Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.646
Filter
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710921

ABSTRACT

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732230

ABSTRACT

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Subject(s)
Endocannabinoids , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Receptor, Cannabinoid, CB2/metabolism , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , HEK293 Cells , Ligands , Glycerides/pharmacology , Biosensing Techniques/methods , Cannabinoid Receptor Modulators/pharmacology , Animals , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism
3.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732546

ABSTRACT

In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.


Subject(s)
Fat Substitutes , Milk, Human , Rats, Sprague-Dawley , Triglycerides , Animals , Milk, Human/chemistry , Triglycerides/metabolism , Humans , Rats , Fat Substitutes/pharmacology , Male , Lipid Metabolism/drug effects , Glycerides/metabolism , Glycerides/pharmacology , Metabolomics/methods , Lipidomics , Oxidative Stress/drug effects , Female
4.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570068

ABSTRACT

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Subject(s)
Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
5.
Appl Microbiol Biotechnol ; 108(1): 296, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607413

ABSTRACT

Sophorolipids (SLs) are promising glycolipid biosurfactants as they are easily produced and functional. SLs from microorganisms are comprised of mixtures of multiple derivatives that have different structures and properties, including well-known acidic and lactonic SL (ASLs and LSLs, respectively). In this study, we established a method for analyzing all SL derivatives in the products of Starmerella bombicola, a typical SL-producing yeast. Detailed component analyses of S. bombicola products were carried out using reversed-phase high-performance liquid chromatography and mass spectrometry. Methanol was used as the eluent as it is a good solvent for all SL derivatives. With this approach, it was possible to not only quantify the ratio of the main components of ASL, LSL, and SL glycerides but also confirm trace components such as SL mono-glyceride and bola-form SL (sophorose at both ends); notably, this is the first time these components have been isolated and identified successfully in naturally occurring SLs. In addition, our results revealed a novel SL derivative in which a fatty acid is bonded in series to the ASL, which had not been reported previously. Using the present analysis method, it was possible to easily track compositional changes in the SL components during culture. Our results showed that LSL and ASL are produced initially and that SL glycerides accumulate from the middle stage during the fermentation process. KEY POINTS: • An easy and detailed component analysis method for sophorolipids (SLs) is introduced. • Multiple SL derivatives were identified different from known SLs. • A novel hydrophobic acidic SL was isolated and characterized.


Subject(s)
Oleic Acids , Saccharomycetales , Fatty Acids , Glycerides
6.
Nutrients ; 16(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38613047

ABSTRACT

Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.


Subject(s)
Docosahexaenoic Acids , Microalgae , Animals , Rats , Biological Availability , Emulsions , Glycerides , Physical Examination , Triglycerides , Esters
7.
Food Chem ; 448: 139135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569405

ABSTRACT

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Subject(s)
Capsules , Emulsions , Fatty Acids, Omega-3 , Fish Oils , Gelatin , Emulsions/chemistry , Capsules/chemistry , Gelatin/chemistry , Fatty Acids, Omega-3/chemistry , Fish Oils/chemistry , Animals , Particle Size , Glycerol/chemistry , Tuna , Glycerides/chemistry , Hydrophobic and Hydrophilic Interactions , Biocatalysis
8.
Int J Pharm ; 656: 124120, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38621613

ABSTRACT

While various non-ionic surfactants at low concentrations have been shown to increase the transport of P-gp substrates in vitro, in vivo studies in rats have shown that a higher surfactant concentration is needed to increase the oral absorption of e.g. the P-gp substrates digoxin and etoposide. The aim of the present study was to investigate if intestinal digestion of surfactants could be the reason for this deviation between in vitro and in vivo data. Therefore, Kolliphor EL, Brij-L23, Labrasol and polysorbate 20 were investigated for their ability to inhibit P-gp and increase digoxin absorption in vitro. Transport studies were performed in Caco-2 cells, while P-gp inhibition and cell viability assays were performed in MDCKII-MDR1 cells. Polysorbate 20, Kolliphor EL and Brij-L23 increased absorptive transport and decreased secretory digoxin transport in Caco-2 cells, whereas only polysorbate 20 and Brij-L23 showed P-gp inhibiting properties in the MDCKII-MDR1 cells. Polysorbate 20 and Brij-L23 were chosen for in vitro digestion prior to transport- or P-gp inhibiting assays. Brij-L23 was not digestible, whereas polysorbate 20 reached a degree of digestion around 40%. Neither of the two surfactants showed any significant difference in their ability to affect absorptive or secretory transport of digoxin after pre-digestion. Furthermore, the P-gp inhibiting effects of polysorbate 20 were not decreased significantly. In conclusion, the mechanism behind the non-ionic surfactant mediated in vitro P-gp inhibition seemed independent of the intestinal digestion and the results presented here did not suggest it to be the cause of the observed discrepancy between in vitro and in vivo.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Digoxin , Polysorbates , Surface-Active Agents , Animals , Dogs , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Biological Transport/drug effects , Caco-2 Cells , Cell Survival/drug effects , Digestion/drug effects , Digoxin/pharmacokinetics , Glycerides/metabolism , Intestinal Absorption/drug effects , Madin Darby Canine Kidney Cells , Polysorbates/pharmacology , Surface-Active Agents/pharmacology
9.
Cutis ; 113(1): 22-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38478934

ABSTRACT

Azadirachta indica, commonly known as neem, has many uses as a natural remedy. We review and discuss the pharmacologic, biologic, and medicinal properties of neem in disease management. We also report a rare clinical case of a 77-year-old man who presented with a hypopigmented rash on the lower back, bilateral flanks, and buttocks after 6 months of repeated application of neem oil to treat persistent arthritis and lower back pain.


Subject(s)
Azadirachta , Male , Humans , Aged , Glycerides/pharmacology , Terpenes/pharmacology , Plant Extracts
10.
J Colloid Interface Sci ; 661: 228-236, 2024 May.
Article in English | MEDLINE | ID: mdl-38301461

ABSTRACT

HYPOTHESIS: A critical challenge in the enzymatic conversion of acylglycerols is the limited exposure of the enzyme dissolved in the aqueous solution to the hydrophobic substrate in the oil phase. Positioning the enzyme in a microenvironment with balanced hydrophobicity and hydrophilicity in Pickering emulsion will facilitate the acylglycerol-catalyzing reactions at the interface between the oil and liquid phases. EXPERIMENTS: In this work, to overcome the challenge of biphasic catalysis, we report a method to immobilize enzymes in polyethylene glycol (PEG)-based hydrogel microparticles (HMPs) at the interface between the oil and water phases in Pickering emulsion to promote the enzymatic conversion of acylglycerols. FINDINGS: 3 wt% of HMPs can stabilize the oil-in-water Pickering emulsion for at least 14 days and increase the viscosity of emulsions. Lipase-HMP conjugates showed significantly higher hydrolytic activity in Pickering emulsion; HMP-immobilized lipase SMG1 showed an activity about three times that of free lipase SMG1. Co-immobilization of a lipase and a fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) in Pickering emulsion enables light-driven cascade conversion of triacylglycerols to hydrocarbons, transforming waste oil to renewable biofuels in a green and sustainable approach. HMPs stabilize the Pickering emulsion and promote interfacial biocatalysis in converting acylglycerols to renewable biofuels.


Subject(s)
Chlorella , Glycerides , Emulsions/chemistry , Hydrogels , Biofuels , Lipase/chemistry
11.
Food Res Int ; 180: 114073, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395550

ABSTRACT

We investigated the effects of fatty acid/ monoglyceride type and amount on the absorption of fat-soluble vitamins. Micelles or vesicles made with either caprylic acid (CA) + monocaprylin (MC) or oleic acid (OA) + monoolein (MO) at low or high concentrations were infused in bile duct-ligated mice. Retinol + retinyl ester and γ-tocopherol intestinal mucosa contents were higher in mice infused with CA + MC than with OA + MO (up to + 350 % for vitamin A and up to + 62 %, for vitamin E; p < 0.05). Cholecalciferol intestinal mucosa content was the highest in mice infused with micelles with CA + MC at 5 mg/mL (up to + 105 %, p < 0.05). Retinyl ester plasma response was higher with mixed assemblies formed at low concentration of FA + MG compared to high concentration (up to + 1212 %, p < 0.05), while no difference in cholecalciferol and γ-tocopherol plasma responses were measured. No correlation between size or zeta potential and vitamin absorption was found. The impact of FA and MG on fat-soluble vitamin absorption thus differs from one vitamin to another and should be considered to formulate adequate vitamin oral or enteral supplements.


Subject(s)
Caprylates , Fatty Acids , Glycerides , Monoglycerides , Mice , Animals , Fatty Acids/pharmacology , gamma-Tocopherol , Retinyl Esters/pharmacology , Micelles , Intestinal Absorption , Vitamins , Vitamin A/metabolism , Cholecalciferol , Oleic Acid
12.
Ren Fail ; 46(1): 2286330, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38390733

ABSTRACT

PURPOSE: To investigate the preventive effect of aerobic exercise on renal damage caused by obesity. METHODS: The mice in the Control (Con) and Control + Exercise (Con + Ex) groups received a standard chow diet for the 21-week duration of the study, while the High-fat diet (HFD) group and High-fat diet + Exercise (HFD + Ex) group were fed an HFD. Mice were acclimated to the laboratory for 1 week, given 12 weeks of being on their respective diets, and then the Con + Ex and HFD + Ex groups were subjected to moderate intensity aerobic treadmill running 45 min/day, 5 days/week for 8 weeks. RESULTS: We found that HFD-induced obesity mainly impacts kidney glycerin phospholipids, glycerides, and fatty acyls, and aerobic exercise mainly impacts kidney glycerides, amino acids and organic acids as well as their derivatives. We identified 18 metabolites with significantly altered levels that appear to be involved in aerobic exercise mediated prevention of HFD-induced obesity and renal damage, half of which were amino acids and organic acids and their derivatives. CONCLUSION: Aerobic exercise rewires kidney metabolites to reduce high-fat diet-induced obesity and renal injury.


Subject(s)
Diet, High-Fat , Physical Conditioning, Animal , Mice , Animals , Diet, High-Fat/adverse effects , Obesity/etiology , Obesity/prevention & control , Kidney/metabolism , Glycerides , Amino Acids , Mice, Inbred C57BL
13.
Int J Pharm ; 654: 123953, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38417725

ABSTRACT

A self-emulsifying drug delivery system (SEDDS) containing long chain lipid digestion products (LDP) and surfactants was developed to increase solubility of two model weakly basic drugs, cinnarizine and ritonavir, in the formulation. A 1:1.2 w/w mixture of glyceryl monooleate (Capmul GMO-50; Abitec) and oleic acid was used as the digestion product, and a 1:1 w/w mixture of Tween 80 and Cremophor EL was the surfactant used. The ratio between LDP and surfactant was 1:1 w/w. Since the commercially available Capmul GMO-50 is not pure monoglyceride and contained di-and-triglycerides, the digestion product used would provide 1:2 stoichiometric molar ratio of monoglyceride and fatty acid after complete digestion in gastrointestinal fluid. Both cinnarizine and ritonavir had much higher solubility in oleic acid (536 and 72 mg/g, respectively) than that in glyceryl monooleate and glyceryl trioleate. Therefore, by incorporating oleic acid in place of glyceryl trioleate in the formulation, the solubility of cinnarizine and ritonavir could be increased by 5-fold and 3.5-fold, respectively, as compared to a formulation without the fatty acid. The formulation dispersed readily in aqueous media, and adding 3 mM sodium taurocholate, which is generally present in GI fluid, remarkably improved the dispersibility of SEDDS and reduced particle size of dispersions. Thus, the use of digestion products of long-chain triglycerides as components of SEDDS can enhance the drug loading of weakly basic compounds and increase dispersibility in GI fluids.


Subject(s)
Caprylates , Cinnarizine , Glycerides , Monoglycerides , Solubility , Oleic Acid , Ritonavir , Emulsions , Chemistry, Pharmaceutical , Drug Delivery Systems , Surface-Active Agents , Triglycerides , Fatty Acids , Digestion , Biological Availability
14.
Anal Chem ; 96(6): 2524-2533, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38308578

ABSTRACT

Accurate lipid quantification is essential to revealing their roles in physiological and pathological processes. However, difficulties in the structural resolution of lipid isomers hinder their further accurate quantification. To address this challenge, we developed a novel stable-isotope N-Me aziridination strategy that enables simultaneous qualification and quantification of unsaturated lipid isomers. The one-step introduction of the 1-methylaziridine structure not only serves as an activating group for the C═C bond to facilitate positional identification but also as an isotopic inserter to achieve accurate relative quantification. The high performance of this reaction for the identification of unsaturated lipids was verified by large-scale resolution of the C═C positions of 468 lipids in serum. More importantly, by using this bifunctional duplex labeling method, various unsaturated lipids such as fatty acids, phospholipids, glycerides, and cholesterol ester were accurately and individually quantified at the C═C bond isomeric level during the mouse brain ischemia. This study provides a new approach to quantitative structural lipidomics.


Subject(s)
Fatty Acids , Lipidomics , Mice , Animals , Lipidomics/methods , Isomerism , Fatty Acids/chemistry , Phospholipids/chemistry , Glycerides
15.
Int J Biol Macromol ; 261(Pt 1): 129681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272417

ABSTRACT

Glyceryl stearate and cassava starch (CS) composites were prepared by an esterification process. Formulations containing starch at various concentrations were prepared, being 1, 1.5, 3, 5, 10, 15, 20, and 30 % by weight, respectively. The characteristics of pH, moisture content, FTIR, melting point, latent heat, thermal energy storage, and specific heat capacity of composites were elucidated. The optimal formulation contained 1 % w/w CS, this indicated that the composite was able to maintain its temperature for 9.4 ± 0.5 min, with a melting temperature of 51.9 ± 0.3 °C, solidification temperature of 36.1 ± 1.6 °C, latent heat of fusion of 120 ± 10 J/g, and latent heat of solidification of 126 ± 3 J/g, and specific heat capacity of 2.6 ± 0.2 J/g.K. New bonds were formed in the composite structure of glyceryl stearate and CS at these levels. The composite had a pH that was safe for contact with human skin and a moisture content that could be kept stable for a prolonged time. The innovation and the advantages of a composite materials: 1. The main components are derived from natural materials. 2. Costs effective 3. Sustainability 4. Safety, and 5. Efficacy. Therefore, composites have a high potential as are replacement for paraffin wax bath therapy.


Subject(s)
Manihot , Humans , Manihot/chemistry , Stearates , Temperature , Starch/chemistry , Hot Temperature , Glycerides
16.
Food Chem ; 443: 138560, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38295563

ABSTRACT

Based on multivariate statistics, this review compared major triacylglycerols (TAGs) in animal milk and human milk fat from China and other countries. Human milk fat differs from animal milk fat in that it has longer acyl chains and higher concentrations of 1,3-dioleoyl-2-palmitoyl-glycerol (O-P-O) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (O-P-L). O-P-L is a significant and distinct TAG in human milk fat, particularly in China. 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) is human milk's major triglyceride molecule of O-P-L, accounting for more than 70%. As a result, OPL has piqued the interest of Chinese academics. The synthesis process and nutritional outcomes of OPL have been studied, including changes in gut microbiota, serum lipid composition, improved fatty acid and calcium absorption, and increased total bile acid levels. However, current OPL research is limited. Therefore, this review discussed enzymatic preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and OPL and their nutritional and physiological activity to direct future research direction for sn-2 palmitate and OPL.


Subject(s)
Glycerides , Glycerol , Milk, Human , Animals , Humans , Triglycerides/analysis , Milk, Human/chemistry , Nutritive Value , Structure-Activity Relationship
17.
Sci Rep ; 14(1): 1677, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243066

ABSTRACT

Oviposition is essential in the life history of insects and is mainly mediated by chemical and tactile cues present on the plant surface. Oviposition deterrents or stimulants can modify insect oviposition and be employed in pest control. Relatively few gustatory oviposition stimuli have been described for tortricid moths. In this study the effect of NaCl, KCl, sucrose, fructose and neem oil on the number of eggs laid by Cydia pomonella (L.), Grapholita molesta (Busck) and Lobesia botrana (Dennis & Schifermüller) was tested in laboratory arenas containing filter papers loaded with 3 doses of a given stimulus and solvent control. In general, salts increased oviposition at the mid dose (102 M) and sugars reduced it at the highest dose (103 mM), but these effects depended on the species. Neem oil dramatically reduced the number of eggs laid as the dose increased, but the lowest neem oil dose (0.1% v/v) increased L. botrana oviposition relative to solvent control. Our study shows that ubiquitous plant chemicals modify tortricid moth oviposition under laboratory conditions, and that neem oil is a strong oviposition deterrent. The oviposition arena developed in this study is a convenient tool to test the effect of tastants on the oviposition behavior of tortricid moths.


Subject(s)
Glycerides , Moths , Terpenes , Animals , Female , Moths/physiology , Salts/pharmacology , Oviposition/physiology , Sugars/pharmacology , Solvents/pharmacology
18.
Mol Pharmacol ; 105(2): 75-83, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195158

ABSTRACT

The mechanisms of ß-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: ß-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.


Subject(s)
Analgesia , Arachidonic Acids , Endocannabinoids , Glycerides , Polycyclic Sesquiterpenes , Animals , Rats , Endocannabinoids/pharmacology , Glycerol , Isotopes , Monoacylglycerol Lipases , Receptor, Cannabinoid, CB2
19.
Cannabis Cannabinoid Res ; 9(2): 591-600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36749133

ABSTRACT

Objective: The present study aimed to demonstrate the possible effects of increased 2-arachidonoylglycerol (2-AG) by applying the monoacylglycerol lipase inhibitor KML-29 on rats with ovarian ischemia-reperfusion (IR) model. Methods: Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: IR, Group 4: IR + KML-29 (2 mg/kg), Group 5: IR + KML-29 (20 mg/kg), and Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of KML-29 (2 and 10 mg/kg) were administered intraperitoneally in Groups 4 and 5, 30 min before reperfusion. Ovarian IR injury and ovarian reserve were evaluated histopathological and by using nuclear factor (NF)-κB, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-ß1, superoxide dismutase, glutathione peroxidase pre-/postoperative blood antimullerian hormone, and inhibin B. Results: In the KML-1 and KML-2 groups, this damage was significantly reduced compared to the ischemia group. NF-κB, IL-1ß, TNF-α, and TGF-ß1 immunoreactivities increased statistically significantly in the ischemia group compared to the control group (p<0.001). Immunoreactivities of these proteins were significantly decreased in the KML-1 and KML-2 groups (p<0.001). It was observed that the number of these apoptotic cells decreased significantly in the KML-1 and KML-2 groups compared to the ischemia group (p<0.001). The postoperative inhibin level showed a significant decrease in the ischemia group compared to the sham group, while a significant increase was observed in the KML-1 and KML-2 groups compared to the ischemia group. Conclusion: It was seen that anti-inflammatory, antioxidant, and antiapoptotic activity was formed, and the ovarian reserve was preserved with 2-AG in ovarian IR damage. The protective effect of endocannabinoids on the ovaries may create a promising new treatment strategy for many pathologies that will affect the ovarian reserve.


Subject(s)
Arachidonic Acids , Glycerides , Ovarian Reserve , Reperfusion Injury , Rats , Female , Animals , Rats, Wistar , Endocannabinoids/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Ischemia/drug therapy , NF-kappa B/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
20.
Int J Biol Macromol ; 254(Pt 3): 128039, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956807

ABSTRACT

Dihydromyricetin (DMY) is a lipophilic nutrient with various potential health benefits; however, its poor storage stability and low solubility and bioavailability limit its applications. This study aims to encapsulate DMY in microcapsules by membrane emulsification and freeze-drying methods to overcome these issues. Glyceryl monostearate (GMS, solid lipid) and octyl and decyl glycerate (ODO, liquid lipid) were applied as the inner cores. Whey protein and xanthan gum (XG) were used as wall materials. The prepared microcapsules had an irregular blocky aggregated structure with rough surfaces. All the microcapsules had a DMY loading of 0.85 %-1.1 % and encapsulation efficiency (EE) >85 %. GMS and XG increased the DMY loading and EE. The addition of GMS and an increased XG concentration led to a decrease in the rehydration rate. The in vitro release and digestion studies revealed that GMS and XG controlled the release and digestion of DMY. The chemical stability results indicated that GMS and XG protected DMY against oxidation. An antioxidant capacity study showed that GMS and XG helped DMY in the microcapsules exert antioxidant effects. This research study provides a platform for designing microcapsules with good stability and high bioavailability to deliver lipophilic bioactive compounds.


Subject(s)
Glycerides , Whey Proteins/chemistry , Capsules
SELECTION OF CITATIONS
SEARCH DETAIL
...