Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564658

ABSTRACT

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Subject(s)
Cross-Linking Reagents , Gene Expression , Globulins , Hypocreales , Monophenol Monooxygenase , Recombinant Proteins , Soybean Proteins , Monophenol Monooxygenase/biosynthesis , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Cross-Linking Reagents/isolation & purification , Cross-Linking Reagents/metabolism , Hypocreales/classification , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/metabolism , Globulins/chemistry , Globulins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Electroporation , Cellulose , Ammonium Sulfate , Chromatography, Gel , Fractional Precipitation , Emulsions/chemistry , Emulsions/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Protein Stability , Endoplasmic Reticulum/metabolism , Protein Sorting Signals , Oils/chemistry , Water/chemistry
2.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38664940

ABSTRACT

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Subject(s)
Allergens , Soy Milk , Soybean Proteins , Subtilisins , Subtilisins/chemistry , Subtilisins/immunology , Hydrolysis , Humans , Soybean Proteins/chemistry , Soybean Proteins/immunology , Allergens/immunology , Allergens/chemistry , Soy Milk/chemistry , Powders/chemistry , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Globulins/chemistry , Globulins/immunology , Food Hypersensitivity/prevention & control , Food Hypersensitivity/immunology , Structure-Activity Relationship
3.
Plant Physiol Biochem ; 210: 108653, 2024 May.
Article in English | MEDLINE | ID: mdl-38670029

ABSTRACT

Edible plant seeds provide a relatively inexpensive source of protein and make up a large part of nutrients for humans. Plant seeds accumulate storage proteins during seed development. Seed storage proteins act as a reserve of nutrition for seed germination and seedling growth. However, seed storage proteins may be allergenic, and the prevalence of food allergy has increased rapidly in recent years. The 11S globulins account for a significant number of known major food allergens. They are of interest to the public and the agricultural industry because of food safety concerns and the need for crop enhancement. We sought to determine the crystal structure of Cor a 9, the 11 S storage protein of hazelnut and a food allergen. The structure was refined to 1.92 Å, and the R and Rfree for the refined structure are 17.6% and 22.5%, respectively. The structure of Cor a 9 showed a hetero hexamer of an 11S seed storage protein for the first time. The hexamer was two trimers associated back-to-back. Two long alpha helixes at the C-terminal end of the acidic domain of one of the Cor a 9 isoforms lay at the trimer-trimer interface's groove. These data provided much-needed information about the allergenicity of the 11S seed proteins. The information may also facilitate a better understanding of the folding and transportation of 11S seed storage proteins.


Subject(s)
Corylus , Seed Storage Proteins , Corylus/chemistry , Corylus/metabolism , Seed Storage Proteins/chemistry , Seed Storage Proteins/metabolism , Crystallography, X-Ray , Seeds/metabolism , Seeds/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Globulins/chemistry , Globulins/metabolism , Amino Acid Sequence , Protein Multimerization , Models, Molecular
4.
J Agric Food Chem ; 72(17): 9947-9954, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647139

ABSTRACT

Glycinin is an important allergenic protein. A1a is the acidic chain of the G1 subunit in glycinin (G1A1a), and it has strong allergenicity. In this study, we used phage display technology to express the protein of G1A1a and its overlapping fragments and an indirect enzyme-linked immunosorbent assay (iELISA) to determine the antigenicity and allergenicity of the expressed protein. After three rounds of screening, it was determined that fragment A1a-2-B-I (151SLENQLDQMPRRFYLAGNQEQEFLKYQQEQG181) is the allergenic domain of G1A1a destroyed by thermal processing. In addition, three overlapping peptides were synthesized from fragments A1a-2-B-I, and a linear epitope was found in this domain through methods including dot blot and iELISA. Peptide 2 (157DQMPRRFYLANGNQE170) showed allergenicity, and after replacing it with alanine, it was found that amino acids D157, Q158, M159, and Y164 were the key amino acids that affected its antigenicity, while Q158, M159, R162, and N168 affected allergenicity.


Subject(s)
Allergens , Globulins , Hot Temperature , Soybean Proteins , Allergens/immunology , Allergens/chemistry , Humans , Globulins/chemistry , Globulins/immunology , Soybean Proteins/chemistry , Soybean Proteins/immunology , Amino Acid Sequence , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Protein Domains , Antigens, Plant/immunology , Antigens, Plant/chemistry , Antigens, Plant/genetics , Glycine max/chemistry , Glycine max/immunology , Enzyme-Linked Immunosorbent Assay
5.
Int J Biol Macromol ; 269(Pt 1): 131900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677675

ABSTRACT

Liposomes were modified with different proportions of ß-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.


Subject(s)
Antigens, Plant , Globulins , Liposomes , Seed Storage Proteins , Soybean Proteins , Globulins/chemistry , Seed Storage Proteins/chemistry , Soybean Proteins/chemistry , Liposomes/chemistry , Antigens, Plant/chemistry , Hydrophobic and Hydrophilic Interactions , Digestion , Particle Size , Hydrogen Bonding
6.
Food Funct ; 15(5): 2524-2535, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38345089

ABSTRACT

Lactic acid bacterial fermentation helps reduce the immunoreactivity of soy protein. Nevertheless, the effect of lactic acid bacterial fermentation on a particular soy allergen and the consequent dynamic change of epitopes during gastrointestinal digestion are unclear. In this study, soy glycinin was isolated and an in vitro dynamic gastrointestinal model was established to investigate the dynamic change in the immunoreactivity and peptide profile of unfermented (UG) and fermented glycinin (FG) digestates. The results demonstrated that the FG intestinal digestate had a lower antigenicity (0.08%-0.12%) and IgE-binding capacity (1.49%-3.61%) towards glycinin at the early (I-5) and middle (I-30) stages of gastrointestinal digestion, especially those prepared at 2% (w/v) protein concentration. Peptidomic analysis showed that the glycinin subunits G1 and G2 were the preferred ones to release the most abundant peptides, whereas G2, G4, and G5 had an elevated epitope-cleavage rate in FG at stages I-5 and I-30. Three-dimensional modeling revealed that fermentation-induced differential degradation epitopes in gastrointestinal digestion were predominantly located in the α-helix and ß-sheet structures. They were closely correlated with the reduced immunoreactivity of soy glycinin.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Globulins/chemistry , Epitopes/chemistry , Digestion , Lactic Acid , Proteomics
7.
Food Chem ; 445: 138707, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38354644

ABSTRACT

The pH-shifting process is an effective encapsulation method, and it is typically performed at extreme alkaline pH, which severely limits the application. In this study, we found that there were critical pH for the unfolding proteins during pH-shifting from 7 to 12, and upon the critical pH, physiochemical characteristics of protein greatly changed, leading to a sharp increase of encapsulation of hydrophobic actives. Firstly, the critical pH for ß-conglycinin (7S) or Glycinin (11S) unfolding was determined by multispectral technology. The critical pH for 7S and 11S were 10.5 and 10.3, respectively. The encapsulation efficiency (EE) obtained by ß-conglycinin-curcumin nanocomposite (7S-Cur) (88.80 %) and Glycinin-curcumin nanocomposite (11S-Cur) (88.38 %) at critical pH was significantly higher than that obtained by pH 7 (7S-Cur = 16.66 % and 11S-Cur = 15.78 %), and both values were close to EE obtained by at 12 (7S-Cur = 95.16 % and 11S-Cur = 94.63 %). The large-scale application of hydrophobic functional compounds will be enhanced by the experimental results.


Subject(s)
Curcumin , Globulins , Soybean Proteins/chemistry , Antigens, Plant/chemistry , Seed Storage Proteins/chemistry , Globulins/chemistry , Hydrophobic and Hydrophilic Interactions , Hydrogen-Ion Concentration
8.
Int J Biol Macromol ; 263(Pt 1): 130192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360233

ABSTRACT

Crowded environments, commonly found in the food system, are utilized to enhance the properties of soybean proteins. Despite their widespread application, little information exists regarding the impact of crowded environments on the denaturation behaviors of soybean proteins. In this study, we investigated how crowding agents with varying molecular weights, functional groups, and topology affect the denaturation behavior of glycinin under crowded conditions. The results reveal that thermal stability in PEG crowded environments is mainly influenced by both preferential hydration and binding. The stabilization is primarily enthalpy-driven, with aggregation contributing additional entropic stabilization. Specifically, ethylene glycol and diethylene glycol exhibit temperature-dependent, bilateral effects on glycinin stability. At the denaturation temperature, hydrophobic interactions play a predominant role, decreasing glycinin's thermal stability. However, at a molecular weight of 200 g/mol, there is a delicate balance between destabilizing and stabilizing effects, leading to no significant change in thermal stability. With the addition of PEG 400, 1000, and 2000, besides preferential hydration, additional hard-core repulsions between glycinin molecules enhance thermal stability. Methylation modification experiments demonstrated that 2-methoxyethyl ether exerted a more pronounced denaturing effect. Additionally, the cyclization of PEG 1000 decreased its stabilizing effect.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Globulins/chemistry , Chemical Phenomena , Hydrophobic and Hydrophilic Interactions
9.
Food Chem ; 442: 138615, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38309242

ABSTRACT

Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, ß-turn and random coil, but decreased ß-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.


Subject(s)
Globulins , Oryza , Glutens/chemistry , Glycine max , Oryza/metabolism , Molecular Dynamics Simulation , Spectrometry, Fluorescence , Globulins/chemistry , Molecular Docking Simulation
10.
Food Chem ; 441: 138323, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38199105

ABSTRACT

The molecular structure and morphologies of complex colloidal particles with modified glycine (S-11S) and d-galactose were studied by multispectral, microscopic imaging and chromatographic techniques at different temperatures, and the self-assembly and aggregation mechanisms were determined. Overall, high-temperature-treated S-11S and d-galactose associate at cysteine and phenylalanine sites and self-assemble into colloidal particles of greater stability than glycinin and S-11S via ionic and disulfide bonds. The structure and subunit content of composite colloidal particles were changed. Assessing the sub-microstructure reveals that temperature can regulate the directional aggregation of complex colloidal particles. The elasticity of the complex colloidal particles is maximum enhanced at 95 ℃ as confirmed by the rheological. Thus, the heat-treated aggregation of the soy protein and its complex was evaluated to provide a new theoretical basis for the application of soy protein in gels and other areas and contribute to the design of new soy protein products.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Temperature , Galactose , Globulins/chemistry
11.
Int J Biol Macromol ; 260(Pt 2): 129585, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246473

ABSTRACT

This study investigated the effects of different irradiation doses of an electron beam (e-beam) (0, 2, 4, 6, 8, and 10 kGy) on the structure, emulsification, foaming, and rheological and gel properties of soybean 11S globulin. The irradiation treatment at 4 and 6 kGy significantly increased the solubility, surface hydrophobicity, disulfide bonding, and ζ-potential of 11S globulin, decreased the particle size of the protein solution, and effectively improved the emulsifying activity and foaming stability of the protein solution. Moreover, irradiation induced moderate cross-linking and aggregation of the proteins, thereby increasing the apparent viscosity and shear stress of the protein solution. In addition, the low-field NMR and microstructure analysis results revealed that protein gels formed a dense and homogeneous three-dimensional mesh structure after irradiation (6 kGy), along with increased content of bound water (T2b) and water not readily flowable (T21) and a decrease content of free water (T22). Overall, our results confirmed that e-beam irradiation could significantly improve the physicochemical properties of soybean 11S globulin. Our study thus provides a new technical means for the application of electron beam irradiation technology toward protein modification and broadens the high-value utilization of soybean 11S globulin in the food processing industry.


Subject(s)
Globulins , Glycine max , Electrons , Globulins/chemistry , Solubility , Water
12.
J Food Sci ; 89(2): 925-940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235999

ABSTRACT

Soy protein concentrates (SPCs) are common food ingredients. They typically contain 65% (w/w) protein and ∼30% (w/w) carbohydrate. SPCs can be obtained with various protein precipitation conditions. A systematic study of the impact of these different protein precipitation protocols on the SPC protein composition and physical properties is still lacking. Here, SPCs were prepared via three different protocols, that is, isoelectric (pH 3.5-5.5), aqueous ethanol (50%-70% [v/v]), and Ca2+ ion (5-50 mM) based precipitations, and analyzed for (protein) composition, protein thermal properties, dispersibility, and water-holding capacity. SPCs precipitated at pH 5.5 or by adding 15 mM Ca2+ ions had a lower 7S/11S globulin ratio (∼0.40) than that (∼0.50) of all other SPC samples. Protein in SPCs obtained by isoelectric precipitation denatured at a significantly higher temperature than those in ethanol- or Ca2+ -precipitated SPCs. Precipitation with 50%-60% (v/v) ethanol resulted in pronounced denaturation of 2S albumin and 7S globulin fractions in SPCs. Additionally, increasing the precipitation pH from 3.5 to 5.5 and increasing the Ca2+ ion concentration from 15 to 50 mM caused a strong decrease of both the dispersibility of the protein in SPC and its water-holding capacity at pH 7.0. In conclusion, this study demonstrates that the SPC production process can be directed to obtain ingredients with versatile protein physicochemical properties toward potential food applications. PRACTICAL APPLICATION: This study demonstrates that applying different protein precipitation protocols allows obtaining SPCs that vary widely in (protein) composition and physical properties (such as protein dispersibility and water-holding capacity). These varying traits can greatly influence the suitability of SPCs as functional ingredients for specific applications, such as the production of food foams, emulsions, gels, and plant-based meat alternatives. The generated knowledge may allow targeted production of SPCs for specific applications.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Hydrogen-Ion Concentration , Globulins/chemistry , Water , Ethanol
13.
Food Chem ; 442: 138477, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38278107

ABSTRACT

Mung bean protein possesses several health benefits, and aqueous processing methods are used for its production. However, mung bean protein yields are different with different methods, which are actually different in conditions (e.g., pH, temperature, and time). Herein, liquid chromatography tandem mass spectrometry identified 28 endopeptidases and exopeptidases in mung bean protein extract, and the positions of 8S and 11S globulins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel were confirmed in our experimental conditions. The SDS-PAGE, trichloroacetic acid-nitrogen solubility index, and free amino acid analysis revealed that (1) 8S globulins showed strong resistance to the endopeptidases (optimal at pH 5 and 50 °C) at pH 3-9, and 11S globulin exhibit strong resistance expect at pH 3-3.5; (2) the exopeptidases (optimal at pH 6 and 50 °C) preferred to liberate methionine and tryptophan. These proteases negatively affected protein yield, and short production time and low temperature were recommended.


Subject(s)
Fabaceae , Globulins , Vigna , Vigna/chemistry , Peptide Hydrolases , Fabaceae/chemistry , Globulins/chemistry , Endopeptidases , Exopeptidases
14.
J Sci Food Agric ; 104(6): 3697-3704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160247

ABSTRACT

INTRODUCTION: One of the main allergens in soybeans is glycinin, which seriously impacts the normal lives of allergic people. Previous studies have confirmed that thermal processing and thermal processing combined with ultrahigh-pressure processing could significantly reduce the antigenicity of glycinin. The dominant antigen region of acidic peptide chain A2 of G2 subunit was located by phage display experiment. METHODS: In this paper, overlapping peptides and alanine substitution techniques were used to explore the key amino acids that significantly affect the antigenicity of A2 peptide chain. The purity of peptide 1, peptide 2 and peptide 3 was identified by mass spectrometry and high-performance liquid chromatography, and the results showed that the purity of the synthesized overlapping peptide was more than 90%. SDS-PAGE showed that the peptide was successfully coupled with bovine serum albumin. The antigenicity of the coupling peptide was tested by ELISA and Dot-Blot, and the allergenicity was detected by reacting with the serum of patients with soybean globulin allergy. CONCLUSION: The results showed that peptide 3 has stronger antigenicity and sensitization. Alanine substitution technology allowed one to perform site-directed mutagenesis on peptide 3. Dot-Blot and ELISA tests showed that D259, E260, E261, Q263 and C266 may be the key amino acids that significantly affect the antigenicity of peptide 3. The research presented is of great significance for correctly guiding the production of safe food and preventing the occurrence of food allergic diseases. © 2023 Society of Chemical Industry.


Subject(s)
Globulins , Soybean Proteins , Humans , Epitopes/chemistry , Soybean Proteins/chemistry , Glycine max , Globulins/chemistry , Allergens , Peptides , Alanine , Amino Acids , Immunoglobulin E
15.
Food Res Int ; 173(Pt 1): 113281, 2023 11.
Article in English | MEDLINE | ID: mdl-37803593

ABSTRACT

Soy allergy is a common health problem. Food structure may change the gastroduodenal digestion and absorption of soy proteins, thus leading to the modulation of the immunoreactivity of soy proteins. In this study, lactic acid bacterium (LAB)-fermented soy protein isolates (FSPIs) were prepared at four concentrations (0.2 %-5.0 %, w/v) to present various matrix structures (nongel, NG; weak gel, WG; medium gel, MG; and firm gel, FG) and subjected to in vitro dynamic gastroduodenal digestion model. The results of sandwich enzyme-linked immunosorbent and human serum IgE binding capacity assays demonstrated that FSPI gels, especially the FSPI-MG/WG digestates obtained at the early and medium stages of duodenal digestion (D-5 and D-30), possessed greater potency in immunoreactivity reduction than FSPI-NG and reduced to 1.9 %-68.3 %. The transepithelial transport study revealed that the immunoreactivity of FSPI-MG/WG D-5 and D-30 digestates decreased through the stimulation of interferon-γ production and the induction of dominant Th1/Th2 differentiation. Peptidomics and bioinformatics analyses illustrated that compared with FSPI-NG, the FSPI-gel structure promoted the epitope degradation of the major allergens glycinin G2/G5, ß-conglycinin α/ß subunit, P34, lectin, trypsin inhibitor, and basic 7S globulin. Spatial structure analysis showed that FSPI-gel elicited an overall promotion in the degradation of allergen epitopes located in interior and exterior regions and was dominated by α-helix and ß-sheet secondary structures, whereas FSPI-MG/WG promoted the degradation of epitopes located in the interior region of glycinin/ß-conglycinin and exterior region of P34/basic 7S globulin. This study suggested that the FSPI-gel structure is a promising food matrix for decreasing the allergenic potential of allergenic epitopes during gastroduodenal digestion and provided basic information on the production of hypoallergenic soy products.


Subject(s)
Globulins , Soybean Proteins , Humans , Soybean Proteins/chemistry , Glycine max/chemistry , Epitopes/chemistry , Globulins/chemistry , Digestion
16.
Int J Biol Macromol ; 253(Pt 8): 127611, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37879573

ABSTRACT

Extensive research has been conducted on soy protein films; however, limited information is available regarding the influence of the major components, ß-conglycinin (7S) and glycinin (11S), on the film-forming properties of soy protein. This study aimed to isolate the 7S and 11S fractions in order to prepare films and investigate the impact of varying 7S/11S ratios on the film-forming solutions (FFS) and film properties. The findings revealed that higher 11S ratios led to increased protein aggregation, consequently elevating the storage modulus (G') of the FFS. Notably, an optimal 7S/11S ratio of 7S1:11S2 (CF3) significantly enhanced the film's water resistance. Specifically, it enhanced the water contact angle by an impressive 17.44 % and reduced the water vapor transmission rate by 27.56 %. These improvements were attributed to intermolecular interactions, involving hydrogen bonds and salt bridges, between the amino acid residues of 7S and 11S. As a result, a more uniform and dense microstructure was achieved. Interestingly, the mechanical and optical properties of the film were maintained by the different protein fractions examined. In summary, this study contributes to the understanding of the film-forming properties of soy protein, particularly the role of 7S and 11S.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Glycine max/chemistry , Globulins/chemistry , Antigens, Plant/chemistry
17.
Int J Biol Macromol ; 253(Pt 3): 126927, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37717873

ABSTRACT

Understanding the impact of pH and ionic strength on the physicochemical and structural properties of soy proteins at subunit level is essential for design and fabrication of many plant-based foods. In this study, soybean ß-conglycinin and its subunit fractions αα' and ß were dispersed in solutions with different pH values (3.7, 7.6, and 9.0) at low (5 mM NaCl) and high (400 mM NaCl) ionic strengths, respectively. The solubility, rheology, particle size, zeta potential, microstructure, secondary structure, and tertiary structure of the different dispersions were analyzed using a range of analytical methods. The ß-conglycinin, αα'- and ß-subunits aggregated near the isoelectric point (pH 3.7). Increasing the ionic strength led to the assembly of more homogeneous units. An increase in ionic strength at pH 7.6 and pH 9.0 led to electrostatic screening, which promoted dissociation of the aggregates. The ß-subunit showed a greater sensitivity to pH and ionic strength than the αα'-subunits. Based on the evidence from a range of analytical methods, the highly hydrophilic extension region of the αα'-subunits played an important role in determining the stability of the ß-conglycinin dispersions under different environmental conditions. Moreover, the N-linked glycans appeared to impact the conformation and aggregation state of the ß-conglycinin.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Sodium Chloride/metabolism , Antigens, Plant/chemistry , Globulins/chemistry , Osmolar Concentration , Hydrogen-Ion Concentration , Glycine max/chemistry
18.
J Agric Food Chem ; 71(28): 10718-10728, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37415073

ABSTRACT

The interaction mechanism between nanoliposomes (NL) and a soybean protein isolate (SPI) was investigated via the complexation between NL and two major components of SPI, i.e., ß-conglycinin (7S) and glycinin (11S). The endogenous fluorescence emissions of 7S and 11S were statically quenched after complexation with NL, and the polarity of the SPI fluorophore increased. The interaction between NL and SPI was exothermic and spontaneous, 7S/11S secondary structures were altered, and more hydrophobic groups were exposed on protein surfaces. Moreover, the NL-SPI complex had a large zeta potential to attain system stability. Hydrophobic forces and hydrogen bonds played vital roles in the interaction between NL and 7S/11S, and a salt bridge was also involved in the NL-11S interaction. The binding characteristics between NL and 7S/11S were chiefly governed by the protein characteristics, such as amino acid composition, surface hydrophobicity, and advanced structure. These findings could deepen the understanding of the interaction mechanism between NL and SPI.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Globulins/chemistry , Antigens, Plant/chemistry , Seed Storage Proteins/chemistry , Glycine max/chemistry
19.
Int J Biol Macromol ; 248: 125784, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37451384

ABSTRACT

In this study, the aggregation behaviour of soybean 7S globulin after moderate electric field (MEF) treatment was investigated, and the influence of the electric field and temperature field on the structure and foaming property of the aggregates were analysed and compared with conventional water bath (COV). The results showed that MEF treatment enhanced the properties of the aggregates. The properties of the treated aggregates were significantly better than those of native 7S globulin. At an electric field strength of 8 V/cm, the solubility, turbidity, and particle size increased from 95.81 % to 99.37 %, 0.097 to 0.189 and 61.97 nm to 113.21 nm, respectively, and the absolute value of potential decreased from 23.56 mV to 22.12 mV. The SDS-PAGE and size exclusion chromatography (SEC) results showed that the electric field had a positive effect on the aggregate formation of the Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, surface hydrophobicity (H0) and total sulfhydryl (SHT) results indicated that the spatial structure of the protein was changed by MEF treatment. The protein ß-sheet content was reduced, and the Try that was originally buried inside the molecule was exposed, resulting in an increase in H0 and a decrease in SHT. The foaming property of the 7S globulin aggregates was improved by MEF treatment.


Subject(s)
Globulins , Protein Aggregates , Soybean Proteins/chemistry , Antigens, Plant , Globulins/chemistry
20.
Food Res Int ; 171: 113082, 2023 09.
Article in English | MEDLINE | ID: mdl-37330838

ABSTRACT

Glycinin is an important allergen in soybeans. In this study, molecular cloning and recombinant phage construction were performed to explore the antigenic sites of the glycinin A3 subunit that were denatured during processing. Next, the A-1-a fragment was located as the denatured antigenic sites by indirect ELISA. The combined UHP heat treatment showed better denaturation of this subunit than the single heat treatment assay. In addition, identification of the synthetic peptide showed that the A-1-a fragment was an amino acid sequence containing a conformational and linear IgE site, in which the first synthetic peptide (P1) being both an antigenic and allergenic site. The results of alanine-scanning showed that the key amino acids affecting antigenicity and allergenicity of A3 subunit were S28, K29, E32, L35 and N13. Our results could provide the basis for further development of more efficient methods to reduce the allergenicity of soybeans.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Glycine max , Globulins/chemistry , Amino Acid Sequence , Allergens
SELECTION OF CITATIONS
SEARCH DETAIL
...