH1-mutant glioma cells had higher radiosensitivity than wild-type. CCK-8 and EDU assay showed that proliferation capacity of IDH1-mutant glioma cells declined. Transwell assay and monolayer cell migration scratch assay also showed that IDH1-mutant glioma cells reduced migration and invasion capabilities. Among the 83 WHO grade 4 glioma patients who received radiotherapy in our center, WHO grade 4 IDH-mutant astrocytoma patients had longer OS and PFS versus IDH-wildtype GBM (P = 0.0336, P = 0.0324, respectively). TCGA and CGGA database analysis had the similar results. Through complex analysis of CGGA and TCGA databases, we established a risk-model that can predict the efficacy of radiotherapy for WHO grade 4 glioma patients. The 4-gene radiotherapy-related signature including ADD3, GRHPR, RHBDL1 and SLC9A9. Patients in the high-risk group had worse OS compared to low-risk group (P = 0.0001). High- and low-risk groups of patients receiving radiotherapy have significant survival differences, while patients who did not receive radiotherapy have no survival difference both in CGGA and TCGA databases. WHO grade 4 IDH-mutant astrocytoma is more radiosensitive than IDH-wildtype GBM patients. Our 4-gene radiotherapy-related signature can predict the radiation efficacy of WHO grade 4 glioma patients, and it may provide some reference for clinical treatment options.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Sincalide/genetics , Sincalide/metabolism , Glioma/genetics , Glioma/radiotherapy , Mutation , Prognosis , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , World Health Organization , Calmodulin-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...