Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
J Agric Food Chem ; 72(20): 11694-11705, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38723176

ABSTRACT

The most significant and sensitive antigen protein that causes diarrhea in weaned pigs is soybean 7S globulin. Therefore, identifying the primary target for minimizing intestinal damage brought on by soybean 7S globulin is crucial. MicroRNA (miRNA) is closely related to intestinal epithelium's homeostasis and integrity. However, the change of miRNAs' expression and the function of miRNAs in Soybean 7S globulin injured-IPEC-J2 cells are still unclear. In this study, the miRNAs' expression profile in soybean 7S globulin-treated IPEC-J2 cells was investigated. Fifteen miRNAs were expressed differently. The differentially expressed miRNA target genes are mainly concentrated in signal release, cell connectivity, transcriptional inhibition, and Hedgehog signaling pathway. Notably, we noticed that the most significantly decreased miRNA was ssc-miR-221-5p after soybean 7S globulin treatment. Therefore, we conducted a preliminary study on the mechanisms of ssc-miR-221-5p in soybean 7S globulin-injured IPEC-J2 cells. Our research indicated that ssc-miR-221-5p may inhibit ROS production to alleviate soybean 7S globulin-induced apoptosis and inflammation in IPEC-J2 cells, thus protecting the cellular mechanical barrier, increasing cell proliferation, and improving cell viability. This study provides a theoretical basis for the prevention and control of diarrhea of weaned piglets.


Subject(s)
Apoptosis , Globulins , Glycine max , Intestinal Mucosa , MicroRNAs , Soybean Proteins , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Swine , Cell Line , Glycine max/genetics , Glycine max/chemistry , Glycine max/metabolism , Intestinal Mucosa/metabolism , Soybean Proteins/genetics , Soybean Proteins/metabolism , Globulins/genetics , Globulins/metabolism , Seed Storage Proteins/genetics , Epithelial Cells/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Antigens, Plant
2.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564658

ABSTRACT

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Subject(s)
Cross-Linking Reagents , Gene Expression , Globulins , Hypocreales , Monophenol Monooxygenase , Recombinant Proteins , Soybean Proteins , Monophenol Monooxygenase/biosynthesis , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Cross-Linking Reagents/isolation & purification , Cross-Linking Reagents/metabolism , Hypocreales/classification , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/metabolism , Globulins/chemistry , Globulins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Electroporation , Cellulose , Ammonium Sulfate , Chromatography, Gel , Fractional Precipitation , Emulsions/chemistry , Emulsions/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Protein Stability , Endoplasmic Reticulum/metabolism , Protein Sorting Signals , Oils/chemistry , Water/chemistry
3.
Plant Physiol Biochem ; 210: 108653, 2024 May.
Article in English | MEDLINE | ID: mdl-38670029

ABSTRACT

Edible plant seeds provide a relatively inexpensive source of protein and make up a large part of nutrients for humans. Plant seeds accumulate storage proteins during seed development. Seed storage proteins act as a reserve of nutrition for seed germination and seedling growth. However, seed storage proteins may be allergenic, and the prevalence of food allergy has increased rapidly in recent years. The 11S globulins account for a significant number of known major food allergens. They are of interest to the public and the agricultural industry because of food safety concerns and the need for crop enhancement. We sought to determine the crystal structure of Cor a 9, the 11 S storage protein of hazelnut and a food allergen. The structure was refined to 1.92 Å, and the R and Rfree for the refined structure are 17.6% and 22.5%, respectively. The structure of Cor a 9 showed a hetero hexamer of an 11S seed storage protein for the first time. The hexamer was two trimers associated back-to-back. Two long alpha helixes at the C-terminal end of the acidic domain of one of the Cor a 9 isoforms lay at the trimer-trimer interface's groove. These data provided much-needed information about the allergenicity of the 11S seed proteins. The information may also facilitate a better understanding of the folding and transportation of 11S seed storage proteins.


Subject(s)
Corylus , Seed Storage Proteins , Corylus/chemistry , Corylus/metabolism , Seed Storage Proteins/chemistry , Seed Storage Proteins/metabolism , Crystallography, X-Ray , Seeds/metabolism , Seeds/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Globulins/chemistry , Globulins/metabolism , Amino Acid Sequence , Protein Multimerization , Models, Molecular
4.
J Agric Food Chem ; 72(13): 7167-7178, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511978

ABSTRACT

IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.


Subject(s)
Globulins , Non-alcoholic Fatty Liver Disease , Soybean Proteins , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Dipeptidyl Peptidase 4/metabolism , Liver/metabolism , Globulins/metabolism , Mice, Inbred C57BL , Disease Models, Animal
5.
J Agric Food Chem ; 72(14): 8103-8113, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530645

ABSTRACT

The effect of genotype and environment on oat protein composition was analyzed through size exclusion-high-performance liquid chromatography (SE-HPLC) and liquid chromatography-mass spectrometry (LC-MS) to characterize oat protein isolate (OPI) extracted from three genotypes grown at three locations in the Canadian Prairies. SE-HPLC identified four fractions in OPI, including polymeric globulins, avenins, glutelins, and albumins, and smaller proteins. The protein composition was dependent on the environment, rather than the genotype. The proteins identified through LC-MS were grouped into eight categories, including globulins, prolamins/avenins, glutelins, enzymes/albumins, enzyme inhibitors, heat shock proteins, grain softness proteins, and allergenic proteins. Three main globulin protein types were also identified, including the P14812|SSG2-12S seed storage globulin, the Q6UJY8_TRITU-globulin, and the M7ZQM3_TRIUA-Globulin-1 S. Principal component analysis indicated that samples from Manitoba showed a positive association with the M7ZQM3_TRIUA-Globulin-1 S allele and Q6UJY8_TRITU-globulin, while samples from Alberta and Saskatchewan had a negative association with them. The results show that the influence of G × E on oat protein fractions and their relative composition is crucial to understanding genotypes' behavior in response to different environments.


Subject(s)
Globulins , Plant Proteins , Plant Proteins/metabolism , Avena/genetics , Avena/metabolism , Chromatography, High Pressure Liquid , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry , Canada , Glutens/genetics , Prolamins/metabolism , Globulins/metabolism , Albumins
6.
Sci Rep ; 14(1): 7219, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538743

ABSTRACT

Petroleum aromatic hydrocarbons are considered one of the most dangerous aquatic pollutants due to their widespread across water bodies, persistence, and extension to the food chain. To our knowledge, there hasn't been any research investigating the hepatorenoprotective effects of Spirulina platensis (SP) against toxicity induced by these environmental toxicants in fish. Thus, we decided to explore its potential safeguarding against benzene and toluene exposure in adult Clarias gariepinus. To achieve this objective, fish were divided into five groups (60 per group; 20 per replicate). The first group served as a control. The second and third groups were intoxicated with benzene and toluene at doses of 0.762 and 26.614 ng/L, respectively for 15 days. The fourth and fifth groups (SP + benzene and SP + toluene, respectively) were challenged with benzene and toluene as previously mentioned following dietary inclusion of SP at a dose of 5 g/kg diet for 30 days. The marked increase in liver metabolizing enzymes, glucose, total protein, albumin, globulin, albumin/globulin ratio, and creatinine confirmed the hepato- and nephrotoxic impacts of benzene and toluene. These outcomes were coupled with cytopathological affections and excessive collagen deposition. The incorporation of SP in ration formulation, on the contrary, restored the previously mentioned toxicological profile due to its antioxidant and cytoprotective attributes. Regardless of SP intervention, the renal tissues still displayed histo-architectural lesions, because of insufficient dose and timeframe. Additional research will be required to identify the ideal SP remediation regimen.


Subject(s)
Catfishes , Globulins , Spirulina , Animals , Benzene/metabolism , Catfishes/metabolism , Globulins/metabolism , Toluene/metabolism , Albumins/metabolism
7.
J Sci Food Agric ; 104(7): 4363-4370, 2024 May.
Article in English | MEDLINE | ID: mdl-38299730

ABSTRACT

BACKGROUND: The two major storage proteins of soymilk are the globulins 7S and 11S. Freeze-thaw fractionation is a simple method for separating these proteins in raw soymilk. In this study, we assessed the freeze-thaw fractionation ability of raw soymilk under various pH (4.3-11.6) conditions and added salt (sodium chloride) concentrations (0.00-0.67 mol L-1). RESULTS: We successfully achieved fractionation within a pH range of 5.8-6.7 and when the salt concentration was 0.22 mol L-1 or lower. Analysis of particle size distribution and microscopic examination of soymilk revealed no direct correlation between particle size and freeze-thaw fractionation ability. Interestingly, it was confirmed that the ranges of zeta potential values associated with successful freeze-thaw fractionation in raw soymilk remained consistent across different pH and salt concentration conditions. These ranges were between -23 and -28 mV at pH levels ranging from 5.8 to 6.7 and between -18 and -29 mV at added salt concentrations ranging from 0 to 0.22 mol L-1. CONCLUSION: The pH and salt concentration in raw soymilk markedly influence the freeze-thaw fractionation process. We confirmed that the range of zeta potential values where fractionation was possible remained consistent under various pH and salt concentration conditions. These findings suggest that the zeta potential value might serve as an indicator for evaluating the freeze-thaw fractionation ability of raw soymilk. © 2024 Society of Chemical Industry.


Subject(s)
Globulins , Soy Milk , Soybean Proteins/metabolism , Sodium Chloride , Soy Milk/metabolism , Globulins/metabolism , Hydrogen-Ion Concentration
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2389-2400, 2024 04.
Article in English | MEDLINE | ID: mdl-37837474

ABSTRACT

BACKGROUND: 7,12-Dimethylbenzanthracene (DMBA) is a member of the polycyclic aromatic hydrocarbon family. It is a member of the polycyclic aromatic hydrocarbon family. It is a mutagenic, carcinogenic, and immunosuppressor agent. Cannabidiol (CBD) is a phytocannabinoid. It has anticonvulsant, anti-inflammatory, anti-anxiety, antioxidant, and anti-cancer properties. The purpose of this study was to investigate the possible protective and therapeutic benefits of CBD oil in DMBA-induced leukemia in rats. METHOD: Experimental animals were divided into six groups of five rats each. Group 1 (normal control) included healthy rats. Group 2 included normal rats that received olive oil. Group 3 included normal rats that received CBD. Group 4 included the DMBA-induced leukemic group. Group 5 (prophylactic group) included rats that received CBD as a prophylaxis before IV injection with DMBA. Group 6 (treated group) included DMBA-induced leukemic rats that received CBD as treatment. Liver functions (total, direct and indirect bilirubin, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), albumin, globulin, and albumin globulin ratio) were measured. Superoxide dismutase (SOD) and catalase (CAT) were also measured. Total RNA extraction followed by-real time qRT-PCR gene expression of LC3-II, Beclin, mTOR, and P62 was performed. Histopathological examination of liver and spleen tissues was performed. RESULTS: Administration of CBD in groups 5 and 6 resulted in a significant improvement of the levels of liver functions compared to the leukemic untreated rats. Also, the levels of catalase and SOD significantly increased after treatment with CBD compared to the leukemic group. After treatment with CBD in groups 5 and 6, there were downregulations in the expression of all studied genes compared to leukemic untreated rats. Treatment with CBD was more statistically effective than prophylactic use. CONCLUSION: Administration of CBD resulted in a significant improvement in the biochemical, antioxidant status, morphological, and molecular measures in DMBA-induced leukemia in adult male rats. The therapeutic use was more effective than the prophylactic one.


Subject(s)
Cannabidiol , Globulins , Leukemia, Experimental , Rats , Male , Animals , Antioxidants/pharmacology , Catalase/metabolism , 9,10-Dimethyl-1,2-benzanthracene/metabolism , 9,10-Dimethyl-1,2-benzanthracene/pharmacology , Leukemia, Experimental/drug therapy , Leukemia, Experimental/metabolism , Leukemia, Experimental/pathology , Liver , Globulins/metabolism , Globulins/pharmacology , Superoxide Dismutase/metabolism , Albumins/metabolism
9.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 291-299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37830380

ABSTRACT

The current study was conducted to explore the productive performance and health status of lactating buffaloes fed diets supplemented with probiotic and/or fibrolytic enzymes. Forty multiparous lactating Egyptian buffaloes (body weight 451 ± 8.5 kg) were equally assigned to four experimental groups: (1) the first group fed control diet, (2) second experimental group fed control diet plus 4 g of probiotic/kg dry matter (DM) (probiotic), (3) third experimental group fed control diet plus 4 g of fibrolytic enzymes/kg DM (enzymes) and (4) fourth experimental group fed control diet plus 2 g of probiotic + 2 g fibrolytic enzymes/kg DM (Mix), The experiment was extended for 63 days. Nutrients digestibility was estimated, daily milk yield was recorded and milk samples were analyzed for total solids, fat protein, lactose and ash. Blood serum samples were analyzed for glucose, total protein, albumin, urea-N, aspartate transaminase, alanine transaminase and cholesterol concentrations. Results showed that adding probiotic and/or fibrolytic enzymes improved nutrients digestibility (p < 0.05). The probiotic, enzymes and mix groups did not affect (p > 0.05) concentrations of serum total protein, albumin (A), globulin (G), albumin/globulin (A/G) ratio and urea-N concentrations. An improvement in daily milk yield (p < 0.0001) and energy-corrected milk (p = 0.0146) were observed with the probiotic and mix groups compared with the control. In conclusion, this study suggests that supplementing lactating buffaloes' diets with probiotic alone or in combination with fibrolytic enzymes would improve their productive performance without adversely impacting their health.


Subject(s)
Globulins , Probiotics , Female , Animals , Lactation/physiology , Buffaloes , Animal Feed/analysis , Digestion/physiology , Diet/veterinary , Dietary Supplements , Milk/metabolism , Nutrients , Probiotics/pharmacology , Streptococcus , Albumins , Globulins/metabolism , Urea/metabolism , Rumen/metabolism
10.
Environ Res ; 245: 117926, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38104912

ABSTRACT

Although the prevalence of lead poisoning in southern Africa's Gyps vultures is now well-established, its finer physiological effects on these endangered species remain poorly characterised. We evaluated the sub-lethal impact of acute lead exposure on Cape and White-backed Vulture chicks from two breeding colonies in South Africa, by analysing its possible effects on key blood biochemistry parameters, immune function, packed cell volume and δ-aminolevulinic acid dehydratase (δ-ALAD) activity. All 37 White-backed Vulture nestlings sampled displayed elevated lead levels (>10 µg/dL), and seven had blood [Pb] >100 µg/dL. Eight of 28 Cape Vulture nestlings sampled had blood [Pb] exceeding background exposure, with one showing blood [Pb] >100 µg/dL. Delta-aminolevulinic acid dehydratase (δ-ALAD) activity was significantly and negatively related to blood [Pb] in nestlings from both species, with 50% inhibition of the enzyme predicted to occur at blood [Pb] = 52.8 µg/dL (White-backed Vulture) and 18.8 µg/dL (Cape Vulture). Although no significant relationship was found between % packed cell volume (PCV) and blood [Pb], the relatively lower mean PCV of 32.9% in White-backed Vulture chicks, combined with normal serum protein values, is likely indicative of depression or haemolytic anaemia. The leukogram was consistent in both species, although the presence of immature heterophils suggested an inflammatory response in White-backed Vulture chicks with blood [Pb] >100 µg/dL. Values for cholesterol, triglycerides, total serum protein, albumin, globulin, albumin/globulin ratio, alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) were consistent with values previously reported. Calcium and phosphorus concentrations suggested no adverse effects on bone metabolism. A significant decrease in urea: uric acid (U:UA) ratio at blood [Pb] >100 µg/dL in White-backed Vulture chicks, brought about by a decrease in urea production, raises the possibility of hepatic abnormality. These results suggest that δ-ALAD activity may serve as a sensitive biomarker of lead toxicity in both species, while highlighting the need to better understand the significant variability in sensitivity that is observed, even between closely related members of the same genus.


Subject(s)
Falconiformes , Globulins , Lead Poisoning , Animals , Lead , Porphobilinogen Synthase , Falconiformes/metabolism , Lead Poisoning/veterinary , Chickens/metabolism , Blood Proteins/metabolism , Albumins/metabolism , Globulins/metabolism , Urea/metabolism , Immunity
11.
Fish Physiol Biochem ; 49(6): 1391-1407, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987934

ABSTRACT

The present study aimed to investigate the effect of thermal stress on growth, feed utilization, coloration, hematology, liver histology, and critical thermal maximum (CTmax) in goldfish (Carassius auratus) cultured at three different acclimation temperatures including 27 °C, 30 °C, and 34 °C for 10 weeks. Goldfish were assigned randomly to tanks with a quadruplicate setup, accommodating 20 fish per tank. The result showed that fish acclimated to different temperatures did not significantly differ in weight gain (WG) and specific growth rate (SGR). However, increasing temperature significantly decreased feed efficiency ratio (FER), protein efficiency ratio (PER), and protein productive value (PPV), but significantly increased feed conversion ratio (FCR) (P < 0.05). The coloration parameters significantly decreased by high temperature in the trunk region with increasing temperature (L* and a* at week 5; L*, a*, and b* at week 10; P < 0.05). Total carotenoid contents in serum, fin, muscle, and skin also significantly decreased with increasing temperature (P < 0.05). Total protein, albumin, and globulin levels exhibited a notable decrease, while the albumin: globulin ratio showed a slight insignificant increase, with increasing temperature. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol, and triglycerides significantly increased with increasing temperature (P < 0.05). While, high-density lipoprotein cholesterol (HDL-c) decreased linearly (P < 0.05). Glucose and cortisol levels linearly increased with increasing temperature, the highest levels being observed in the 34 °C group. Liver histology showed swollen hepatocytes, nuclei displacement, and infiltration of inflammation in fish cultured at 34 °C. Goldfish acclimated to 34 °C displayed a higher CTmax of 43.83 °C compared to other groups. The present study showed that temperature should be kept below 34 °C for goldfish culture to prevent high FCR, fading coloration, and liver damages.


Subject(s)
Globulins , Hematology , Animals , Goldfish/metabolism , Carotenoids , Liver/metabolism , Cholesterol/metabolism , Globulins/metabolism , Albumins/metabolism , Temperature
12.
Food Chem ; 427: 136640, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37429130

ABSTRACT

To date, it still remains unknown how ß-conglycinin, a major soybean allergen, crosses intestinal epithelial barrier to reach immune cells. The purpose of this study was to elucidate the pathway and molecular mechanism of ß-conglycinin absorption and transport across intestinal mucosal epithelium using a ß-conglycinin allergic piglet model. Ten-day old piglets were orally sensitized with diets containing 2% and 4% ß-conglycinin. The digestion, absorption and transport of ß-conglycinin in gastrointestinal tract was investigated. The results showed that ß-conglycinin had a certain resistance to gastrointestinal digestion, and the digestion-resistant subunits and fragments were absorbed into the intestinal mucosa and then induced an anaphylaxis in early weaned piglets. The absorption occurred in the form of IgE-allergen immune complex through transcellular pathway with CD23 as the receptor. These results provided important clues for using the pathway and molecule as inhibitor target to prevent and alleviate soybean ß-conglycinin allergy in infants.


Subject(s)
Anaphylaxis , Globulins , Animals , Swine , Glycine max/metabolism , Soybean Proteins/metabolism , Globulins/metabolism , Antigens, Plant , Seed Storage Proteins , Allergens , Digestion
13.
Carbohydr Polym ; 317: 121101, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37364963

ABSTRACT

The effect of the cross-linking mechanism and functional properties of soy glycinin (11S)-potato starch (PS) complexes was investigated in this study. The results showed that the binding effecting and spatial network structure of 11S-PS complexes via heated-induced cross-linking were adjusted by biopolymer ratios. In particular, 11S-PS complexes with the biopolymer ratios of 2:15, had a strongest intermolecular interaction through hydrogen bonds and hydrophobic force. Moreover, 11S-PS complexes at the biopolymer ratios of 2:15 exhibited a finer three-dimensional network structure, which was used as film-forming solution to enhance the barrier performance and mitigate the exposure to the environment. In addition, the 11S-PS complexes coating was effective in moderating the loss of nutrients, thereby extending their storage life in truss tomato preservation experiments. This study provides helpful to insights into the cross-linking mechanism of the 11S-PS complexes and the potential application of food-grade biopolymer composite coatings in food preservation.


Subject(s)
Globulins , Solanum tuberosum , Solanum tuberosum/metabolism , Soybean Proteins/chemistry , Globulins/chemistry , Globulins/metabolism , Starch
14.
Eur J Nutr ; 62(7): 2841-2854, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37358571

ABSTRACT

PURPOSE: Soybean glycinin (11S) and ß-conglycinin (7S) are major antigenic proteins in soybean and can induce a variety of allergic reactions in the young animals. This study aimed to investigate the effect of 7S and 11S allergens on the intestine of piglets. METHODS: Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups fed with the basic diet, the 7S supplemented basic diet, or the 11S supplemented basic diet for 1 week. Allergy markers, intestinal permeability, oxidative stress, and inflammatory reactions were detected, and we observed different sections of intestinal tissue. The expressions of genes and proteins related to NOD-like receptor thermal protein domain associated protein 3 (NLRP-3) signaling pathway were detected by IHC, RT-qPCR, and WB. RESULTS: Severe diarrhea and decreased growth rate were observed in the 7S and 11S groups. Typical allergy markers include IgE production and significant elevations of histamine and 5-hydroxytryptamine (5-HT). More aggressive intestinal inflammation and barrier dysfunction were observed in the experimental weaned piglets. In addition, 7S and 11S supplementation increased the levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) and nitrotyrosine, triggering oxidative stress. Furthermore, higher expression levels of NLRP-3 inflammasome ASC, caspase-1, IL-1ß, and IL-18 were observed in the duodenum, jejunum, and ileum. CONCLUSION: We confirmed that 7S and 11S damaged the intestinal barrier of weaned piglets and may be associated with the onset of oxidative stress and inflammatory response. However, the molecular mechanism underlying these reactions deserves further study.


Subject(s)
Globulins , Hypersensitivity , Animals , Swine , Glycine max/metabolism , Soybean Proteins/adverse effects , Soybean Proteins/metabolism , Intestines , Globulins/metabolism , Oxidative Stress
15.
J Plant Physiol ; 284: 153981, 2023 May.
Article in English | MEDLINE | ID: mdl-37054580

ABSTRACT

The importance of oats has increased because of their high nutritional value and health benefits in the human diet. High-temperature stress during the reproductive growth period has a detrimental effect on grain morphology by changing the structure and concentration of several seed-storage proteins. DA1, a conserved ubiquitin-proteasome pathway component, plays an important role in regulating grain size by controlling cell proliferation in maternal integuments during the grain-filling stage. However, there have been no reports or studies on oat DA1 genes. In this study, we identified three DA1-like genes (AsDA1-2D, AsDA1-5A, and AsDA1-1D) using genome-wide analysis. Among these, AsDA1-2D was found to be responsible for high-temperature stress tolerance via a yeast thermotolerance assay. The physical interaction of AsDA1-2D with oat-storage-globulin (AsGL-4D) and a protease inhibitor (AsPI-4D) was observed using yeast two-hybrid screening. A subcellular localization assay revealed that AsDA1-2D and its interacting proteins are localized in the cytosol and plasma membrane. An in vitro pull-down assay showed that AsDA1-2D forms a complex with both AsPI-4D and AsGL-4D. An in vitro cell-free degradation assay showed that AsGL-4D was degraded by AsDA1-2D under high-temperature conditions and that AsPI-4D inhibited the function of AsDA1-2D. These results suggest that AsDA1-2D acts as a cysteine protease and negatively regulates oat-grain-storage-globulin under heat stress.


Subject(s)
Globulins , Thermotolerance , Humans , Avena/metabolism , Saccharomyces cerevisiae/metabolism , Seeds/metabolism , Edible Grain/metabolism , Heat-Shock Response , Globulins/genetics , Globulins/metabolism
16.
J Agric Food Chem ; 71(6): 2704-2717, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36722439

ABSTRACT

A growing interest in pulse proteins in recent years results from their crucial role in the transition toward sustainable food systems. Consequently, current research is mainly focused on the production of protein ingredients and the evaluation of their nutritional and techno-functional properties for the development of animal product analogues. However, the individual impacts of the major proteins 11S legumin and 7S vicilin on pulse techno-functionalities remains unclear. Thus, this review aims to represent current knowledge on pulse 11S and 7S globulin origins, extraction, separation, and purification methods as well as their techno-functionalities. This paper also discusses the principal challenges related to pulse vicilin and legumin purification methods, such as efficiency and environmental concerns, as well as 11S/7S ratio variability. This review highlights the fact that 11S and 7S fractions serve different purposes in pulse functionality and that more efficient and eco-friendly purification techniques are required to properly assess their respective functional attributes. Such research would allow the determination of optimal 11S/7S ratios for the integration of pulse protein ingredients in various food formulations. Hence, food industries would be able to select species/varieties, agronomical methods, and processing methods to produce ingredients with suitable 11S/7S ratios, catering to consumers' ethical, environmental, and nutritional concerns.


Subject(s)
Fabaceae , Globulins , Seed Storage Proteins , Globulins/metabolism , Fabaceae/metabolism , Soybean Proteins
17.
Diabetes ; 72(2): 275-289, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36445949

ABSTRACT

GC-globulin (GC), or vitamin D-binding protein, is a multifunctional protein involved in the transport of circulating vitamin 25(OH)D and fatty acids, as well as actin scavenging. In the pancreatic islets, the gene encoding GC, GC/Gc, is highly localized to glucagon-secreting α-cells. Despite this, the role of GC in α-cell function is poorly understood. We previously showed that GC is essential for α-cell morphology, electrical activity, and glucagon secretion. We now show that loss of GC exacerbates α-cell failure during metabolic stress. High-fat diet-fed GC-/- mice have basal hyperglucagonemia, which is associated with decreased α-cell size, impaired glucagon secretion and Ca2+ fluxes, and changes in glucose-dependent F-actin remodelling. Impairments in glucagon secretion can be rescued using exogenous GC to replenish α-cell GC levels, increase glucagon granule area, and restore the F-actin cytoskeleton. Lastly, GC levels decrease in α-cells of donors with type 2 diabetes, which is associated with changes in α-cell mass, morphology, and glucagon expression. Together, these data demonstrate an important role for GC in α-cell adaptation to metabolic stress.


Subject(s)
Diabetes Mellitus, Type 2 , Globulins , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Globulins/metabolism , Glucagon/metabolism , Stress, Physiological , Vitamin D-Binding Protein/genetics , Vitamin D-Binding Protein/metabolism
18.
Plant Cell Rep ; 42(1): 123-136, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36271177

ABSTRACT

KEY MESSAGE: We characterize GFP expression driven by a soybean glycinin promoter in transgenic soybean. We demonstrate specific amino acid-mediated induction of this promoter in developing soybean seeds in vitro. In plants, gene expression is primarily regulated by promoter regions which are located upstream of gene coding sequences. Promoters allow transcription in certain tissues and respond to environmental stimuli as well as other inductive phenomena. In soybean, seed storage proteins (SSPs) accumulate during seed development and account for most of the monetary and nutritional value of this crop. To better study the regulatory functions of a SSP promoter, we developed a cotyledon culture system where media and media addenda were evaluated for their effects on cotyledon development and promoter activity. Stably transformed soybean events containing a glycinin SSP promoter regulating the green fluorescent protein (GFP) were generated. Promoter activity, as visualized by GFP expression, was only observed in developing in planta seeds and in vitro-cultured isolated embryos and cotyledons from developing seeds when specific media addenda were included. Asparagine, proline, and especially glutamine induced glycinin promoter activity in cultured cotyledons from developing seeds. Other amino acids did not induce the glycinin promoter. Here, we report, for the first time, induction of a reintroduced glycinin SSP promoter by specific amino acids in cotyledon tissues during seed development.


Subject(s)
Globulins , Glycine max , Glycine max/genetics , Glycine max/metabolism , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Amino Acids/metabolism , Soybean Proteins/genetics , Soybean Proteins/metabolism , Promoter Regions, Genetic/genetics , Seeds/genetics , Seeds/metabolism , Globulins/genetics , Globulins/metabolism
19.
Food Chem ; 398: 133832, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35961170

ABSTRACT

The thermal-induced interaction between ß-conglycinin (7S) and cyanidin-3-O-glucoside (C3G) on the bioaccessibility and antioxidant capacity of C3G was investigated. High ratio of 7S to C3G (1:100) led to a more ordered secondary structure of 7S. Thermal treatment promoted the formation of 7S-C3G complexes via hydrophobic and hydrogen bonds but did not induce the formation of 7S-C3G covalent products. Thermal treatment at 65 °C and 121 °C enhanced the binding affinity of 7S-C3G complexes by 46.19 % and 1203 % compared with 25 °C. The 7S-C3G interaction decreased C3G bioaccessibility by 4.37 %, 8.74 %, and 46.37 % at 25 °C, 65 °C, and 121 °C. Diphenylpicrylhydrazyl (DPPH) and ABTS antioxidant capacity assay indicated an antagonistic effect between 7S and C3G. The increased binding affinity of C3G to 7S limited the bioaccessibility of C3G and promoted the antagonism of antioxidant capacity between 7S and C3G. 7S addition was detrimental to the antioxidant capacity and bioaccessibility of C3G in vitro after thermal processing.


Subject(s)
Antioxidants , Globulins , Anthocyanins/chemistry , Antigens, Plant , Antioxidants/metabolism , Globulins/metabolism , Glucosides/chemistry , Seed Storage Proteins , Soybean Proteins
20.
Elife ; 122023 Dec 19.
Article in English | MEDLINE | ID: mdl-38206862

ABSTRACT

Alkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified. We use chemical approaches to show that a ~50 kDa plasma protein is the principal alkaloid-binding molecule in blood of poison frogs. Proteomic and biochemical studies establish this plasma protein to be a liver-derived alkaloid-binding globulin (ABG) that is a member of the serine-protease inhibitor (serpin) family. In addition to alkaloid-binding activity, ABG sequesters and regulates the bioavailability of 'free' plasma alkaloids in vitro. Unexpectedly, ABG is not related to saxiphilin, albumin, or other known vitamin carriers, but instead exhibits sequence and structural homology to mammalian hormone carriers and amphibian biliverdin-binding proteins. ABG represents a new small molecule binding functionality in serpin proteins, a novel mechanism of plasma alkaloid transport in poison frogs, and more broadly points toward serpins acting as tunable scaffolds for small molecule binding and transport across different organisms.


Subject(s)
Alkaloids , Globulins , Serpins , Animals , Poison Frogs , Serpins/metabolism , Proteomics , Anura/physiology , Globulins/metabolism , Blood Proteins , Alkaloids/chemistry , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...