Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.498
Filter
1.
Acta Physiol (Oxf) ; 240(6): e14142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584589

ABSTRACT

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.


Subject(s)
Amyloid beta-Protein Precursor , Astrocytes , Gliosis , Animals , Gliosis/metabolism , Gliosis/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cells, Cultured , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice, Knockout
2.
Chem Biol Interact ; 394: 110996, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38593908

ABSTRACT

Diabetic retinopathy is not cured efficiently and changes of lifestyle measures may delay early retinal injury in diabetes. The aim of our study was to investigate the effects of reduced daily light exposure on retinal vascular changes in streptozotocin (STZ)-induced model of DM with emphasis on inflammation, Aqp4 expression, visual cycle and cholesterol metabolism-related gene expression in rat retina and RPE. Male Wistar rats were divided into the following groups: 1. control; 2. diabetic group (DM) treated with streptozotocin (100 mg/kg); 3. group exposed to light/dark cycle 6/18 h (6/18); 4. diabetic group exposed to light/dark cycle 6/18 h (DM+6/18). Retinal vascular abnormalities were estimated based on lectin staining, while the expression of genes involved in the visual cycle, cholesterol metabolism, and inflammation was determined by qRT-PCR. Reduced light exposure alleviated vasculopathy, gliosis and the expression of IL-1 and TNF-α in the retina with increased perivascular Aqp4 expression. The expression of genes involved in visual cycle and cholesterol metabolism was significantly up-regulated in RPE in DM+6/18 vs. DM group. In the retina only the expression of APOE was significantly higher in DM+6/18 vs. DM group. Reduced light exposure mitigates vascular changes and gliosis in DM via its anti-inflammatory effect, increased retinal cholesterol turnover and perivascular Aqp4 expression.


Subject(s)
Cholesterol , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Gliosis , Light , Rats, Wistar , Retina , Streptozocin , Animals , Male , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Retina/metabolism , Retina/pathology , Retina/radiation effects , Cholesterol/metabolism , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Gliosis/pathology , Gliosis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Anti-Inflammatory Agents/pharmacology , Aquaporin 4/metabolism , Aquaporin 4/genetics , Retinal Vessels/metabolism , Retinal Vessels/pathology
3.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600569

ABSTRACT

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Subject(s)
Microfilament Proteins , Microglia , Spinal Cord Injuries , Animals , Mice , Carrier Proteins , Gliosis/metabolism , Microfilament Proteins/metabolism , Microglia/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/pathology
4.
J Chem Neuroanat ; 137: 102402, 2024 04.
Article in English | MEDLINE | ID: mdl-38428651

ABSTRACT

Curcumin, a bioactive polyphenol derived from turmeric, has been reported to have anti-inflammatory properties. The current study investigated the anti-inflammatory effect of curcumin in the hippocampal subfields (CA1 and CA3) after exposure to cobalt (Co) and the impact of ERK protein. Twenty-eight albino Wistar rats were divided into four groups, each with seven randomly selected rats as follows: Control (distilled water), Cobalt (Co) only (40 mg/kg), 120 mg/kg or 240 mg/kg curcumin + Co (40 mg/kg). Treatment was via oral gavage for 28 days. We performed a biochemical investigation to determine the levels of proinflammatory cytokines (TNFα and IL-1ß). Furthermore, we conducted an immunohistochemical evaluation to assess the expression of IBA1 by microglial cells and the immunoexpression of ERK protein in the hippocampus. Results revealed a significant (p<0.05) elevation in the tissue level of TNFα and IL-1ß, an increase in the number of IBA1-positive microglia, and upregulation of ERK protein in the hippocampal subfields of the rats after exposure to cobalt-only. Nevertheless, pretreatment with curcumin restored these parameters to levels comparable to control. In conclusion, our results showed that curcumin abrogated the Co-induced neuroinflammation by suppressing the release of proinflammatory biomarkers, reducing microgliosis, and modulating the ERK/MAPK pathway.


