Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
1.
Sci Rep ; 14(1): 11165, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750092

ABSTRACT

Kinetic aspects of enzymatic reactions are described by equations based on the Michaelis-Menten theory for the initial stage. However, the kinetic parameters provide little information on the atomic mechanism of the reaction. In this study, we analyzed structures of glutamate dehydrogenase in the initial and steady stages of the reaction using cryoEM at near-atomic resolution. In the initial stage, four metastable conformations displayed different domain motions and cofactor/ligand association modes. The most striking finding was that the enzyme-cofactor-substrate complex, treated as a single state in the enzyme kinetic theory, comprised at least three different metastable conformations. In the steady stage, seven conformations, including derivatives from the four conformations in the initial stage, made the reaction pathway complicated. Based on the visualized conformations, we discussed stage-dependent pathways to illustrate the dynamics of the enzyme in action.


Subject(s)
Cryoelectron Microscopy , Glutamate Dehydrogenase , Protein Conformation , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Cryoelectron Microscopy/methods , Ligands , Kinetics , Models, Molecular , Coenzymes/metabolism , Coenzymes/chemistry , Catalysis , Protein Binding
2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673928

ABSTRACT

There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.


Subject(s)
Evolution, Molecular , Glutamate Dehydrogenase , Protein Processing, Post-Translational , Animals , Humans , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/chemistry , Ligands , Mutation , Primates/genetics
3.
Physiol Plant ; 175(6): e14071, 2023.
Article in English | MEDLINE | ID: mdl-38148220

ABSTRACT

In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.


Subject(s)
Ammonium Compounds , Arabidopsis , Hepatophyta , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Arabidopsis/metabolism , Amino Acid Sequence , Hepatophyta/genetics , Hepatophyta/metabolism , Ammonium Compounds/metabolism
4.
FEBS J ; 290(23): 5514-5535, 2023 12.
Article in English | MEDLINE | ID: mdl-37682540

ABSTRACT

The structure of hexameric glutamate dehydrogenase (GDH) in the presence of the coenzyme nicotinamide adenine dinucleotide phosphate (NADP) was visualized using cryogenic transmission electron microscopy to investigate the ligand-binding pathways to the active site of the enzyme. Each subunit of GDH comprises one hexamer-forming core domain and one nucleotide-binding domain (NAD domain), which spontaneously opens and closes the active-site cleft situated between the two domains. In the presence of NADP, the potential map of GDH hexamer, assuming D3 symmetry, was determined at a resolution of 2.4 Å, but the NAD domain was blurred due to the conformational variety. After focused classification with respect to the NAD domain, the potential maps interpreted as NADP molecules appeared at five different sites in the active-site cleft. The subunits associated with NADP molecules were close to one of the four metastable conformations in the unliganded state. Three of the five binding sites suggested a pathway of NADP molecules to approach the active-site cleft for initiating the enzymatic reaction. The other two binding modes may rarely appear in the presence of glutamate, as demonstrated by the reaction kinetics. Based on the visualized structures and the results from the enzymatic kinetics, we discussed the binding modes of NADP to GDH in the absence and presence of glutamate.


Subject(s)
Coenzymes , Glutamate Dehydrogenase , Glutamate Dehydrogenase/chemistry , Coenzymes/metabolism , NADP/metabolism , Cryoelectron Microscopy , NAD/metabolism , Binding Sites , Glutamates , Kinetics
5.
Bioorg Chem ; 120: 105601, 2022 03.
Article in English | MEDLINE | ID: mdl-35033816

ABSTRACT

NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.


Subject(s)
Glutamate Dehydrogenase , NADPH Dehydrogenase , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Amino Acids/metabolism , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Kinetics , NADP/metabolism , NADPH Dehydrogenase/metabolism
6.
J Am Soc Mass Spectrom ; 33(2): 369-381, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35073092

ABSTRACT

The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: ß-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.


Subject(s)
Concanavalin A/chemistry , Gases/chemistry , Glutamate Dehydrogenase/chemistry , Ion Mobility Spectrometry/methods , Lactoglobulins/chemistry , Ions/chemistry , Molecular Dynamics Simulation , Protein Conformation
7.
Curr Med Chem ; 29(15): 2652-2672, 2022.
Article in English | MEDLINE | ID: mdl-34525914

ABSTRACT

Hyperinsulinism-hyperammonemia syndrome (HHS) is a rare disease characterized by recurrent hypoglycemia and persistent elevation of plasma ammonia, and it can lead to severe epilepsy and permanent brain damage. It has been demonstrated that functional mutations of glutamate dehydrogenase (GDH), an enzyme in the mitochondrial matrix, are responsible for the HHS. Thus, GDH has become a promising target for the small molecule therapeutic intervention of HHS. Several medicinal chemistry studies are currently aimed at GDH, however, to date, none of the compounds reported has been entered clinical trials. This perspective summarizes the progress in the discovery and development of GDH inhibitors, including the pathogenesis of HHS, potential binding sites, screening methods, and research models. Future therapeutic perspectives are offered to provide a reference for discovering potent GDH modulators and encourage additional research that will provide more comprehensive guidance for drug development.


Subject(s)
Hyperammonemia , Hyperinsulinism , Hypoglycemia , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Humans , Hyperammonemia/drug therapy , Hyperammonemia/genetics , Hyperinsulinism/drug therapy , Hyperinsulinism/genetics , Mutation
8.
ACS Appl Mater Interfaces ; 13(49): 58522-58531, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34851105

ABSTRACT

The vaterite phase of CaCO3 exhibits unique characteristics, such as high porosity, surface area, dispersivity, and low specific gravity, but it is the most unstable polymorph. Here, we report lignin-induced stable vaterite as a support matrix for integrated artificial photosynthesis through the encapsulation of key active components such as the photosensitizer (eosin y, EY) and redox enzyme (l-glutamate dehydrogenase, GDH). The lignin-vaterite/EY/GDH photobiocatalytic platform enabled the regeneration of the reduced nicotinamide cofactor under visible light and facilitated the rapid conversion of α-ketoglutarate into l-glutamate (initial conversion rate, 0.41 mM h-1; turnover frequency, 1060 h-1; and turnover number, 39,750). The lignin-induced vaterite structure allowed for long-term protection and recycling of the active components while facilitating the photosynthesis reaction due to the redox-active lignin. Succession of stability tests demonstrated a significant improvement of GDH's robustness in the lignin-vaterite structure against harsh environments. This work provides a simple approach for solar-to-chemical conversion using a sustainable, integrated light-harvesting system.


Subject(s)
Calcium Carbonate/metabolism , Eosine Yellowish-(YS)/metabolism , Glutamate Dehydrogenase/metabolism , Lignin/metabolism , Biocatalysis , Calcium Carbonate/chemistry , Eosine Yellowish-(YS)/chemistry , Glutamate Dehydrogenase/chemistry , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Lignin/chemistry , Materials Testing , Molecular Structure , Photochemical Processes
9.
Biochem Biophys Res Commun ; 570: 15-20, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34271431

ABSTRACT

Glutamate dehydrogenase 3 from Candida albicans (CaGdh3) catalyzes the reversible oxidative deamination of l-glutamate, playing an important role in the yeast-to-hyphal transition of C. albicans. Here we report the crystal structures of CaGdh3 and its complex with α-ketoglutarate and NADPH. CaGdh3 exists as a hexamer, with each subunit containing two domains. The substrate and coenzyme bind in the cleft between the two domains and their binding induces a conformational change in CaGdh3. Our results will help to understand the catalytic mechanism of CaGdh3 and will provide a structural basis for the design of antifungal drugs targeting the CaGdh3 pathway.


Subject(s)
Candida albicans/enzymology , Fungal Proteins/chemistry , Glutamate Dehydrogenase/chemistry , Catalytic Domain , Coenzymes/metabolism , Crystallography, X-Ray , Models, Molecular , NADP/chemistry , NADP/metabolism , Protein Conformation , Protein Multimerization , Solutions , Substrate Specificity
10.
Biomolecules ; 11(6)2021 05 27.
Article in English | MEDLINE | ID: mdl-34072154

ABSTRACT

Glutamate dehydrogenase (GDH) is a ubiquitous enzyme that catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate. It acts as an important branch-point enzyme between carbon and nitrogen metabolisms. Due to the multifaceted roles of GDH in cancer, hyperinsulinism/hyperammonemia, and central nervous system development and pathologies, tight control of its activity is necessitated. To date, several GDH structures have been solved in its closed form; however, intrinsic structural information in its open and apo forms are still deficient. Moreover, the allosteric communications and conformational changes taking place in the three different GDH states are not well studied. To mitigate these drawbacks, we applied unbiased molecular dynamic simulations (MD) and network analysis to three different GDH states i.e., apo, active, and inactive forms, for investigating their modulatory mechanisms. In this paper, based on MD and network analysis, crucial residues important for signal transduction, conformational changes, and maps of information flow among the different GDH states were elucidated. Moreover, with the recent findings of allosteric modulators, an allosteric wiring illustration of GDH intramolecular signal transductions would be of paramount importance to obtain the process of this enzyme regulation. The structural insights gained from this study will pave way for large-scale screening of GDH regulators and could support researchers in the design and development of new and potent GDH ligands.


Subject(s)
Glutamate Dehydrogenase/chemistry , Molecular Dynamics Simulation , Humans , Structure-Activity Relationship
11.
Commun Biol ; 4(1): 684, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083757

ABSTRACT

Glutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs.


Subject(s)
Bacterial Proteins/chemistry , Glutamate Dehydrogenase/chemistry , Mycobacterium smegmatis/enzymology , Recombinant Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cryoelectron Microscopy , Crystallography, X-Ray , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/ultrastructure , Kinetics , Models, Molecular , Mycobacterium smegmatis/genetics , Protein Binding , Protein Domains , Protein Multimerization , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
12.
Biosci Biotechnol Biochem ; 85(2): 262-271, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33604622

ABSTRACT

Glutamate dehydrogenase (GDH) is an important enzyme in ammonium metabolism, the activity of which is regulated by multiple factors. In this study, we investigate the effects of ammonium and potassium on the activity of maize GDH. Our results show that both ammonium and potassium play multiple roles in regulating the activity of maize GDH, with the specific roles depending on the concentration of potassium. Together with the structural information of GDH, we propose models for the substrate inhibition of ammonium, and the elimination of substrate inhibition by potassium. These models are supported by the analysis of statistic thermodynamics. We also analyze the binding sites of ammonium and potassium on maize GDH, and the conformational changes of maize GDH. The findings provide insight into the regulation of maize GDH activity by ammonium and potassium and reveal the importance of the dose and ratio of nitrogen and potassium in crop cultivation.


Subject(s)
Ammonium Compounds/pharmacology , Glutamate Dehydrogenase/metabolism , Potassium/pharmacology , Zea mays/enzymology , Amino Acid Sequence , Dose-Response Relationship, Drug , Glutamate Dehydrogenase/chemistry , Kinetics , Models, Molecular , Protein Conformation
13.
Acta Biochim Pol ; 68(1): 29-31, 2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33485289

ABSTRACT

Protein crystallographers are well aware of the trap of crystallizing E. coli proteins instead of the macromolecule of interest if heterologous recombinant protein expression in E. coli was part of the experimental pipeline. Among the well-known culprits are YodA metal-binding lipocalin (25 kDa) and YadF carbonic anhydrase (a tetramer of 25 kDa subunits). We report a novel crystal form of another such culprit, E. coli HPII catalase, which is a tetrameric protein of ~340 kDa molecular weight. HPII is likely to contaminate recombinant protein samples, co-purify, and then co-crystallize with the target proteins, especially if their masses in size exclusion chromatography are ~300-400 kDa. What makes this case more interesting but also parlous, is the fact that HPII can crystallize from very low concentrations, even well below 1 mg/mL.


Subject(s)
Catalase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Chromatography, Gel/methods , Crystallization , Glutamate Dehydrogenase/chemistry , Molecular Weight , Oxidoreductases Acting on CH-NH Group Donors/chemistry , Protein Structure, Quaternary , Recombinant Proteins/chemistry , X-Ray Diffraction
14.
J Biol Chem ; 296: 100301, 2021.
Article in English | MEDLINE | ID: mdl-33476647

ABSTRACT

ADP-ribosyltransferases (ARTs) are a widespread superfamily of enzymes frequently employed in pathogenic strategies of bacteria. Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaire's disease, has acquired over 330 translocated effectors that showcase remarkable biochemical and structural diversity. However, the ART effectors that influence L. pneumophila have not been well defined. Here, we took a bioinformatic approach to search the Legionella effector repertoire for additional divergent members of the ART superfamily and identified an ART domain in Legionella pneumophila gene0181, which we hereafter refer to as Legionella ADP-Ribosyltransferase 1 (Lart1) (Legionella ART 1). We show that L. pneumophila Lart1 targets a specific class of 120-kDa NAD+-dependent glutamate dehydrogenase (GDH) enzymes found in fungi and protists, including many natural hosts of Legionella. Lart1 targets a conserved arginine residue in the NAD+-binding pocket of GDH, thereby blocking oxidative deamination of glutamate. Therefore, Lart1 could be the first example of a Legionella effector which directly targets a host metabolic enzyme during infection.


Subject(s)
ADP Ribose Transferases/chemistry , Bacterial Proteins/chemistry , Glutamate Dehydrogenase/chemistry , Legionella pneumophila/genetics , ADP Ribose Transferases/genetics , ADP Ribose Transferases/metabolism , ADP-Ribosylation , Amino Acid Sequence , Amoeba/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Deamination , Escherichia coli/genetics , Escherichia coli/metabolism , Fungi , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Host-Pathogen Interactions , Kinetics , Legionella pneumophila/enzymology , Legionella pneumophila/pathogenicity , Models, Molecular , Oxidation-Reduction , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity
15.
J Neurochem ; 157(3): 802-815, 2021 05.
Article in English | MEDLINE | ID: mdl-33421122

ABSTRACT

INTRODUCTION: Mammalian glutamate dehydrogenase (hGDH1 in human cells) interconverts glutamate to α-ketoglutarate and ammonia while reducing NAD(P) to NAD(P)H. During primate evolution, humans and great apes have acquired hGDH2, an isoenzyme that underwent rapid evolutionary adaptation concomitantly with brain expansion, thereby acquiring unique catalytic and regulatory properties that permitted its function under conditions inhibitory to its ancestor hGDH1. Although the 3D-structures of GDHs, including hGDH1, have been determined, attempts to determine the hGDH2 structure were until recently unsuccessful. Comparison of the hGDH1/hGDH2 structures would enable a detailed understanding of their evolutionary differences. This work aimed at the determination of the hGDH2 crystal structure and the analysis of its functional implications. Recombinant hGDH2 was produced in the Spodoptera frugiperda ovarian cell line Sf21, using the Baculovirus expression system. Purification was achieved via a two-step chromatography procedure. hGDH2 was crystallized, X-ray diffraction data were collected using synchrotron radiation and the structure was determined by molecular replacement. The hGDH2 structure is reported at a resolution of 2.9 Å. The enzyme adopts a novel semi-closed conformation, which is an intermediate between known open and closed GDH1 conformations, differing from both. The structure enabled us to dissect previously reported biochemical findings and to structurally interpret the effects of evolutionary amino acid substitutions, including Arg470His, on ADP affinity. In conclusion, our data provide insights into the structural basis of hGDH2 properties, the functional evolution of hGDH isoenzymes, and open new prospects for drug design, especially for cancer therapeutics.


Subject(s)
Brain/enzymology , Brain/physiology , Glutamate Dehydrogenase/physiology , Neoplasms/enzymology , Neoplasms/physiopathology , Amino Acid Substitution , Animals , Cell Line , Crystallization , Glutamate Dehydrogenase/antagonists & inhibitors , Glutamate Dehydrogenase/chemistry , Humans , Models, Molecular , Molecular Structure , Mutation , Protein Conformation , Recombinant Proteins , Spodoptera , X-Ray Diffraction
16.
Elife ; 92020 10 28.
Article in English | MEDLINE | ID: mdl-33112237

ABSTRACT

Glutamate delta (GluD) receptors belong to the ionotropic glutamate receptor family, yet they don't bind glutamate and are considered orphan. Progress in defining the ion channel function of GluDs in neurons has been hindered by a lack of pharmacological tools. Here, we used a chemo-genetic approach to engineer specific and photo-reversible pharmacology in GluD2 receptor. We incorporated a cysteine mutation in the cavity located above the putative ion channel pore, for site-specific conjugation with a photoswitchable pore blocker. In the constitutively open GluD2 Lurcher mutant, current could be rapidly and reversibly decreased with light. We then transposed the cysteine mutation to the native receptor, to demonstrate with high pharmacological specificity that metabotropic glutamate receptor signaling triggers opening of GluD2. Our results assess the functional relevance of GluD2 ion channel and introduce an optogenetic tool that will provide a novel and powerful means for probing GluD2 ionotropic contribution to neuronal physiology.


Neurotransmitters are chemicals released by the body that trigger activity in neurons. Receptors on the surface of neurons detect these neurotransmitters, providing a link between the inside and the outside of the cell. Glutamate is one of the major neurotransmitters and is involved in virtually all brain functions. Glutamate binds to two different types of receptors in neurons. Ionotropic receptors have pores known as ion channels, which open when glutamate binds. This is a fast-acting response that allows sodium ions to flow into the neuron, triggering an electrical signal. Metabotropic receptors, on the other hand, trigger a series of events inside the cell that lead to a response. Metabotropic receptors take more time than ionotropic receptors to elicit a response in the cell, but their effects last much longer. One type of receptor, known as the GluD family, is very similar to ionotropic glutamate receptors but does not directly respond to glutamate. Instead, the ion channel of GluD receptors opens after being activated by glutamate metabotropic receptors. GluD receptors are produced throughout the brain and play roles in synapse formation and activity, but the way they work remains unclear. An obstacle to understanding how GluD receptors work is the lack of molecules that can specifically block these receptors' ion channel activity. Lemoine et al. have developed a tool that enables control of the ion channel in GluD receptors using light. Human cells grown in the lab were genetically modified to produce a version of GluD2 (a member of the GluD family) with a light-sensitive molecule attached. In darkness or under green light, the light-sensitive molecule blocks the channel and prevents ions from passing through. Under violet light, the molecule twists, and ions can flow through the channel. With this control over the GluD2 ion channel activity, Lemoine et al. were able to validate previous research showing that the activation of metabotropic glutamate receptors can trigger GluD2 to open. The next step will be to test this approach in neurons. This will help researchers to understand what role GluD ion channels play in neuron to neuron communication.


Subject(s)
Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Binding Sites , Genetic Engineering , Glutamate Dehydrogenase/chemistry , Glutamates/chemistry , Glutamates/metabolism , HEK293 Cells , Humans , Light , Mutation
17.
Anal Chem ; 92(9): 6622-6630, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32250604

ABSTRACT

Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.


Subject(s)
Acetates/chemistry , Glutamate Dehydrogenase/chemistry , Membrane Proteins/chemistry , Metals, Alkali/chemistry , Pyruvate Kinase/chemistry , Animals , Cattle , Detergents/chemistry , Glutamate Dehydrogenase/metabolism , Mass Spectrometry , Membrane Proteins/metabolism , Oxidation-Reduction , Pyruvate Kinase/metabolism , Rabbits , Salts/chemistry , Solubility
18.
J Biotechnol ; 312: 35-43, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32135177

ABSTRACT

Biosynthesizing unnatural chiral amino acids is challenging due to the limited reductive amination activity of amino acid dehydrogenase (AADH). Here, for the asymmetric synthesis of l-phosphinothricin from 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), a glutamate dehydrogenase gene (named GluDH3) from Pseudomonas monteilii was selected, cloned and expressed in Escherichia coli (E. coli). To boost its activity, a "two-step"-based computational approach was developed and applied to select the potential beneficial amino acid positions on GluDH3. l-phosphinothricin was synthesized by GluDH-catalyzed asymmetric amination using the d-glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration. Using lyophilized E. coli cells that co-expressed GluDH3_V375S and EsGDH, up to 89.04 g L-1 PPO loading was completely converted to l-phosphinothricin within 30 min at 35 °C with a space-time yield of up to 4.752 kg·L-1·d-1. The beneficial substitution V375S with increased polar interactions between K90, T193, and substrate PPO exhibited 168.2-fold improved catalytic efficiency (kcat/KM) and 344.8-fold enhanced specific activity. After the introduction of serine residues into other GluDHs at specific positions, forty engineered GluDHs exhibited the catalytic functions of "glufosinate dehydrogenase" towards PPO.


Subject(s)
Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Aminobutyrates/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Amination , Amino Acid Oxidoreductases/chemistry , Amino Acid Substitution , Bacillales/enzymology , Bacillales/genetics , Cloning, Molecular , Computer Simulation , Enzyme Stability , Escherichia coli/genetics , Exiguobacterium , Gene Expression Regulation, Bacterial , Glucose 1-Dehydrogenase/genetics , Glucose 1-Dehydrogenase/metabolism , Glutamate Dehydrogenase/chemistry , Hydrogen-Ion Concentration , Kinetics , Molecular Docking Simulation , Mutagenesis , NADP , Protein Conformation , Protein Engineering , Pseudomonas/enzymology , Pseudomonas/genetics , Recombinant Proteins , Substrate Specificity , Temperature
19.
Hum Genomics ; 14(1): 9, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32143698

ABSTRACT

BACKGROUND: Gain-of-function mutations in the GLUD1 gene, encoding for glutamate dehydrogenase (GDH), result in the hyperinsulinism/hyperammonemia HI/HA syndrome. HI/HA patients present with harmful hypoglycemia secondary to protein-induced HI and elevated plasma ammonia levels. These symptoms may be accompanied by seizures and mental retardation. GDH is a mitochondrial enzyme that catalyzes the oxidative deamination of glutamate to α-ketoglutarate, under allosteric regulations mediated by its inhibitor GTP and its activator ADP. The present study investigated the functional properties of the GDH-G446V variant (alias c.1496G > T, p.(Gly499Val) (NM_005271.4)) in patient-derived lymphoblastoid cells. RESULTS: The calculated energy barrier between the opened and closed state of the enzyme was 41% lower in GDH-G446V compared to wild-type GDH, pointing to altered allosteric regulation. Computational analysis indicated conformational changes of GDH-G446V in the antenna region that is crucial for allosteric regulators. Enzymatic activity measured in patient-derived lymphoblastoid cells showed impaired allosteric responses of GDH-G446V to both regulators GTP and ADP. In particular, as opposed to control lymphoblastoid cells, GDH-G446V cells were not responsive to GTP in the lower range of ADP concentrations. Assessment of the metabolic rate revealed higher mitochondrial respiration in response to GDH-dependent substrates in the GDH-G446V lymphoblastoid cells compared to control cells. This indicates a shift toward glutaminolysis for energy provision in cells carrying the GDH-G446V variant. CONCLUSIONS: Substitution of the small amino acid glycine for the hydrophobic branched-chain valine altered the allosteric sensitivity to both inhibitory action of GTP and activation by ADP, rendering cells metabolically responsive to glutamine.


Subject(s)
Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Guanosine Triphosphate/metabolism , Hyperinsulinism/pathology , Lymphocytes/pathology , Mutation , Adult , Allosteric Regulation , Case-Control Studies , Female , Glutamate Dehydrogenase/chemistry , Humans , Hyperinsulinism/genetics , Infant, Newborn , Lymphocytes/metabolism , Male , Middle Aged , Protein Conformation
20.
EBioMedicine ; 52: 102637, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31981975

ABSTRACT

BACKGROUND: Canagliflozin (CANA) administration increases the risk of lower limb amputation in the clinic. The present study aimed to investigate whether and how CANA interferes with the intracellular physiological processes of bone marrow derived mesenchymal stem cells (BM-MSCs) and its contribution to ischaemic lower limb. METHODS: The in vivo blood flow recovery in ischaemic lower limbs following CANA treatment was evaluated. The cellular function of BM-MSCs after CANA treatment were also assessed in vitro. In silico docking analysis and mutant substitution assay were conducted to confirm the interaction of CANA with glutamate dehydrogenase 1 (GDH1). FINDINGS: Following CANA treatment, attenuated angiogenesis and hampered blood flow recovery in the ischaemic region were detected in diabetic and non-diabetic mice, and inhibition of the proliferation and migration of BM-MSCs were also observed. CANA was involved in mitochondrial respiratory malfunction in BM-MSCs and the inhibition of ATP production, cytochrome c release and vessel endothelial growth factor A (VEGFA) secretion, which may contribute to reductions in the tissue repair capacity of BM-MSCs. The detrimental effects of CANA on MSCs result from the inhibition of GDH1 by CANA (evidenced by in silico docking analysis and H199A-GDH1/N392A-GDH1 mutant substitution). INTERPRETATION: Our work highlights that the inhibition of GDH1 activity by CANA interferes with the metabolic activity of the mitochondria, and this interference deteriorates the retention of and VEGFA secretion by MSCs. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province and Wenzhou Science and Technology Bureau Foundation.


Subject(s)
Canagliflozin/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Paracrine Communication/drug effects , Reperfusion Injury/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Binding Sites , Canagliflozin/chemistry , Cell Cycle/drug effects , Cell Movement , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Humans , Lower Extremity/blood supply , Mesenchymal Stem Cell Transplantation , Mice , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Models, Molecular , Neovascularization, Physiologic/drug effects , Protein Binding , Reperfusion Injury/drug therapy , Reperfusion Injury/etiology , Reperfusion Injury/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL