Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 989
Filter
1.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669339

ABSTRACT

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Subject(s)
Aging , Catalytic Domain , Cataract , Glutamate-Cysteine Ligase , Glutathione , Lens, Crystalline , Cataract/pathology , Cataract/genetics , Cataract/metabolism , Animals , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Mice , Glutathione/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Aging/metabolism , Humans , Disease Models, Animal , Mutation , Gene Knock-In Techniques
2.
J Trace Elem Med Biol ; 83: 127420, 2024 May.
Article in English | MEDLINE | ID: mdl-38432121

ABSTRACT

BACKGROUND: Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS: Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS: We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS: Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.


Subject(s)
Antioxidants , Selenium , Child , Humans , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Selenium/pharmacology , Selenium/metabolism , Lead/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/pharmacology , Weaning , Oxidative Stress , Glutathione/metabolism , Epithelial Cells , Kidney/metabolism , RNA, Small Interfering/metabolism
3.
Pest Manag Sci ; 80(6): 2698-2709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308415

ABSTRACT

BACKGROUND: Reduced glutathione (GSH) synthesis is vital for redox homeostasis, cell-cycle regulation and apoptosis, and immune function. The glutamate-cysteine ligase catalytic subunit (Gclc) is the first and rate-limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum. RESULTS: In this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490-fold). Furthermore, RNA interference-mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20-hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01). CONCLUSION: Our results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.


Subject(s)
Antioxidants , Glutathione , Insecticide Resistance , Larva , Metamorphosis, Biological , Tribolium , Animals , Tribolium/genetics , Tribolium/growth & development , Tribolium/metabolism , Tribolium/drug effects , Glutathione/metabolism , Metamorphosis, Biological/drug effects , Antioxidants/metabolism , Insecticide Resistance/genetics , Larva/growth & development , Larva/genetics , Larva/drug effects , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Insecticides/pharmacology
4.
Biomol Biomed ; 24(3): 545-559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38340316

ABSTRACT

The enzyme glutamate-cysteine ligase modifier subunit (GCLM) serves as the initial rate-limiting factor in glutathione (GSH) synthesis. GSH is the preferred substrate for glutathione peroxidase 4 (GPX4), directly impacting its activity and stability. This study aims to elucidate the expression of GCLM and its correlation with the nuclear factor erythroid 2-related factor 2 (NFE2L2), commonly referred to as NRF2, in esophageal squamous cell carcinoma (ESCC) and further investigate the potential signaling axis of radiotherapy resistance caused by NRF2-mediated regulation of ferroptosis in ESCC. The expression of NRF2, GCLM, and GPX4 in ESCC was analyzed by bioinformatics, and their relationship with ferroptosis was verified through cell function experiments. Their role in radioresistance was then investigated through multiple validation steps. Bioinformatics analysis was employed to determine the immune infiltration pattern of NRF2 in ESCC. Furthermore, the effect of NRF2-mediated massive macrophage M2 infiltration on radiotherapy and ferroptosis was validated through in vivo experiments. In vitro assays demonstrated that overactivated NRF2 promotes radioresistance by directly binding to the promoter region of GCLM. The Tumor Immune Estimation Resource (TIMER) and quanTIseq analyses revealed NRF2 enrichment in M2 macrophages with a positive correlation. Co-culturing KYSE450 cells with M2 macrophages demonstrated that a significant infiltration of macrophages M2 can render ESCC cells resistant to radiotherapy but restore their sensitivity to ferroptosis in the process. Our study elucidates a link between the NRF2-GCLM-GSH-GPX4 signaling axis in ESCC, highlighting its potential as a therapeutic target for antagonistic biomarkers of resistance in the future. Additionally, it provides a novel treatment avenue for ESCC metastasis and radioresistance.


Subject(s)
Ferroptosis , Glutamate-Cysteine Ligase , NF-E2-Related Factor 2 , Radiation Tolerance , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Radiation Tolerance/genetics , Cell Line, Tumor , Animals , Mice , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/immunology , Gene Expression Regulation, Neoplastic , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mice, Nude , Male , Mice, Inbred BALB C
5.
J Biol Chem ; 300(2): 105645, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218225

ABSTRACT

Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.


Subject(s)
Glutamate-Cysteine Ligase , Glutathione , Animals , Mice , Buthionine Sulfoximine/pharmacology , Disease Models, Animal , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Cell Line, Tumor , Humans
6.
J Appl Genet ; 65(1): 95-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917375

ABSTRACT

Burkitt lymphoma (BL) is a highly aggressive lymphoma that mainly affects children and young adults. Chemotherapy is effective in young BL patients but the outcome in adults is less satisfactory. Therefore, there is a need to enhance the cytotoxic effect of drugs used in BL treatment. Glutathione (GSH) is an important antioxidant involved in processes such as regulation of oxidative stress and drug detoxification. Elevated GSH levels have been observed in many cancers and were associated with chemoresistance. We previously identified GCLC, encoding an enzyme involved in GSH biosynthesis, as an essential gene in BL. We now confirm that knockout of GCLC decreases viability of BL cells and that the GCLC protein is overexpressed in BL tissues. Moreover, we demonstrate that buthionine sulfoximine (BSO), a known inhibitor of GCLC, decreases growth of BL cells but does not affect control B cells. Furthermore, we show for the first time that BSO enhances the cytotoxicity of compounds commonly used in BL treatment, doxorubicin, and cyclophosphamide. Given the fact that BSO itself was not toxic to control cells and well-tolerated in clinical trials, combination of chemotherapy with BSO may allow reduction of the doses of cytotoxic drugs required to obtain effective responses in BL patients.


Subject(s)
Burkitt Lymphoma , Glutamate-Cysteine Ligase , Child , Humans , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/therapeutic use , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Catalytic Domain , Cyclophosphamide/pharmacology , Doxorubicin/pharmacology , Glutathione/metabolism
7.
Ageing Res Rev ; 92: 102066, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37683986

ABSTRACT

The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.


Subject(s)
Antioxidants , Geriatrics , Humans , Aged , Antioxidants/metabolism , Hydrogen Peroxide , Glutathione/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Acetylcysteine , Glycine
8.
J Agric Food Chem ; 71(37): 13717-13728, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37691233

ABSTRACT

As the rate-limiting enzyme in de novo Glutathione (GSH) biosynthesis, the mammalian glutamate cysteine ligase (Gcl) catalytic (Gclc) and modifier (Gclm) subunits are regulated at multiple levels, whereas the function and regulatory mechanism of insect Gcl remain to be explored. In this study, we identified and characterized SfGclc and SfGclm in Spodoptera frugiperda. SfGclc and SfGclm were highly expressed in the hindgut and relatively less expressed in other tissues. The exposure of the third instar larvae to LC30 of emamectin benzoate (EMB) significantly reduced the GSH content with a concomitant upregulation of SfGclc and SfGclm. Further in vivo pretreatment with L-BSO, the Gcl inhibitor, increased the susceptibility of S. frugiperda to EMB. Consistently, overexpression of SfGclc and SfGclm increased the Sf9 cell viability under EMB treatment. Finally, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that SfGclc is regulated by transcription factor CncC. These data provide insights into the function and regulatory mechanism of insect Gcl, and they imply that disruption of the redox homeostasis might be a practical strategy to enhance the insecticidal activity of EMB and other insecticides.


Subject(s)
Glutamate-Cysteine Ligase , Insecticides , Animals , Glutamate-Cysteine Ligase/genetics , Spodoptera/genetics , Ivermectin/pharmacology , Insecticides/pharmacology , Glutathione , Mammals
9.
Free Radic Biol Med ; 204: 226-242, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37146698

ABSTRACT

Influenza A virus can induce nasal inflammation by stimulating the death of nasal mucosa epithelium, however, the mechanism is not clear. In this study, to study the causes and mechanisms of nasal mucosa epithelial cell death caused by Influenza A virus H1N1, we isolated and cultured human nasal epithelial progenitor cells (hNEPCs) and exposed them to H1N1 virus after leading differentiation. Then we performed high-resolution untargeted metabolomics and RNAseq analysis of human nasal epithelial cells (hNECs) infected with H1N1 virus. Surprisingly, H1N1 virus infection caused the differential expression of a large number of ferroptosis related genes and metabolites in hNECs. Furthermore, we have observed a significant reduction in Nrf2/KEAP1 expression, GCLC expression, and abnormal glutaminolysis. By constructing overexpression vector of GCLC and the shRNAs of GCLC and Keap1, we determined the role of NRF2-KEAP1-GCLC signaling pathway in H1N1 virus-induced ferroptosis. In addition, A glutaminase antagonist, JHU-083, also demonstrated that glutaminolysis can regulate the NRF2-KEAP1-GCLC signal pathway and ferroptosis. According to this study, H1N1 virus can induce the ferroptosis of hNECs via the NRF2-KEAP1-GCLC signal pathway and glutaminolysis, leading to nasal mucosal epithelial inflammation. This discovery is expected to provide an attractive therapeutic target for viral-induced nasal inflammation.


Subject(s)
Communicable Diseases , Ferroptosis , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Communicable Diseases/metabolism , Epithelial Cells/metabolism , Glutamate-Cysteine Ligase/genetics , Inflammation/metabolism , Influenza A virus/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Nasal Mucosa/metabolism , NF-E2-Related Factor 2/metabolism
10.
Mol Psychiatry ; 28(5): 1983-1994, 2023 05.
Article in English | MEDLINE | ID: mdl-37002404

ABSTRACT

In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.


Subject(s)
Antioxidants , Psychotic Disorders , Humans , Transcriptome , Psychotic Disorders/genetics , Psychotic Disorders/metabolism , Oxidation-Reduction , Glutathione/metabolism , Oxidative Stress/genetics , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Fibroblasts , Inflammation/metabolism
11.
Biol Pharm Bull ; 46(2): 338-342, 2023.
Article in English | MEDLINE | ID: mdl-36724962

ABSTRACT

Morphinone (MO) is an electrophilic metabolite of morphine that covalently binds to protein thiols via its α,ß-unsaturated carbonyl group, resulting in toxicity in vitro and in vivo. Our previous studies identified a variety of redox signaling pathways that are activated during electrophilic stress. Here, we examined in vitro activation of a signaling pathway involving Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) in response to MO. Exposure of HepG2 cells to MO caused covalent modification of Keap1 thiols (evaluated using biotin-PEAC5-maleimide labeling) and nuclear translocation of Nrf2, thereby up-regulating downstream genes encoding ATP binding cassette subfamily C member 2, solute carrier family 7 member 11, glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione S-transferase alpha 1, and heme oxygenase 1. However, dihydromorphinone, a metabolite of morphine lacking the reactive C7-C8 double bond, had little effect on Nrf2 activation. These results suggest that covalent modification is crucial in the Keap1/Nrf2 pathway activation and that this pathway is a redox signaling-associated adaptive response to MO metabolism.


Subject(s)
Glutamate-Cysteine Ligase , NF-E2-Related Factor 2 , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Morphine/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sulfhydryl Compounds , Humans , Hep G2 Cells
12.
Antioxid Redox Signal ; 38(13-15): 959-973, 2023 05.
Article in English | MEDLINE | ID: mdl-36734409

ABSTRACT

Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.


Subject(s)
Antioxidants , Reperfusion Injury , Mice , Animals , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , CRISPR-Cas Systems , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Gene Editing , Kidney/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Oxidative Stress
13.
Mol Biol Rep ; 50(3): 2623-2631, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637620

ABSTRACT

Glutamate-cysteine ligase (GCL) is a crucial enzyme involved in the synthesis of glutathione (GSH). Despite various studies on glutathione transferase, and its essential role in detoxification and resistance to oxidative stress, GSH synthesis has not been described in Bombyx mori (silkworms) to date. Silkworms form part of the lepidopterans that are considered as a model of agricultural pests. This study aimed to understand the GSH synthesis by GCL in silkworms, which may help in developing insecticides to tackle agricultural pests. Based on the amino acid sequence and phylogenetic tree, the B. mori GCL belongs to group 2, and is designated bmGCL. Recombinant bmGCL was overexpressed and purified to ensure homogeneity. Biochemical studies revealed that bmGCL uses ATP and Mg2+ to ligate glutamate and cysteine. High expression levels of bmgcl mRNA and GSH were observed in the silkworm fat body after exposure to insecticides and UV-B irradiation. Moreover, we found an increase in bmgcl mRNA and GSH content during pupation in the silkworm fat body. In this study, we characterized the B. mori GCL and analyzed its biochemical properties. These observations indicate that bmGCL might play an important role in the resistance to oxidative stress in the silkworms.


Subject(s)
Bombyx , Insecticides , Animals , Glutamate-Cysteine Ligase/genetics , Bombyx/genetics , Phylogeny , Glutathione/metabolism , RNA, Messenger/metabolism
14.
New Phytol ; 237(6): 2238-2254, 2023 03.
Article in English | MEDLINE | ID: mdl-36513604

ABSTRACT

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Subject(s)
Arabidopsis , Stress, Physiological , Transcription Factors , Antioxidants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascorbic Acid , Gene Expression Regulation, Plant , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Plant Physiological Phenomena , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Biotechnol J ; 18(1): e2200398, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36326163

ABSTRACT

Glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, has multiple beneficial effects on human health. Previous studies have focused on producing glutathione in Saccharomyces cerevisiae by overexpressing γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), which are the rate-limiting enzymes involved in the glutathione biosynthetic pathway. However, the production yield and titer of glutathione remain low due to the feedback inhibition on GSH1. To overcome this limitation, a synthetic isozyme system consisting of a novel bifunctional enzyme (GshF) from Gram-positive bacteria possessing both GSH1 and GSH2 activities, in addition to GSH1/GSH2, was introduced into S. cerevisiae, as GshF is insensitive to feedback inhibition. Given the HSP60 chaperonin system mismatch between bacteria and S. cerevisiae, co-expression of Group-I HSP60 chaperonins (GroEL and GroES) from Escherichia coli was required for functional expression of GshF. Among various strains constructed in this study, the SKSC222 strain capable of synthesizing glutathione with the synthetic isozyme system produced 240 mg L-1 glutathione with glutathione content and yield of 4.3% and 25.6 mgglutathione /gglucose , respectively. These values were 6.6-, 4.9-, and 4.3-fold higher than the corresponding values of the wild-type strain. In a glucose-limited fed-batch fermentation, the SKSC222 strain produced 2.0 g L-1 glutathione in 67 h. Therefore, this study highlights the benefits of the synthetic isozyme system in enhancing the production titer and yield of value-added chemicals by engineered strains of S. cerevisiae.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Glutathione , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism
16.
Theriogenology ; 195: 159-167, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36335719

ABSTRACT

Recent studies have shown that l-proline (proline) is an antioxidant to protect cells from oxidative stress in vivo and in vitro. Glutathione (GSH) is a major cellular redox regulator involved in controlling redox balance and is regarded as one of the key indices to predict the cytoplasmic maturation of oocytes. The objectives of this study are to investigate the effect of proline on the developmental potential of mouse oocytes and to determine the role of gap junctional communication (GJC) on intraoocyte GSH concentration during in vitro maturation (IVM). Compared with control (0 mmol/L), 0.5 mmol/L proline supplementation enhanced rates of activated oocytes, 2-cell and 4-cell embryos, and blastocysts. Furthermore, 0.25 and 0.5 mmol/L proline supplementation markedly upregulated mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) in oocytes and cumulus cells, enhanced GSH concentration in oocytes, and reduced reactive oxygen species (ROS) level in oocytes. Interestingly, carbenoxolone disodium salt (CBX) treatment reduced GSH concentration in oocytes and the rate of early embryo development without proline incubation. Notably, CBX-triggered reduction in the rates of the number of 2-cell and 4-cell embryos and blastocysts were rescued by 0.5 mmol/L proline supplementation. Collectively, these results indicate a novel functional role of proline in oocyte cytoplasmic maturation and regulation of glutathione-related redox homeostasis.


Subject(s)
Glutamate-Cysteine Ligase , Proline , Mice , Animals , Glutamate-Cysteine Ligase/genetics , Oocytes , Oxidation-Reduction , Glutathione , Homeostasis
17.
Asian J Surg ; 46(1): 143-149, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35241341

ABSTRACT

OBJECTIVES: To determine the expression and function of glutamate-cysteine ligase catalytic (GCLC) and glutamate-cysteine ligase catalytic modifier (GCLM) in gastric adenocarcinoma. METHODS: Bioinformatics was used to analyze the expression of GCLC and GCLM. We download and analyzed the expression of gastric adenocarcinoma patients from TCGA database. Moreover, the method of immunochemistry was used to verify the expression of GCLC and GCLM in gastric adenocarcinoma. RESULTS: At first, the expression of GCLC and GCLM in gastric adenocarcinoma tissues were both significantly higher compared with normal tissues analyzed via TCGA database. Then, gastric adenocarcinoma tissues were collected and performed with immunochemistry. The gastric adenocarcinoma with positive staining for GCLC and GCLM was 77% and 80%, respectively, which was significantly higher compared with adjacent normal tissues (9% and 11%, respectively). CONCLUSIONS: The disordered expression of GCLC and GCLM in gastric adenocarcinoma suggested that these factors may induce tumorigenesis and may be a novel target for diagnosis and treatment of gastric adenocarcinoma.


Subject(s)
Adenocarcinoma , Glutamate-Cysteine Ligase , Stomach Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
18.
Cells ; 11(21)2022 10 25.
Article in English | MEDLINE | ID: mdl-36359768

ABSTRACT

Ferroptosis, a newly discovered iron-dependent type of cell death, has been found to play a crucial role in the depression of tumorigenesis. However, the prognostic value of ferroptosis-related genes (FRGs) in lung adenocarcinoma (LUAD) remains to be further elucidated. Differential expression analysis and univariate Cox regression analysis were utilized in this study to search for FRGs that were associated with the prognosis of LUAD patients. The influences of candidate markers on LUAD cell proliferation, migration, and ferroptosis were evaluated by CCK8, colony formation, and functional experimental assays in association with ferroptosis. To predict the prognosis of LUAD patients, we constructed a predictive signature comprised of six FRGs. We discovered a critical gene (GCLC) after intersecting the prognostic analysis results of all aspects, and its high expression was associated with a bad prognosis in LUAD. Correlation research revealed that GCLC was related to a variety of clinical information from LUAD patients. At the same time, in the experimental verification, we found that GCLC expression was upregulated in LUAD cell lines, and silencing GCLC accelerated ferroptosis and decreased LUAD cell proliferation and invasion. Taken together, this study established a novel ferroptosis-related gene signature and discovered a crucial gene, GCLC, that might be a new prognostic biomarker of LUAD patients, as well as provide a potential therapeutic target for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Glutamate-Cysteine Ligase , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Cell Proliferation/genetics , Ferroptosis/genetics , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Prognosis
19.
Cell Rep ; 41(9): 111728, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36450250

ABSTRACT

The presence of BRAFV600E in colorectal cancer (CRC) is associated with a higher chance of distant metastasis. Oxidative stress in disseminated tumor cells limits metastatic capacity. To study the relationship between BRAFV600E, sensitivity to oxidative stress, and metastatic capacity in CRC, we use patient-derived organoids (PDOs) and tissue samples. BRAFV600E tumors and PDOs express high levels of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in glutathione synthesis. Deletion of GCL in BRAFV600E PDOs strongly reduces their capacity to form distant liver and lung metastases but does not affect peritoneal metastasis outgrowth. Vice versa, the glutathione precursor N-acetyl-cysteine promotes organ-site-specific metastasis in the liver and the lungs but not in the peritoneum. BRAFV600E confers resistance to pharmacologically induced oxidative stress in vitro, which is partially overcome by treatment with the BRAF-inhibitor vemurafenib. We conclude that GCL-driven glutathione synthesis protects BRAFV600E-expressing tumors from oxidative stress during distant metastasis to the liver and the lungs.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Humans , Proto-Oncogene Proteins B-raf/genetics , Oxidative Stress , Glutamate-Cysteine Ligase/genetics , Glutathione , Lung Neoplasms/genetics , Colorectal Neoplasms/genetics
20.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233302

ABSTRACT

This work aimed to evaluate the effects of zinc (Zn) relating to cadmium (Cd)-induced toxicity and the role played by MTF-1. This transcription factor regulates the expression of genes encoding metallothioneins (MTs), some Zn transporters and the heavy chain of γ-glutamylcysteine synthetase. For this reason, two cell lines of mouse fibroblasts were used: a wild-type strain and a knockout strain to study the effects. Cells were exposed to complete medium containing: (1) 50 µM ZnSO4 (Zn), (2) 1 µM CdCl2 (Cd 1), (3) 2 µM CdCl2 (Cd 2), (4) 50 µM ZnSO4 + 1 µM CdCl2 (ZnCd 1) and (5) 50 µM ZnSO4 + 2 µM CdCl2 (ZnCd 2) for 4, 18 and 24 h. Following exposure, cell viability, the intracellular content of metals, glutathione (GSH) and MT and the gene expression of the two isoforms of MT was evaluated. The results obtained suggest that a lower Cd content in the co-treatments is responsible for the protection offered by Zn due to the probable competition for a common transporter. Furthermore, Zn determines an increase in GSH in co-treatments compared to treatments with Cd alone. Finally, the MTF-1 factor is essential for the expression of MT-1 but not of MT-2 nor probably for the heavy chain of γ-glutamylcysteine synthetase.


Subject(s)
Cadmium Poisoning , Cadmium , Animals , Cadmium/metabolism , Fibroblasts/metabolism , Glutamate-Cysteine Ligase/genetics , Glutathione/pharmacology , Metallothionein/metabolism , Mice , Transcription Factors/metabolism , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...