ABSTRACT
PURPOSE: Euterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg-1day-1) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury. METHODS: Male rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water. RESULTS: The elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-ß1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx). CONCLUSION: ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.
Subject(s)
Antioxidants/therapeutic use , Diabetic Nephropathies/prevention & control , Dietary Supplements , Euterpe/chemistry , Plant Extracts/therapeutic use , Renal Insufficiency/prevention & control , Seeds/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antihypertensive Agents/therapeutic use , Apoptosis , Biomarkers/blood , Biomarkers/metabolism , Biomarkers/urine , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Experimental/immunology , Diabetic Nephropathies/complications , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Fibrosis , Glomerular Filtration Barrier/immunology , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/pathology , Glomerular Filtration Barrier/physiopathology , Hypertension/complications , Hypertension/diet therapy , Hypertension/immunology , Hypertension/physiopathology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Oxidative Stress , Rats, Inbred SHR , Renal Insufficiency/complications , Renal Insufficiency/etiology , Renal Insufficiency/metabolismABSTRACT
Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm.