Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Nutrients ; 16(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39064713

ABSTRACT

(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced ß-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.


Subject(s)
CD36 Antigens , Diet, High-Fat , Intestinal Absorption , Lipid Metabolism , Liver , Mice, Knockout , PPAR alpha , Proglucagon , Animals , Male , Diet, High-Fat/adverse effects , PPAR alpha/metabolism , PPAR alpha/genetics , Liver/metabolism , Proglucagon/metabolism , Proglucagon/genetics , CD36 Antigens/metabolism , CD36 Antigens/genetics , Mice , Sterol Esterase/metabolism , Sterol Esterase/genetics , Triglycerides/metabolism , Mice, Inbred C57BL , Fatty Acids, Nonesterified/metabolism , Glucagon-Like Peptide 1/metabolism , Duodenum/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Adipose Tissue/metabolism , Dietary Fats , Glucagon-Like Peptide 2/metabolism , Acyltransferases , Lipase
2.
Nat Rev Endocrinol ; 20(9): 553-564, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38858581

ABSTRACT

Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.


Subject(s)
Bone and Bones , Gastric Inhibitory Polypeptide , Gastrointestinal Hormones , Homeostasis , Humans , Homeostasis/physiology , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/physiology , Animals , Gastrointestinal Hormones/physiology , Gastrointestinal Hormones/metabolism , Gastric Inhibitory Polypeptide/metabolism , Bone Resorption/drug therapy , Bone Resorption/metabolism , Glucagon-Like Peptide 2/physiology , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide 1/metabolism
3.
Chembiochem ; 25(13): e202400201, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38701360

ABSTRACT

Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.


Subject(s)
Escherichia coli , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Escherichia coli/enzymology , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/chemistry , Glucagon-Like Peptide 2/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence
4.
Peptides ; 177: 171210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579917

ABSTRACT

Recent advancements in understanding glucagon-like peptide 2 (GLP-2) biology and pharmacology have sparked interest in targeting the GLP-2 receptor (GLP-2R) in the treatment of obesity. GLP-2 is a proglucagon-derived 33-amino acid peptide co-secreted from enteroendocrine L cells along with glucagon-like peptide 1 (GLP-1) and has a range of actions via the GLP-2R, which is particularly expressed in the gastrointestinal tract, the liver, adipose tissue, and the central nervous system (CNS). In humans, GLP-2 evidently induces intestinotrophic effects (i.e., induction of intestinal mucosal proliferation and improved gut barrier function) and promotes mesenteric blood flow. However, GLP-2 does not seem to have appetite or food intake-reducing effects in humans, but its gut barrier-promoting effect may be of interest in the context of obesity. Obesity is associated with reduced gut barrier function, increasing the translocation of proinflammatory gut content to the circulation. This phenomenon constitutes a strong driver of obesity-associated systemic low-grade inflammation, which in turn plays a major role in the development of most obesity-associated complications. Thus, the intestinotrophic and gut barrier-improving effect of GLP-2, which in obese rodent models shows strong anti-inflammatory potential, may, in combination with food intake-reducing strategies, e.g., GLP-1 receptor (GLP-1) agonism, be able to rectify core pathophysiological mechanism of obesity. Here, we provide an overview of GLP-2 physiology in the context of obesity pathophysiology and review the pharmacological potential of GLP-2R activation in the management of obesity and related comorbidities.


Subject(s)
Glucagon-Like Peptide-2 Receptor , Obesity , Animals , Humans , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide-2 Receptor/agonists , Glucagon-Like Peptide-2 Receptor/metabolism , Obesity/metabolism , Obesity/drug therapy
5.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665015

ABSTRACT

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Subject(s)
Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
6.
Equine Vet J ; 56(2): 309-317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37705248

ABSTRACT

BACKGROUND: Gastrointestinal peptides, such as glucagon-like peptide-2 (GLP-2), could play a direct role in the development of equine hyperinsulinaemia. OBJECTIVES: To describe the secretory pattern of endogenous GLP-2 over 24 h in healthy ponies and determine whether oral administration of a synthetic GLP-2 peptide increases blood glucose or insulin responses to feeding. STUDY DESIGN: A cohort study followed by a randomised, controlled, cross-over study. METHODS: In the cohort study, blood samples were collected every 2 h for 24 h in seven healthy ponies and plasma [GLP-2] was measured. In the cross-over study, 75 µg/kg bodyweight of synthetic GLP-2, or carrier only, was orally administered to 10 ponies twice daily for 10 days. The area under the curve (AUC0-3h ) of post-prandial blood glucose and insulin were determined before and after each treatment. RESULTS: Endogenous [GLP-2] ranged from <0.55 to 1.95 ± 0.29 [CI 0.27] ng/mL with similar peak concentrations in response to meals containing 88-180 g of non-structural carbohydrate, that were ~4-fold higher (P < 0.001) than the overnight nadir. After GLP-2 treatment peak plasma [GLP-2] increased from 1.1 [0.63-1.37] ng/mL to 1.54 [1.1-2.31] ng/mL (28.6%; P = 0.002), and AUC0-3h was larger (P = 0.01) than before treatment. The peptide decreased (7%; P = 0.003) peak blood glucose responses to feeding from 5.33 ± 0.45 mmol/L to 5.0 ± 0.21 mmol/L, but not AUC0-3h (P = 0.07). There was no effect on insulin secretion. MAIN LIMITATIONS: The study only included healthy ponies and administration of a single dose of GLP-2. CONCLUSIONS: The diurnal pattern of GLP-2 secretion in ponies was similar to other species with no apparent effect of daylight. Although GLP-2 treatment did not increase post-prandial glucose or insulin responses to eating, studies using alternative dosing strategies for GLP-2 are required.


Subject(s)
Blood Glucose , Feeding Behavior , Glucagon-Like Peptide 2 , Horses , Animals , Cohort Studies , Cross-Over Studies , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2/administration & dosage , Glucagon-Like Peptide 2/metabolism , Horses/metabolism , Insulin/metabolism , Feeding Behavior/psychology
7.
J Clin Endocrinol Metab ; 108(5): 1084-1092, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36458872

ABSTRACT

CONTEXT: A portion of ingested fats are retained in the intestine for many hours before they are mobilized and secreted in chylomicron (CM) particles. Factors such as glucagon-like peptide-2 (GLP-2) and glucose can mobilize these stored intestinal lipids and enhance CM secretion. We have recently demonstrated in rodents that GLP-2 acutely enhances CM secretion by mechanisms that do not involve the canonical CM synthetic assembly and secretory pathways. OBJECTIVE: To further investigate the mechanism of GLP-2's potent intestinal lipid mobilizing effect, we examined intracellular cytoplasmic lipid droplets (CLDs) in intestinal biopsies of humans administered GLP-2 or placebo. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS: A single dose of placebo or GLP-2 was administered subcutaneously 5 hours after ingesting a high-fat bolus. In 1 subset of participants, plasma samples were collected to quantify lipid and lipoprotein concentrations for 3 hours after placebo or GLP-2. In another subset, a duodenal biopsy was obtained 1-hour after placebo or GLP-2 administration for transmission electron microscopy and proteomic analysis. RESULTS: GLP-2 significantly increased plasma triglycerides by 46% (P = 0.009), mainly in CM-sized particles by 133% (P = 0.003), without reducing duodenal CLD size or number. Several proteins of interest were identified that require further investigation to elucidate their potential role in GLP-2-mediated CM secretion. CONCLUSIONS: Unlike glucose that mobilizes enterocyte CLDs and enhances CM secretion, GLP-2 acutely increased plasma CMs without significant mobilization of CLDs, supporting our previous findings that GLP-2 does not act directly on enterocytes to enhance CM secretion and most likely mobilizes secreted CMs in the lamina propria and lymphatics.


Subject(s)
Chylomicrons , Lipid Droplets , Humans , Chylomicrons/metabolism , Triglycerides , Lipid Droplets/metabolism , Glucagon-Like Peptide 2/pharmacology , Glucagon-Like Peptide 2/metabolism , Proteomics , Glucose
8.
Article in English | MEDLINE | ID: mdl-35680083

ABSTRACT

BACKGROUND & AIMS: Dietary triglycerides (TG) retained in the intestine after a meal can be mobilized many hours later by glucagon-like peptide-2 (GLP-2) in humans and animal models, despite the well-documented absence of expression of the GLP-2 receptor on enterocytes. In this study, we examined the site of GLP-2 action to mobilize intestinal lipids and enhance chylomicron production. METHODS: In mesenteric lymph duct-cannulated rats, we assessed GLP-2-stimulated lymph flow rate, TG concentration, TG output, and apoB48 abundance 5 h after an intraduodenal lipid bolus, in the presence of a validated GLP-2 antagonist or vehicle. Additionally, the same GLP-2-stimulated parameters were examined in the presence or absence of cis-Golgi disruption by Brefeldin A (BFA). RESULTS: Compared to placebo, GLP-2 administration increased lymph flow by 2.8-fold (P < 0.001), cumulative lymph volume by 2.69-fold (P < 0.001) and total TG output 2-fold (P = 0.015). GLP-2 receptor antagonism markedly diminished GLP-2's ability to stimulate lymph flow, cumulative lymph volume and total TG output, demonstrating the dependence of GLP-2 stimulation of lymph flow and TG output on its receptor activation. In contrast, disruption of the cis-Golgi apparatus with Brefeldin A did not diminish the GLP-2-response of lymph flow i.e., increased lymph flow by 2.7-fold (P = 0.001), lymph volume by 2.9-fold (P = 0.001), and total TG output i.e., increased by 2.5-fold (P = 0.003). CONCLUSIONS: GLP-2 mobilizes enteral lipid at a site distal to the Golgi, acting via its receptor. Since GLP-2 receptors are not expressed on enterocytes, GLP-2 likely mobilizes intestinal lipid residing extracellularly, either in the lamina propria or in the lymphatics.


Subject(s)
Chylomicrons , Glucagon-Like Peptide 2 , Animals , Brefeldin A , Chylomicrons/metabolism , Enterocytes/metabolism , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide-2 Receptor , Intestines , Rats , Triglycerides/metabolism
9.
Ann N Y Acad Sci ; 1514(1): 132-141, 2022 08.
Article in English | MEDLINE | ID: mdl-35580981

ABSTRACT

Short bowel syndrome can occur after extensive intestinal resection, causing intestinal insufficiency or intestinal failure, which requires long-term parenteral nutrition. Glucagon-like peptide-2 (GLP-2) pharmacotherapy is now clinically used to reduce the disease burden of intestinal failure. However, many patients still cannot be weaned off from parenteral nutrition completely. The novel dual GLP-1 and GLP-2 receptor agonist dapiglutide has previously been shown to be highly effective in a preclinical murine short bowel model. Here, we studied the effects of dapiglutide on intestinal epithelial barrier function. In the jejunum, dapiglutide increased claudin-7 expression and tightened the paracellular tight junction leak pathway. At the same time, dapiglutide promoted paracellular tight junction cation size selectivity in the jejunum. This was paralleled by extension of the cation selective tight junction proteins claudin-2 and claudin-10b and preserved claudin-15 expression and localization along the crypt-villus axis in the jejunum. In the colon, no barrier effects from dapiglutide were observed. In the colon, dapiglutide attenuated the short bowel-associated, compensatorily increased epithelial sodium channel activity, likely secondary, by improved volume status. Future studies are needed to address the intestinal adaptation of the colon.


Subject(s)
Glucagon-Like Peptide 1 , Short Bowel Syndrome , Animals , Claudins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide 2/pharmacology , Glucagon-Like Peptide-2 Receptor/metabolism , Humans , Intestinal Mucosa/metabolism , Mice , Short Bowel Syndrome/drug therapy , Short Bowel Syndrome/metabolism
10.
Endocrinology ; 163(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35266539

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC)-derived purified heat-stable enterotoxin b (STb) is responsible for secretory diarrhea in livestock and humans. STb disrupts intestinal fluid homeostasis, epithelial barrier function, and promotes cell death. Glucagon-like peptide-2 (GLP-2) is a potent intestinotrophic hormone secreted by enteroendocrine L cells. GLP-2 enhances crypt cell proliferation, epithelial barrier function, and inhibits enterocyte apoptosis. Whether STb can affect GLP-2 producing L cells remains to be elucidated. First, secreted-His-labeled STb from transformed E coli was collected and purified. When incubated with L-cell models (GLUTag, NCI-H716, and secretin tumor cell line [STC-1]), fluorescent immunocytochemistry revealed STb was internalized and was differentially localized in the cytoplasm and nucleus. Cell viability experiments with neutral red and resazurin revealed that STb was toxic in all but the GLUTag cells. STb stimulated 2-hour GLP-2 secretion in all cell models. Interestingly, GLUTag cells produced the highest amount of GLP-2 when treated with STb, demonstrating an inverse relationship in GLP-2 secretion and cell toxicity. To demonstrate a protective role for GLP-2, GLUTag-conditioned media (rich in GLP-2) blocked STb toxicity in STC-1 cells. Confirming a protective role of GLP-2, teduglutide was able to improve cell viability in cells treated with H2O2. In conclusion, STb interacts with the L cell, stimulates secretion, and may induce toxicity if GLP-2 is not produced at high levels. GLP-2 or receptor agonists have the ability to improve cell viability in response to toxins. These results suggest that GLP-2 secretion can play a protective role during STb intoxication. This work supports future investigation into the use of GLP-2 therapies in enterotoxigenic-related diseases.


Subject(s)
Enterotoxins , Glucagon-Like Peptide 2 , Animals , Enteroendocrine Cells/metabolism , Enterotoxins/metabolism , Enterotoxins/toxicity , Escherichia coli/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide 2/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/metabolism , L Cells , Mice
11.
Curr Protein Pept Sci ; 23(2): 61-69, 2022.
Article in English | MEDLINE | ID: mdl-35176986

ABSTRACT

Glucagon-Like Peptide-2 (GLP-2) is a pleiotropic hormone that plays several roles in different organs and tissues, so being involved in many physiological processes. Among these, it regulates gastrointestinal (GI) tract function binding to a specific G-protein coupled receptor (GLP-2R). Of note, GLP-2R is widely expressed in different cells of the GI tract, including excitatory and inhibitory neurons of the enteric nervous system. In the gut, GLP-2 has been reported to play numerous actions, among which the modulation of motility. Nevertheless, most of the GLP-2 effects and its role in physiological processes are still debated. The aim of this minireview is to summarize the data present in the literature on the control of GI motility by GLP-2, the mechanism through which it occurs, and to discuss the physiological implications of such effects. A better understanding of the role of GLP-2 on GI motor responses may be of importance for the development of new therapeutic approaches in GI dysmotility.


Subject(s)
Enteric Nervous System , Glucagon-Like Peptide 2 , Enteric Nervous System/metabolism , Gastrointestinal Motility , Gastrointestinal Tract/metabolism , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide 2/pharmacology , Receptors, Glucagon/metabolism
12.
Cell Mol Gastroenterol Hepatol ; 13(6): 1829-1842, 2022.
Article in English | MEDLINE | ID: mdl-35218981

ABSTRACT

BACKGROUND & AIMS: Leucine-rich repeat-containing G-protein-coupled receptor-5 (Lgr5)+/olfactomedin-4 (Olfm4)+ intestinal stem cells (ISCs) in the crypt base are crucial for homeostatic maintenance of the epithelium. The gut hormone, glucagon-like peptide-21-33 (GLP-2), stimulates intestinal proliferation and growth; however, the actions of GLP-2 on the Lgr5+ ISCs remain unclear. The aim of this study was to determine whether and how GLP-2 regulates Lgr5+ ISC cell-cycle dynamics and numbers. METHODS: Lgr5-Enhanced green-fluorescent protein - internal ribosome entry site - Cre recombinase - estrogen receptor T2 (eGFP-IRES-creERT2) mice were acutely administered human Glycine2 (Gly2)-GLP-2, or the GLP-2-receptor antagonist, GLP-23-33. Intestinal epithelial insulin-like growth factor-1-receptor knockout and control mice were treated chronically with human Gly2 (hGly2)-GLP-2. Cell-cycle parameters were determined by 5-Ethynyl-2'-deoxyuridine (EdU), bromodeoxyuridine, antibody #Ki67, and phospho-histone 3 labeling and cell-cycle gene expression. RESULTS: Acute hGly2-GLP-2 treatment increased the proportion of eGFP+EdU+/OLFM4+EdU+ cells by 11% to 22% (P < .05), without affecting other cell-cycle markers. hGly2-GLP-2 treatment also increased the ratio of eGFP+ cells in early to late S-phase by 97% (P < .001), and increased the proportion of eGFP+ cells entering S-phase by 218% (P < .001). hGly2-GLP-2 treatment induced jejunal expression of genes involved in cell-cycle regulation (P < .05), and increased expression of Mcm3 in the Lgr5-expressing cells by 122% (P < .05). Conversely, GLP-23-33 reduced the proportion of eGFP+EdU+ cells by 27% (P < .05), as well as the expression of jejunal cell-cycle genes (P < .05). Finally, chronic hGly2-GLP-2 treatment increased the number of OLFM4+ cells/crypt (P < .05), in an intestinal epithelial insulin-like growth factor-1-receptor-dependent manner. CONCLUSIONS: These findings expand the actions of GLP-2 to encompass acute stimulation of Lgr5+ ISC S-phase entry through the GLP-2R, and chronic induction of Lgr5+ ISC expansion through downstream intestinal insulin-like growth factor-1 signaling.


Subject(s)
Glucagon-Like Peptide 2 , Insulin-Like Growth Factor I , Animals , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide 2/pharmacology , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Intestinal Mucosa , Intestines , Mice , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism
13.
Peptides ; 148: 170683, 2022 02.
Article in English | MEDLINE | ID: mdl-34748791

ABSTRACT

Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.


Subject(s)
Blood Glucose/metabolism , Glucagon/metabolism , Pancreas/metabolism , Animals , Calcitonin/metabolism , Gastric Inhibitory Polypeptide/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Humans , Insulin/metabolism , Islet Amyloid Polypeptide/metabolism , Neurotensin/metabolism , Oxyntomodulin/metabolism , Oxytocin/metabolism , Pancreatic Polypeptide/metabolism , Somatostatin/metabolism , Urocortins/metabolism , Vasopressins/metabolism
14.
Front Endocrinol (Lausanne) ; 13: 1036559, 2022.
Article in English | MEDLINE | ID: mdl-36589839

ABSTRACT

Introduction: Refractory peptic ulcers lead to perforation and hemorrhage, which are fatal. However, these remain a therapeutic challenge. Gastric mucosal blood flow is crucial in maintaining gastric mucosal health. It's reported that Glucagon-like peptide-2 (GLP-2), a gastrointestinal hormone, stimulated intestinal blood flow. However, the direct role of GLP-2 in gastric mucosal blood flow and metabolites remain unclear. Here, we speculated that GLP-2 might protect the gastric mucosa by increasing gastric mucosal blood flow and regulating metabolites. This study was conducted to evaluate the role of GLP-2 in gastric mucosal lesions and its underlying mechanism. Methods: We analyzed endogenous GLP-2 during gastric mucosal injury in the serum. Rats were randomly divided into two groups, with 36 rats in each group as follows: (1) normal control group (NC1); (2) ethanol model group (EC1); rats in EC1 and NC1 groups were intragastrically administered ethanol (1 ml/200 g body weight) and distilled water (1 ml/200 g body weight). The serum was collected 10 min before intragastric administration and 15, 30, 60, 90, and 120 min after intragastric administration. Furthermore, additional male Sprague-Dawley rats were randomly divided into three groups, with six rats in each group as follows: (1) normal control group (NC); (2) ethanol model group (EC); (3) 10 µg/200 g body weight GLP-2 group (GLP-2). Rats in the NC and EC groups were intraperitoneally injected with saline. Those in the GLP-2 group were intraperitoneally injected with GLP-2. Thirty minutes later, rats in the EC and GLP-2 groups were intragastrically administered ethanol (1 ml/200 g body weight), and rats in the NC group were intragastrically administered distilled water (1 ml/200 g body weight). After the intragastric administration of ethanol for 1 h, the animals were anesthetized and gastric mucosal blood flow was measured. Serum were collected for ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) metabolomics. Results: There were no significant change in endogenous GLP-2 during gastric mucosal injury (P<0.05). Pretreatment with GLP-2 significantly reduced ethanol-induced gastric mucosal lesions by improving the gastric mucosal blood flow, as examined using a laser Doppler flow meter, Guth Scale, hematoxylin-eosin staining, and two-photon microscopy. UPLC-MS/MS analyses showed that GLP-2 also maintained a steady state of linoleic acid metabolism. Conclusions: Taken together, GLP-2 protects the gastric mucosa against ethanol-induced lesions by improving gastric mucosa blood flow and affecting linoleic acid metabolism.


Subject(s)
Glucagon-Like Peptide 2 , Linoleic Acid , Rats , Male , Animals , Rats, Sprague-Dawley , Glucagon-Like Peptide 2/metabolism , Chromatography, Liquid , Linoleic Acid/metabolism , Tandem Mass Spectrometry , Gastric Mucosa/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Water/metabolism
16.
Bioengineered ; 12(1): 5195-5209, 2021 12.
Article in English | MEDLINE | ID: mdl-34402720

ABSTRACT

The global incidence of ulcerative colitis (UC) continues to increase while it's clinical cure rate remains low. Intestinal mucosal ulcers have segmental distribution and variable severity. Intestinal bacteria are closely related to intestinal immunity and metabolism; however, the relationship between intestinal microbiome profile and the occurrence of UC, as well as the contribution of glucose metabolism, are not well understood. This was investigated in the present study using mucosal biopsies from patients with UC and healthy control subjects. We performed high throughput 16S rRNA gene sequencing to estimate microbiota composition and abundance as well as their association with clinical indices such as lesion severity. The results showed that the diversity and abundance of intestinal microbiota were significantly lower in patients with UC than in healthy subjects; however, these were unrelated to ulcer severity. Serum glucagon-like peptide 2 (GLP-2) level was associated with reduced microbiota diversity and abundance in UC. These results indicate that colonization by specific microbiota is not the main determinant of pathologic status in UC. Additionally, therapeutic strategies that increase GLP-2 levels in intestinal mucosa may be effective in the treatment of UC.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome/physiology , Glucagon-Like Peptide 2 , Adult , Aged , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Female , Glucagon-Like Peptide 2/analysis , Glucagon-Like Peptide 2/genetics , Glucagon-Like Peptide 2/metabolism , Glucose/metabolism , High-Throughput Nucleotide Sequencing , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Middle Aged
17.
Diabet Med ; 38(10): e14657, 2021 10.
Article in English | MEDLINE | ID: mdl-34297363

ABSTRACT

AIMS: We aimed to investigate the effect of prebiotic inulin-type fructans (ITF) versus a control supplement on postprandial levels of glucagon-like peptide-1 and -2 (GLP-1 and -2), glucose and insulin in people with type 2 diabetes. METHODS: Adult men and women with type 2 diabetes were randomised in a double-blind, placebo-controlled crossover study. The study participants received 16 g/d ITF and 16 g/d control supplement (maltodextrin) for 6 weeks each in two phases separated by a 4-week washout. A standardised mixed-meal test was performed before and after each intake period. The primary end point was changes in the GLP-1 response, and secondary end points were GLP-2, glucose and insulin responses. Data were analysed using mixed-model analysis. RESULTS: A total of 29 participants were included in the study. Differences between and within the two treatments in estimated area under the curves were not significant. Yet, the predicted means for meal-induced GLP-1 response in plasma showed a 4.8% decline after the prebiotic treatment and an 8.6% increase after the control treatment (difference in changes between the treatments, p < 0.001). Fasting or postprandial glucose, insulin or GLP-2 levels were not changed. CONCLUSIONS: Our findings do not support that ITF improve incretin responses or glucose regulations in this population. Clinicaltrials.gov (NCT02569684).


Subject(s)
Blood Glucose/metabolism , Fructans/administration & dosage , Fructans/pharmacology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Inulin/administration & dosage , Inulin/pharmacology , Postprandial Period/physiology , Prebiotics/administration & dosage , Aged , Cross-Over Studies , Double-Blind Method , Female , Humans , Insulin/metabolism , Male , Middle Aged , Negative Results , Time Factors
18.
Front Endocrinol (Lausanne) ; 12: 697120, 2021.
Article in English | MEDLINE | ID: mdl-34290670

ABSTRACT

Glucagon-like peptide-1 (GLP-1) shows robust protective effects on ß-cell survival and function and GLP-1 based therapies are successfully applied for type-2 diabetes (T2D) and obesity. Another cleavage product of pro-glucagon, Glucagon-like peptide-2 (GLP-2; both GLP-1 and GLP-2 are inactivated by DPP-4) has received little attention in its action inside pancreatic islets. In this study, we investigated GLP-2 production, GLP-2 receptor (GLP-2R) expression and the effect of GLP-2R activation in human islets. Isolated human islets from non-diabetic donors were exposed to diabetogenic conditions: high glucose, palmitate, cytokine mix (IL-1ß/IFN-γ) or Lipopolysaccharide (LPS) in the presence or absence of the DPP4-inhibitor linagliptin, the TLR4 inhibitor TAK-242, the GLP-2R agonist teduglutide and/or its antagonist GLP-2(3-33). Human islets under control conditions secreted active GLP-2 (full-length, non-cleaved by DPP4) into the culture media, which was increased by combined high glucose/palmitate, the cytokine mix and LPS and highly potentiated by linagliptin. Low but reproducible GLP-2R mRNA expression was found in all analyzed human islet isolations from 10 donors, which was reduced by pro-inflammatory stimuli: the cytokine mix and LPS. GLP-2R activation by teduglutide neither affected acute or glucose stimulated insulin secretion nor insulin content. Also, teduglutide had no effect on high glucose/palmitate- or LPS-induced dysfunction in cultured human islets but dampened LPS-induced macrophage-dependent IL1B and IL10 expression, while its antagonist GLP-2(3-33) abolished such reduction. In contrast, the expression of islet macrophage-independent cytokines IL6, IL8 and TNF was not affected by teduglutide. Medium conditioned by teduglutide-exposed human islets attenuated M1-like polarization of human monocyte-derived macrophages, evidenced by a lower mRNA expression of pro-inflammatory cytokines, compared to vehicle treated islets, and a reduced production of itaconate and succinate, marker metabolites of pro-inflammatory macrophages. Our results reveal intra-islet production of GLP-2 and GLP-2R expression in human islets. Despite no impact on ß-cell function, local GLP-2R activation reduced islet inflammation which might be mediated by a crosstalk between endocrine cells and macrophages.


Subject(s)
Glucagon-Like Peptide 2/metabolism , Inflammation , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Macrophages/physiology , Cell Communication/drug effects , Cell Communication/physiology , Cells, Cultured , Female , Glucagon-Like Peptide-2 Receptor/genetics , Glucagon-Like Peptide-2 Receptor/metabolism , Homeostasis/drug effects , Humans , Immune System/drug effects , Immune System/physiology , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Islets of Langerhans/drug effects , Lipopolysaccharides , Macrophages/drug effects , Male , Pancreatitis/immunology , Pancreatitis/metabolism , Pancreatitis/pathology
19.
Nutrients ; 13(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065342

ABSTRACT

The effects of exercise on nutrient digestion and absorption in the intestinal tract are not well understood. A few studies have reported that exercise training increases the expression of molecules involved in carbohydrate digestion and absorption. Exercise was also shown to increase the blood concentration of glucagon-like peptide-2 (GLP-2), which regulates carbohydrate digestion and absorption in the small intestine. Therefore, we investigated the effects of exercise on the expression of molecules involved in intestinal digestion and absorption, including GLP-2. Six-week-old male mice were divided into a sedentary (SED) and low-intensity exercise (LEx) group. LEx mice were required to run on a treadmill (12.5 m/min, 1 h), whereas SED mice rested. All mice were euthanized 1 h after exercise or rest, and plasma, jejunum, ileum, and colon samples were collected, followed by analysis via IHC, EIA, and immunoblotting. The levels of plasma GLP-2 and the jejunum expression of the GLP-2 receptor, sucrase-isomaltase (SI), and glucose transporter 2 (GLUT2) were higher in LEx mice. Thus, we showed that acute low-intensity exercise affects the expression of molecules involved in intestinal carbohydrate digestion and absorption via GLP-2. Our results suggest that exercise might be beneficial for small intestine function in individuals with intestinal frailty.


Subject(s)
Glucagon-Like Peptide 2/metabolism , Physical Conditioning, Animal/physiology , Running/physiology , Up-Regulation/physiology , Animals , Digestion/physiology , Intestinal Absorption/physiology , Intestinal Mucosa/metabolism , Intestines/physiology , Male , Mice , Mice, Inbred ICR , Models, Animal
20.
Front Endocrinol (Lausanne) ; 12: 609134, 2021.
Article in English | MEDLINE | ID: mdl-34025574

ABSTRACT

Background: Berberine is a plant alkaloid that has multiple beneficial effects against intestine inflammation. In our previous study, we have found that berberine also possesses an antidiabetic effect. However, whether berberine is useful in the prevention of type 2 diabetes mellitus (T2DM) through its effect on intestine endocrine function and gut microbiota is unclear. Aim: To investigate the effects of berberine in the prevention of T2DM, as well as its effects on intestine GLP-2 secretion and gut microbiota in ZDF rats. Methods: Twenty Zucker Diabetic Fatty (ZDF) rats were fed a high-energy diet until they exhibited impaired glucose tolerance (IGT). The rats were then divided into two groups to receive berberine (100 mg/kg/d; berberine group) or vehicle (IGT group) by gavage for 3 weeks. Five Zucker Lean (ZL) rats were used as controls. Fasting blood glucose (FBG) was measured, an oral glucose tolerance test was performed, and the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated. Intestinal expression of TLR-4, NF-κB, TNF-α, mucin, zona occludens-1 (ZO-1) and occludin were assessed (immunohistochemistry). Plasma levels and glutamine-induced intestinal secretion of glucagon-like peptide-1 (GLP-1) and GLP-2 were measured (enzyme-linked immunosorbent assay). The plasma lipopolysaccharide (LPS) level was measured. Fecal DNA extraction, pyrosequencing, and bioinformatics analysis were performed. Results: After 3 weeks of intervention, diabetes developed in all rats in the IGT group, but only 30% of rats in the berberine group. Treatment with berberine was associated with reductions in food intake, FBG level, insulin resistance, and plasma LPS level, as well as increases in fasting plasma GLP-2 level and glutamine-induced intestinal GLP-2 secretion. Berberine could increase the goblet cell number and villi length, and also reverse the suppressed expressions of mucin, occludin, ZO-1 and the upregulated expressions of TLR-4, NF-κB and TNF-α induced in IGT rats (P<0.05). Berberine also improved the structure of the gut microbiota and restored species diversity. Conclusion: Berberine may slow the progression of prediabetes to T2DM in ZDF rats by improving GLP-2 secretion, intestinal permeability, and the structure of the gut microbiota.


Subject(s)
Berberine/pharmacology , Gastrointestinal Microbiome/drug effects , Glucagon-Like Peptide 2/metabolism , Intestinal Mucosa/drug effects , Prediabetic State , Animals , Berberine/therapeutic use , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/prevention & control , Disease Progression , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestinal Secretions/drug effects , Intestinal Secretions/metabolism , Male , Obesity/complications , Obesity/metabolism , Obesity/microbiology , Obesity/pathology , Prediabetic State/drug therapy , Prediabetic State/metabolism , Prediabetic State/microbiology , Prediabetic State/pathology , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL