Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 895
Filter
1.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696020

ABSTRACT

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Subject(s)
Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
2.
J Am Chem Soc ; 146(20): 13754-13759, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739748

ABSTRACT

a-Tertiary amino acids are essential components of drugs and agrochemicals, yet traditional syntheses are step-intensive and provide access to a limited range of structures with varying levels of enantioselectivity. Here, we report the α-alkylation of unprotected alanine and glycine by pyridinium salts using pyridoxal (PLP)-dependent threonine aldolases with a Rose Bengal photoredox catalyst. The strategy efficiently prepares various a-tertiary amino acids in a single chemical step as a single enantiomer. UV-vis spectroscopy studies reveal a ternary interaction between the pyridinium salt, protein, and photocatalyst, which we hypothesize is responsible for localizing radical formation to the active site. This method highlights the opportunity for combining photoredox catalysts with enzymes to reveal new catalytic functions for known enzymes.


Subject(s)
Amino Acids , Amino Acids/chemistry , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Photochemical Processes , Biocatalysis , Catalysis , Alkylation , Glycine/chemistry , Glycine/analogs & derivatives , Stereoisomerism , Molecular Structure , Oxidation-Reduction
3.
Nature ; 629(8010): 98-104, 2024 May.
Article in English | MEDLINE | ID: mdl-38693411

ABSTRACT

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Subject(s)
Amino Acids , Biocatalysis , Oxidative Coupling , Photochemical Processes , Amino Acids/biosynthesis , Amino Acids/chemistry , Amino Acids/metabolism , Biocatalysis/radiation effects , Directed Molecular Evolution , Free Radicals/chemistry , Free Radicals/metabolism , Glycine/chemistry , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Indicators and Reagents , Light , Oxidative Coupling/radiation effects , Pyridoxal Phosphate/metabolism , Stereoisomerism , Amino Acids, Branched-Chain/chemistry , Amino Acids, Branched-Chain/metabolism
4.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38656254

ABSTRACT

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Subject(s)
Endoribonucleases , Gene Expression Regulation, Neoplastic , Glioblastoma , Glucose , Glutamine , Phosphoglycerate Dehydrogenase , Phosphoric Monoester Hydrolases , Protein Serine-Threonine Kinases , Serine , Transaminases , Humans , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/metabolism , Glucose/metabolism , Glutamine/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Serine/biosynthesis , Signal Transduction
5.
Sci Rep ; 14(1): 8324, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594513

ABSTRACT

Bladder cancer (BLCA) is a common malignant tumor in urinary system all over the world. However, due to its high recurrence rate and complex causes, clinicians often have limited options for surgical and drug treatments. Recent researchs on the molecular mechanism of BLCA have reveals its biological progress and potential for early diagnosis. Serine hydroxymethyltransferase 1/2 (SHMT1/2) is a crucial enzyme in the one-carbon metabolism of tumor cells, and the expression levels of these isozymes have been found to be associated with the biological progression of various malignant tumors. However, the impact of SHMT1/2 on the biological progression of bladder cancer and its molecular regulation mechanism remain unclear. In this research utilizes BLCA clinical sample data, the TCGA database, and in vitro cell experiments to predict the expression levels of SHMT1/2 in BLCA. The findings indicate that SHMT1 remained unchanged, while SHMT2 expression is increased in BLCA, which was related to poor prognosis. Additionally, SHMT2 affects the growth, migration, and apoptosis of bladder cancer cells in vitro. It also influences the expression levels of E-cadherin and N-cadherin, ultimately impacting the malignant biological progression of bladder tumors. These results establish a correlation between SHMT2 and the malignant biological progression of BLCA, providing a theoretical basis for the early diagnosis and treatment of bladder cancer.


Subject(s)
Glycine Hydroxymethyltransferase , Urinary Bladder Neoplasms , Humans , Glycine Hydroxymethyltransferase/genetics , Urinary Bladder Neoplasms/metabolism , Serine/metabolism , Prognosis
6.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615009

ABSTRACT

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Subject(s)
Aldehyde-Lyases , Fructose-Bisphosphate Aldolase , Humans , Animals , Mice , Fructose-Bisphosphate Aldolase/genetics , Catalysis , Gene Library , Glycine Hydroxymethyltransferase/genetics , Carnitine , Mammals
7.
Methods Enzymol ; 696: 199-229, 2024.
Article in English | MEDLINE | ID: mdl-38658080

ABSTRACT

Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.


Subject(s)
Escherichia coli , Halogenation , Pseudomonas putida , Substrate Specificity , Escherichia coli/enzymology , Escherichia coli/genetics , Pseudomonas putida/enzymology , Biocatalysis , Amino Acids/chemistry , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/genetics , Threonine/chemistry , Threonine/metabolism , Threonine/analogs & derivatives , Fluorine/chemistry , Aldehydes/chemistry , Aldehydes/metabolism
8.
Adv Sci (Weinh) ; 11(18): e2307834, 2024 May.
Article in English | MEDLINE | ID: mdl-38460155

ABSTRACT

Targeting cancer-specific metabolic processes is a promising therapeutic strategy. Here, this work uses a compound library that directly inhibits metabolic enzymes to screen the potential metabolic targets in lung adenocarcinoma (LUAD). SHIN1, the specific inhibitor of serine hydroxymethyltransferase 1/2 (SHMT1/2), has a highly specific inhibitory effect on LUAD cells, and this effect depends mainly on the overexpression of SHMT2. This work clarifies that mitogen-activated protein kinase 1 (MAPK1)-mediated phosphorylation at Ser90 is the key mechanism underlying SHMT2 upregulation in LUAD and that this phosphorylation stabilizes SHMT2 by reducing STIP1 homology and U-box containing protein 1 (STUB1)-mediated ubiquitination and degradation. SHMT2-Ser90 dephosphorylation decreases S-adenosylmethionine levels in LUAD cells, resulting in reduced N6-methyladenosine (m6A) levels in global RNAs without affecting total protein or DNA methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) analyses further demonstrate that SHMT2-Ser90 dephosphorylation accelerates the RNA degradation of oncogenic genes by reducing m6A modification, leading to the inhibition of tumorigenesis. Overall, this study elucidates a new regulatory mechanism of SHMT2 during oncogenesis and provides a theoretical basis for targeting SHMT2 as a therapeutic target in LUAD.


Subject(s)
Adenocarcinoma of Lung , Adenosine , Carcinogenesis , Glycine Hydroxymethyltransferase , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Phosphorylation/genetics , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Animals , Cell Line, Tumor , Disease Models, Animal
9.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331894

ABSTRACT

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Subject(s)
Multiomics , Thyroid Neoplasms , Humans , Glycine Hydroxymethyltransferase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Metabolic Networks and Pathways/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
10.
Adv Sci (Weinh) ; 11(11): e2305260, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183387

ABSTRACT

It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.


Subject(s)
Alzheimer Disease , Glycine Hydroxymethyltransferase , Animals , Mice , 5' Untranslated Regions , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Glycine Hydroxymethyltransferase/genetics , RNA, Messenger/genetics
11.
Cell Metab ; 36(1): 103-115.e4, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171330

ABSTRACT

The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.


Subject(s)
Glycine Hydroxymethyltransferase , Glycine , Glycine Hydroxymethyltransferase/genetics , Homeostasis , Carbon , Serine
12.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171331

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Animals , Mice , Acetaminophen/toxicity , Carbon , Glutathione/metabolism , Glycine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Serine/metabolism
13.
FEBS J ; 291(2): 308-322, 2024 01.
Article in English | MEDLINE | ID: mdl-37700610

ABSTRACT

d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.


Subject(s)
Escherichia coli , Glycine Hydroxymethyltransferase , Animals , Humans , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Tetrahydrofolates , Methyltransferases , Serine , Hydro-Lyases/genetics , Mammals/metabolism
14.
FEBS J ; 291(2): 323-337, 2024 01.
Article in English | MEDLINE | ID: mdl-37811683

ABSTRACT

Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5-phosphate-dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN-resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF-dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN-resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF-dependent catalytic activity relative to Essex SHMT8 (10- to 50-fold decrease in kcat /Km ) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF-substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.


Subject(s)
Cysts , Nematoda , Animals , Glycine max/genetics , Glycine Hydroxymethyltransferase/chemistry , Nematoda/metabolism , Folic Acid , Plant Diseases
15.
Bioresour Technol ; 393: 130153, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052329

ABSTRACT

L-serine is a high-value amino acid widely used in the food, medicine, and cosmetic industries. However, the low yield of L-serine has limited its industrial production. In this study, a cellular factory for efficient synthesis of L-serine was obtained by engineering the serine hydroxymethyltransferases (SHMT). Firstly, after screening the SHMT from Alcanivorax dieselolei by genome mining, a mutant AdSHMTE266M with high thermal stability was identified through rational design. Subsequently, an iterative saturating mutant library was constructed by using coevolutionary analysis, and a mutant AdSHMTE160L/E193Q with enzyme activity 1.35 times higher than AdSHMT was identified. Additionally, the target protein AdSHMTE160L/E193Q/E266M was efficiently overexpressed by improving its mRNA stability. Finally, combining the substrate addition strategy and system optimization, the optimized strain BL21/pET28a-AdSHMTE160L/E193Q/E266M-5'UTR-REP3S16 produced 106.06 g/L L-serine, which is the highest production to date. This study provides new ideas and insights for the engineering design of SHMT and the industrial production of L-serine.


Subject(s)
Escherichia coli , Glycine Hydroxymethyltransferase , Escherichia coli/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/metabolism , Serine/genetics , Serine/metabolism , Metabolic Engineering
16.
Chemistry ; 30(10): e202302959, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38012090

ABSTRACT

A two-enzyme cascade system containing ω-transaminase (ω-TA) and L-threonine aldolase (L-ThA) was reported for the synthesis of 3-Phenylserine starting from benzylamine, and PLP was utilized as the only cofactor in these both two enzymes reaction system. Based on the transamination results, benzylamine was optimized as an advantageous amino donor as confirmed by MD simulation results. This cascade reaction system could not only facilitate the in situ removal of the co-product benzaldehyde, enhancing the economic viability of the reaction, but also establish a novel pathway for synthesizing high-value phenyl-serine derivatives. In our study, nearly 95 % of benzylamine was converted, yielding over 54 % of 3-Phenylserine under the optimized conditions cascade reaction.


Subject(s)
Glycine Hydroxymethyltransferase , Serine , Serine/analogs & derivatives , Serine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Benzylamines , Pyridoxal Phosphate
17.
Front Biosci (Landmark Ed) ; 28(9): 196, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37796681

ABSTRACT

BACKGROUND: Serine hydroxymethyltransferase (SHMT) is a serine-glycine-one-carbon metabolic enzyme in which SHMT1 and SHMT2 encode the cytoplasmic and mitochondrial isoenzymes, respectively. SHMT1 and SHMT2 are key players in cancer metabolic reprogramming, and thus are attractive targets for cancer therapy. However, the role of SHMT in patients with renal cell carcinoma (RCC) has not been fully elucidated. We aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of SHMT1 and SHMT2 in patients with kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP); elucidate the association between SHMT expression and RCC; and identify potential new targets for clinical RCC treatment. METHODS: Several online databases were used for the analysis, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: SHMT1 and SHMT2 transcript levels were significantly down- and upregulated, respectively, in patients with KICH, KIRC, and KIRP, based on sample type, individual cancer stage, sex, and patient age. Compared to men, women with KIRC and KIRP showed significantly up- and downregulated SHMT1 transcript levels, respectively. However, SHMT2 transcript levels were significantly upregulated in the patients mentioned above. KIRC and KIRP patients with high SHMT1 expression had longer survival periods than those with low SHMT1 expression. In patients with KIRC, the findings were similar to those mentioned above. However, in KICH patients, the findings were the opposite regarding SHMT2 expression. SHMT1 versus SHMT2 were altered by 9% versus 3% (n = 66 KICH patients), 4% versus 4% (n = 446 KIRC patients), and 6% versus 7% (n = 280 KIRP patients). SHMT1 versus SHMT2 promoter methylation levels were significantly up- and downregulated in patients with KIRP versus KIRC and KIRP, respectively. SHMT1, SHMT2, and their neighboring genes (NG) formed a complex network of interactions. The molecular functions of SHMT1 and its NG in patients with KICH, KIRC, and KIRP, included clathrin adaptor, metalloendopeptidase, and GTPase regulator activities; lipid binding, active transmembrane transporter activity, and lipid transporter activity; and type I interferon receptor binding, integrin binding, and protein heterodimerization, respectively. Their respective Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were involved in lysosome activity, human immunodeficiency virus 1 infection, and endocytosis; coronavirus disease 2019 and neurodegeneration pathways (multiple diseases); and RIG-I-like receptor signaling pathway, cell cycle, and actin cytoskeleton regulation. The molecular functions of SHMT2 and its NG in patients with KICH, KIRC, and KIRP included cell adhesion molecule binding and phospholipid binding; protein domain-specific binding, enzyme inhibitor activity, and endopeptidase activity; and hormone activity, integrin binding, and protein kinase regulator activity, respectively. For patients with KIRC versus KIRP, the KEGG pathways were involved in cAMP and calcium signaling pathways versus microRNAs (MiRNAs) in cancer cells and neuroactive ligand-receptor interactions, respectively. We identified the key transcription factors of SHMT1 and its NG. CONCLUSIONS: SHMT1 and SHMT2 expression levels were different in patients with RCC. SHMT1 and SHMT2 may be potential therapeutic and prognostic biomarkers in these patients. Transcription factor (MYC, STAT1, PPARG, AR, SREBF2, and SP3) and miRNA (miR-17-5P, miR-422, miR-492, miR-137, miR-30A-3P, and miR-493) regulations may be important strategies for RCC treatment.


Subject(s)
COVID-19 , Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Male , Humans , Female , Carcinoma, Renal Cell/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Integrins , Lipids
18.
Cancer Sci ; 114(12): 4583-4595, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752684

ABSTRACT

Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Glycine , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/metabolism , Homeodomain Proteins/genetics , Kidney Neoplasms/genetics , Serine/metabolism , Transcription Factors
19.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37543353

ABSTRACT

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Subject(s)
Antimalarials , Antineoplastic Agents , Folic Acid Antagonists , Xanthones , Humans , Antimalarials/pharmacology , Glycine Hydroxymethyltransferase , Molecular Docking Simulation , Xanthones/pharmacology , Antineoplastic Agents/pharmacology , Serine/chemistry
20.
Mol Plant Pathol ; 24(11): 1359-1369, 2023 11.
Article in English | MEDLINE | ID: mdl-37404045

ABSTRACT

Our previous study identified an evolutionarily conserved C4HC3-type E3 ligase, named microtubule-associated E3 ligase (MEL), that regulates broad-spectrum plant resistance against viral, fungal and bacterial pathogens in multiple plant species by mediating serine hydroxymethyltransferase (SHMT1) degradation via the 26S proteasome pathway. In the present study, we found that NS3 protein encoded by rice stripe virus could competitively bind to the MEL substrate recognition site, thereby inhibiting MEL interacting with and ubiquitinating SHMT1. This, in turn, leads to the accumulation of SHMT1 and the repression of downstream plant defence responses, including reactive oxygen species accumulation, mitogen-activated protein kinase pathway activation, and the up-regulation of disease-related gene expression. Our findings shed light on the ongoing arms race between pathogens and demonstrate how a plant virus can counteract the plant defence response.


Subject(s)
Oryza , Plant Viruses , Tenuivirus , Tenuivirus/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Ubiquitin-Protein Ligases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Viruses/metabolism , Oryza/metabolism , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...