Subject(s)
Cobalt , Curcumin , Cytokines , Hippocampus , MAP Kinase Signaling System , Microglia , Neuroinflammatory Diseases , Rats, Wistar , Animals , Curcumin/pharmacology , Cobalt/toxicity , Rats , MAP Kinase Signaling System/drug effects , Male , Cytokines/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Microglia/drug effects , Microglia/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Gliosis/metabolism , Gliosis/chemically induced , Gliosis/drug therapy
5.
Methods Mol Biol ; 2785: 195-218, 2024.
Article in English | MEDLINE | ID: mdl-38427196

ABSTRACT

The recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed and how clinical trials are designed today. Alzheimer's disease (AD) - the most common neurodegenerative disorder - is characterized by a complex neuropathology involving the deposition of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells, i.e., astrocytes and microglia, and neuroinflammatory response, leading to neurodegeneration and cognitive dysfunction. An increasing diversity of positron emission tomography (PET) imaging radiotracers is available to selectively target the different pathophysiological processes of AD. Along with the success of Aß PET and the more recent tau PET imaging, there is a great interest to develop PET tracers to image glial reactivity and neuroinflammation. While most research to date has focused on imaging microgliosis, there is an upsurge of interest in imaging reactive astrocytes in the AD continuum. There is increasing evidence that reactive astrocytes are morphologically and functionally heterogeneous, with different subtypes that express different markers and display various homeostatic or detrimental roles across disease stages. Therefore, multiple biomarkers are desirable to unravel the complex phenomenon of reactive astrocytosis. In the field of in vivo PET imaging in AD, the research concerning reactive astrocytes has predominantly focused on targeting monoamine oxidase B (MAO-B), most often using either 11C-deuterium-L-deprenyl (11C-DED) or 18F-SMBT-1 PET tracers. Additionally, imidazoline2 binding (I2BS) sites have been imaged using 11C-BU99008 PET. Recent studies in our group using 11C-DED PET imaging suggest that astrocytosis may be present from the early stages of disease development in AD. This chapter provides a detailed description of the practical approach used for the analysis of 11C-DED PET imaging data in a multitracer PET paradigm including 11C-Pittsburgh compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG). The multitracer PET approach allows investigating the comparative regional and temporal patterns of in vivo brain astrocytosis, fibrillar Aß deposition, glucose metabolism, and brain structural changes. It may also contribute to understanding the potential role of novel plasma biomarkers of reactive astrocytes, in particular the glial fibrillary acidic protein (GFAP), at different stages of disease progression. This chapter attempts to stimulate further research in the field, including the development of novel PET tracers that may allow visualizing different aspects of the complex astrocytic and microglial response in neurodegenerative diseases. Progress in the field will contribute to the incorporation of PET imaging of glial reactivity and neuroinflammation as biomarkers with clinical application and motivate further investigation on glial cells as therapeutic targets in AD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Gliosis , Humans , Gliosis/metabolism , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Positron-Emission Tomography/methods , Amyloid beta-Peptides/metabolism , Brain/metabolism , Fluorodeoxyglucose F18/metabolism , Inflammation/metabolism , Plaque, Amyloid/metabolism , Biomarkers/metabolism
6.
J Neuroinflammation ; 21(1): 66, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459557

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE: While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS: To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS: Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS: Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/metabolism , Microglia/metabolism , Gliosis/genetics , Gliosis/metabolism , Proteomics , Corpus Striatum/metabolism , Disease Models, Animal , Mice, Transgenic , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
7.
Cells ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474361

ABSTRACT

Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.


Subject(s)
Gliosis , Posterior Horn Cells , Humans , Gliosis/metabolism , Posterior Horn Cells/metabolism , Pain/metabolism , Spinal Cord Dorsal Horn , Morphine Derivatives/metabolism
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369214

ABSTRACT

BACKGROUND: Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown. METHODS: A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis. RESULTS: TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for ß-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR. CONCLUSIONS: TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/ß-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3. FUNDING: National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).


Subject(s)
Diabetic Retinopathy , Retinal Diseases , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Diabetic Retinopathy/metabolism , Gliosis/metabolism , Mice, Inbred C57BL , Neuroglia/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
9.
Brain Res ; 1831: 148820, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38417653

ABSTRACT

Epilepsy is a prevalent chronic neurological disorder characterized by recurrent seizures and brain dysfunction. Existing antiepileptic drugs (AEDs) mainly act on neurons and provide symptomatic control of seizures, but they do not modify the progression of epilepsy and may cause serious adverse effects. Increasing evidence suggests that reactive astrogliosis is critical in the pathophysiology of epilepsy. However, the function of reactive astrocytes in epilepsy has not been thoroughly explored. To provide a new perspective on the role of reactive astrocytes in epileptogenesis, we identified human astrocyte-specific genes and found 131 of these genes significantly differentially expressed in human temporal lobe epilepsy (TLE) datasets. Multiple astrocytic functions, such as cell adhesion, cell morphogenesis, actin filament-based process, apoptotic cell clearance and response to oxidative stress, were found to be promoted. Moreover, multiple altered astrocyte-specific genes were enriched in phagocytosis, perisynaptic astrocyte processes (PAPs), plasticity, and synaptic functions. Nine hub genes (ERBB2, GFAP, NOTCH2, ITGAV, ABCA1, AQP4, LRP1, GJA1, and YAP1) were identified by protein-protein interaction (PPI) network analysis. The correlation between the expression of these hub genes and seizure frequency, as well as epilepsy-related factors, including inflammatory mediators, complement factors, glutamate excitotoxicity and astrocyte reactivity, were analyzed. Additionally, upstream transcription factors of the hub genes were predicted. Finally, astrogliosis and the expression of the hub genes were validated in an epileptic rat model. Our findings reveal the various changes in astrocyte function associated with epilepsy and provide candidate astrocyte-specific genes that could be potential antiepileptogenic targets.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Rats , Humans , Animals , Epilepsy, Temporal Lobe/metabolism , Astrocytes/metabolism , Gliosis/metabolism , Seizures/metabolism , Epilepsy/metabolism
10.
J Neuroinflammation ; 21(1): 56, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388518

ABSTRACT

Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.


Subject(s)
Gliosis , Retinal Diseases , Mice , Animals , Humans , Gliosis/metabolism , Complement Factor H/genetics , Mice, Inbred C57BL , Retina/metabolism
11.
Exp Eye Res ; 240: 109813, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331016

ABSTRACT

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Subject(s)
Exosomes , Glaucoma , Optic Disk , Rats , Animals , Optic Disk/metabolism , Protein-Lysine 6-Oxidase/genetics , Astrocytes/metabolism , Exosomes/metabolism , Gliosis/metabolism , Glaucoma/metabolism , Elastin/genetics , Inflammation/metabolism
12.
Stem Cell Res Ther ; 15(1): 54, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414051

ABSTRACT

BACKGROUND: Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS: A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS: Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION: Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.


Subject(s)
Ependymoglial Cells , Retinitis Pigmentosa , Animals , Mice , Ependymoglial Cells/metabolism , Gliosis/metabolism , HMGA2 Protein/metabolism , Retina/metabolism , Retinitis Pigmentosa/metabolism , Disease Models, Animal , RNA/metabolism , Neuroglia/metabolism , Mammals
13.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253209

ABSTRACT

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Citrullination , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Gliosis/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Myelin Proteins/metabolism , Myelin Sheath/pathology , Protein Aggregates , Protein-Arginine Deiminase Type 2/metabolism , Protein-Arginine Deiminases/metabolism , Proteins/metabolism , Spinal Cord/pathology
14.
Geriatr Gerontol Int ; 24 Suppl 1: 31-43, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37973072

ABSTRACT

Monoamine oxidase B (MAO-B) is an enzyme localized to the outer mitochondrial membrane and highly concentrated in astrocytes. Temporal changes in regional MAO-B levels can be used as an index of astrocytic proliferation, known as activated astrocytes or astrogliosis. MAO-B is a marker to evaluate the degree of astrogliosis. Therefore, MAO-B positron emission tomography (PET) is a powerful imaging technique for visualizing and quantifying ongoing astrogliosis through the estimate of regional MAO-B levels. Each neurodegenerative disorder generally has a characteristic distribution pattern of astrogliosis secondary to neuronal loss and pathological protein aggregation. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neurodegeneration marker for identifying degenerative lesions. Any inflammation in the brain usually accompanies astrogliosis starting from an acute phase to a chronic phase. Therefore, by imaging astrogliosis, MAO-B PET can be used as a neuroinflammation marker for identifying inflammatory lesions. MAO-B levels are high in gliomas originating from astrocytes but low in lymphoid tumors. Therefore, MAO-B PET can be used as a brain tumor marker for identifying astrocytic gliomas by imaging MAO-B levels and distinguishing between astrocytic and lymphoid tumors. This review summarizes the clinical application of MAO-B PET using 18F-THK5351 as markers for neurodegeneration, neuroinflammation, and brain tumors in neurological disorders. Because we assume that MAO-B PET is clinically applied to an individual patient, we focus on visual inspection of MAO-B images at the individual patient level. Geriatr Gerontol Int 2024; 24: 31-43.


Subject(s)
Aminopyridines , Neoplasms , Nervous System Diseases , Quinolines , Humans , Monoamine Oxidase/metabolism , Gliosis/metabolism , Gliosis/pathology , Neuroinflammatory Diseases , Positron-Emission Tomography , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Brain/metabolism
15.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814990

ABSTRACT

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/metabolism , Apoptosis , Gliosis/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Spinal Cord/metabolism
16.
Mol Neurobiol ; 61(1): 1-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37566177

ABSTRACT

Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1ß and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1ß, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.


Subject(s)
HMGB1 Protein , Isoquinolines , Neurodegenerative Diseases , Pyrazoles , Male , Mice , Humans , Animals , Receptors, Glucocorticoid/metabolism , Corticosterone , HMGB1 Protein/metabolism , Neuroinflammatory Diseases , Gliosis/metabolism , Toll-Like Receptor 4/metabolism , Glucocorticoids/pharmacology , Spinal Cord/metabolism , Neurodegenerative Diseases/metabolism
17.
J Neurosci Methods ; 402: 110025, 2024 02.
Article in English | MEDLINE | ID: mdl-38036185

ABSTRACT

BACKGROUND: Immunohistochemical upregulation of glial fibrillary acidic protein (GFAP) is commonly used to detect astrogliosis in tissue sections and includes measurement of intensity and/or distribution of staining. There remains a lack of standard objective measures when diagnosing astrogliosis and its severity. NEW METHOD: Aim was to test a novel semi-quantitative assessment of GFAP which we term reactivity (R)-score, on its reproducibility and sensitivity to measure astrogliosis. The R-score, which is based on the proportion of astrocytes seen at each level of reactivity, was compared to 3 other commonly employed quantification methods in research: (1) thresholding, (2) point-counting, and (3) qualitative grading. Sub-regions of the hippocampus, medulla, and cerebellum were studied in piglet, and 4 human cases with clinically reported astrogliosis. Intra-assay coefficient of variation (CV) and percentage agreement cut-offs of ≤ 20% and ≥ 75% were used respectively to compare amongst the methods, with outcome measures being reproducibility across serial and non-serial sections, resilience to changes in experimental conditions, and inter- and intra-rater concordance. RESULTS: Averaged across 3 brain regions, the intra-assay coefficient of variation (CV) was 5% for R-score, with inter and intra-rater kappa scores being 0.99 and 0.95 respectively. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: Based on CV values, the R-score was superior to thresholding (CV of 51%) and point-counting (CV of 16%), with the qualitative grade being found to be on par (percentage agreement 95%). Given the ease, reproducibility and selectivity of the R-score, we propose its validity in future research purposes and clinical application.


Subject(s)
Brain , Gliosis , Animals , Humans , Swine , Gliosis/metabolism , Immunohistochemistry , Glial Fibrillary Acidic Protein/metabolism , Reproducibility of Results , Brain/metabolism , Astrocytes/metabolism
18.
Sci Rep ; 13(1): 22712, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38123648

ABSTRACT

Retinal Müller glia have a capacity to regenerate neurons in lower vertebrates like zebrafish, but such ability is extremely limited in mammals. In zebrafish, Müller glia proliferate after injury, which promotes their neurogenic reprogramming while inhibiting reactive gliosis. In mammals, however, how the cell cycle affects the fate of Müller glia after injury remains unclear. Here, we focused on the expression of proneural transcription factors, Ngn2 and Ascl1, and a gliosis marker glial fibrillary acidic protein (GFAP) in rat Müller glia after N-methyl-N-nitrosourea (MNU)-induced photoreceptor injury and analyzed the role of Müller glia proliferation in the regulation of their expression using retinal explant cultures. Thymidine-induced G1/S arrest of Müller glia proliferation significantly hampered the expression of Ascl1, Ngn2, and GFAP, and release from the arrest induced their upregulation. The migration of Müller glia nuclei into the outer nuclear layer was also shown to be cell cycle-dependent. These data suggest that, unlike the situation in zebrafish, cell cycle progression of Müller glia in mammals promotes both neurogenic reprogramming and reactive gliosis, which may be one of the mechanisms underlying the limited regenerative capacity of the mammalian retina.


Subject(s)
Gliosis , Zebrafish , Animals , Rats , Gliosis/chemically induced , Gliosis/metabolism , Transcription Factors/metabolism , Neuroglia/metabolism , Retina/metabolism , Cell Cycle , Mammals
19.
J Biol Chem ; 299(12): 105461, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977220

ABSTRACT

Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.


Subject(s)
Ependymoglial Cells , Eye Proteins , Homeodomain Proteins , Homeostasis , Retina , Transcription Factors , Animals , Mice , Ependymoglial Cells/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Gliosis/genetics , Gliosis/metabolism , Gliosis/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeostasis/genetics , Retina/cytology , Retina/growth & development , Retina/metabolism , Retina/pathology , RNA-Seq , Tamoxifen/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
20.
Front Immunol ; 14: 1254586, 2023.
Article in English | MEDLINE | ID: mdl-37936690

ABSTRACT

Multiple sclerosis is an autoimmune inflammatory disease of the central nervous system leading to neurodegeneration. It affects 2.3 million people worldwide, generally younger than 50. There is no known cure for the disease, and current treatment options - mainly immunotherapies to limit disease progression - are few and associated with serious side effects. In multiple sclerosis, disruption of the blood-brain barrier is an early event in the pathogenesis of lesions, predisposing to edema, excito-toxicity and inflammatory infiltration into the central nervous system. Recently, the vision of the blood brain barrier structure and integrity has changed and include contributions from all components of the neurovascular unit, among which astrocytes. During neuro-inflammation, astrocytes become reactive. They undergo morphological and molecular changes named "astrogliosis" driving the conversion from acute inflammatory injury to a chronic neurodegenerative state. Astrogliosis mechanisms are minimally explored despite their significance in regulating the autoimmune response during multiple sclerosis. Therefore, in this review, we take stock of the state of knowledge regarding astrogliosis in neuro-inflammation and highlight the central role of NOTCH signaling in the process of astrocyte reactivity. Indeed, a very detailed nomenclature published in nature neurosciences in 2021, listing all the reactive astrocyte markers fully identified in the literature, doesn't cover the NOTCH signaling. Hence, we discuss evidence supporting NOTCH1 receptor as a central regulator of astrogliosis in the pathophysiology of neuro-inflammation, notably multiple sclerosis, in human and experimental models.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Humans , Gliosis/metabolism , Blood-Brain Barrier/metabolism , Central Nervous System/metabolism , Inflammation , Autoimmune Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...