Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 777
Filter
1.
Front Neural Circuits ; 18: 1430598, 2024.
Article in English | MEDLINE | ID: mdl-39184455

ABSTRACT

Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 µm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.


Subject(s)
Auditory Pathways , Glutamic Acid , Glycine Plasma Membrane Transport Proteins , Glycine , Inferior Colliculi , Mice, Inbred CBA , Superior Olivary Complex , Animals , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Mice , Inferior Colliculi/physiology , Inferior Colliculi/metabolism , Inferior Colliculi/cytology , Auditory Pathways/physiology , Auditory Pathways/metabolism , Glutamic Acid/metabolism , Superior Olivary Complex/physiology , Superior Olivary Complex/metabolism , Male , Vesicular Glutamate Transport Protein 2/metabolism , Neurons/metabolism , Neurons/physiology
2.
J Pharm Pharmacol ; 76(9): 1199-1211, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38982944

ABSTRACT

The Glycine Transporter Type 1 (GlyT1) significantly impacts central nervous system functions, influencing glycinergic and glutamatergic neurotransmission. Bitopertin, the first GlyT1 inhibitor in clinical trials, was developed for schizophrenia treatment but showed limited efficacy. Despite this, bitopertin's repositioning could advance treating various pathologies. This study aims to understand bitopertin's mechanism of action using computational methods, exploring off-target effects, and providing a comprehensive pharmacological profile. Similarity Ensemble Approach (SEA) and SwissTargetPrediction initially predicted targets, followed by molecular modeling on SWISS-MODEL and GalaxyWeb servers. Binding sites were identified using PrankWeb, and molecular docking was performed with DockThor and GOLD software. Molecular dynamics analyses were conducted on the Visual Dynamics platform. Reverse screening on SEA and SwissTargetPrediction identified GlyT1 (SLC6A9), GlyT2 (SLC6A5), PROT (SLC6A7), and DAT (SLC6A3) as potential bitopertin targets. Homology modeling on SwissModel generated high-resolution models, optimized further on GalaxyWeb. PrankWeb identified similar binding sites in GlyT1, GlyT2, PROT, and DAT, indicating potential interaction. Docking studies suggested bitopertin's interaction with GlyT1 and proximity to GlyT2 and PROT. Molecular dynamics confirmed docking results, highlighting bitopertin's target stability beyond GlyT1. The study concludes that bitopertin potentially interacts with multiple SLC6 family targets, indicating a broader pharmacological property.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Molecular Docking Simulation , Molecular Dynamics Simulation , Glycine Plasma Membrane Transport Proteins/metabolism , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Humans , Binding Sites , Piperazines/pharmacology , Piperazines/chemistry , Computer Simulation , Drug Repositioning , Sulfones
3.
Neurochem Res ; 49(9): 2535-2555, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888830

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-ß-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-ß. NFPS pretreatment prevented amyloid-ß-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-ß injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-ß-induced hippocampal damage.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Glycine Plasma Membrane Transport Proteins , Hippocampus , Mice, Inbred C57BL , Neuroprotective Agents , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/metabolism , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/metabolism , Disease Models, Animal , Sarcosine/analogs & derivatives , Sarcosine/pharmacology , Sarcosine/therapeutic use , Neuroprotection/drug effects , Neuroprotection/physiology
4.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38729762

ABSTRACT

Inhibitory neurons embedded within mammalian neural circuits shape breathing, walking, and other rhythmic motor behaviors. At the core of the neural circuit controlling breathing is the preBötzinger Complex (preBötC), where GABAergic (GAD1/2+) and glycinergic (GlyT2+) neurons are functionally and anatomically intercalated among glutamatergic Dbx1-derived (Dbx1+) neurons that generate rhythmic inspiratory drive. The roles of these preBötC inhibitory neurons in breathing remain unclear. We first characterized the spatial distribution of molecularly defined preBötC inhibitory subpopulations in male and female neonatal double reporter mice expressing either tdTomato or EGFP in GlyT2+, GAD1+, or GAD2+ neurons. We found that the majority of preBötC inhibitory neurons expressed both GlyT2 and GAD2 while a much smaller subpopulation also expressed GAD1. To determine the functional role of these subpopulations, we used holographic photostimulation, a patterned illumination technique, in rhythmically active medullary slices from neonatal Dbx1tdTomato;GlyT2EGFP and Dbx1tdTomato;GAD1EGFP double reporter mice of either sex. Stimulation of 4 or 8 preBötC GlyT2+ neurons during endogenous rhythm prolonged the interburst interval in a phase-dependent manner and increased the latency to burst initiation when bursts were evoked by stimulation of Dbx1+ neurons. In contrast, stimulation of 4 or 8 preBötC GAD1+ neurons did not affect interburst interval or latency to burst initiation. Instead, photoactivation of GAD1+ neurons during the inspiratory burst prolonged endogenous and evoked burst duration and decreased evoked burst amplitude. We conclude that GlyT2+/GAD2+ neurons modulate breathing rhythm by delaying burst initiation while a smaller GAD1+ subpopulation shapes inspiratory patterning by altering burst duration and amplitude.


Subject(s)
Inhalation , Animals , Mice , Female , Male , Inhalation/physiology , Neural Inhibition/physiology , Medulla Oblongata/physiology , Medulla Oblongata/cytology , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Mice, Transgenic , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Respiratory Center/physiology , Respiratory Center/cytology , Neurons/physiology , Periodicity , Animals, Newborn
5.
Brain Res ; 1836: 148938, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615924

ABSTRACT

Prepulse inhibition (PPI) of the auditory startle response, a key measure of sensorimotor gating, diminishes with age and is impaired in various neurological conditions. While PPI deficits are often associated with cognitive impairments, their reversal is routinely used in experimental systems for antipsychotic drug screening. Yet, the cellular and circuit-level mechanisms of PPI remain unclear, even under non-pathological conditions. We recently showed that brainstem neurons located in the caudal pontine reticular nucleus (PnC) expressing the glycine transporter type 2 (GlyT2±) receive inputs from the central nucleus of the amygdala (CeA) and contribute to PPI but via an uncharted pathway. Here, using tract-tracing, immunohistochemistry and in vitro optogenetic manipulations coupled to field electrophysiological recordings, we reveal the neuroanatomical distribution of GlyT2± PnC neurons and PnC-projecting CeA glutamatergic neurons and we provide mechanistic insights on how these glutamatergic inputs suppress auditory neurotransmission in PnC sections. Additionally, in vivo experiments using GlyT2-Cre mice confirm that optogenetic activation of GlyT2± PnC neurons enhances PPI and is sufficient to induce PPI in young mice, emphasizing their role. However, in older mice, PPI decline is not further influenced by inhibiting GlyT2± neurons. This study highlights the importance of GlyT2± PnC neurons in PPI and underscores their diminished activity in age-related PPI decline.


Subject(s)
Brain Stem , Glycine Plasma Membrane Transport Proteins , Glycine , Neurons , Prepulse Inhibition , Reflex, Startle , Animals , Prepulse Inhibition/physiology , Neurons/physiology , Neurons/metabolism , Reflex, Startle/physiology , Mice , Brain Stem/physiology , Brain Stem/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Male , Glycine/metabolism , Optogenetics , Mice, Transgenic , Mice, Inbred C57BL , Synaptic Transmission/physiology , Central Amygdaloid Nucleus/physiology , Central Amygdaloid Nucleus/metabolism
6.
Exp Brain Res ; 242(5): 1203-1214, 2024 May.
Article in English | MEDLINE | ID: mdl-38526743

ABSTRACT

L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.


Subject(s)
Brain , Glycine Plasma Membrane Transport Proteins , Oxidopamine , Sarcosine/analogs & derivatives , Animals , Glycine Plasma Membrane Transport Proteins/metabolism , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Rats , Male , Oxidopamine/pharmacology , Brain/metabolism , Brain/drug effects , Parkinsonian Disorders/metabolism , Rats, Sprague-Dawley , Disease Models, Animal , Tritium , Functional Laterality/physiology
7.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38513663

ABSTRACT

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Humans , Biological Transport , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins/chemistry , Glycine Plasma Membrane Transport Proteins/metabolism , Glycine Plasma Membrane Transport Proteins/ultrastructure , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Synaptic Transmission , Imidazoles/chemistry , Sarcosine/analogs & derivatives , Piperidines/chemistry
8.
Neurosci Lett ; 826: 137715, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38460902

ABSTRACT

The striatum, an essential component of the brain's motor and reward systems, plays a pivotal role in a wide array of cognitive processes. Its dysfunction is a hallmark of neurodegenerative diseases like Parkinson's disease (PD) and Huntington's disease (HD), leading to profound motor and cognitive deficits. These conditions are often related to excitotoxicity, primarily due to overactivation of NMDA receptors (NMDAR). In the synaptic cleft, glycine transporter type 1 (GlyT1) controls the glycine levels, a NMDAR co-agonist, which modulates NMDAR function. This research explored the neuroprotective potential of NFPS, a GlyT1 inhibitor, in murine models of striatal injury. Employing models of neurotoxicity induced by 6-hydroxydopamine (PD model) and quinolinic acid (HD model), we assessed the effectiveness of NFPS pre-treatment in maintaining the integrity of striatal neurons and averting neuronal degeneration. The results indicated that NFPS pre-treatment conferred significant neuroprotection, reducing neuronal degeneration, protecting dopaminergic neurons, and preserving dendritic spines within the striatum. Additionally, this pre-treatment notably mitigated motor impairments resulting from striatal damage. The study revealed that GlyT1 inhibition led to substantial changes in the ratios of NMDAR subunits GluN2A/GluN1 and GluN2B/GluN1, 24 h after NFPS treatment. These findings underscore the neuroprotective efficacy of GlyT1 inhibition, proposing it as a viable therapeutic strategy for striatum-related damage.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Huntington Disease , Mice , Animals , Glycine Plasma Membrane Transport Proteins/metabolism , Sarcosine/pharmacology , Neuroprotection , Glycine/pharmacology , Corpus Striatum/metabolism , Huntington Disease/drug therapy
9.
Alzheimers Dement ; 20(6): 4381, 2024 06.
Article in English | MEDLINE | ID: mdl-38293838

ABSTRACT

Withdrawal: Miran Yoo, Seong Muk Kim, Juho Lee, Hye-Ju Kim, Seong Jeong Park. "Glycine transporter 1 (GlyT1) is a novel therapeutic target for Alzheimer's disease" Alzheimer's & Dementia, Volume 18, Supplemental Issue 10. The above abstract, published online on 20th December 2022, on Wiley Online Library (https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.064468) has been withdrawn by agreement between the authors, the Senior Director of Scientific Programs and Outreach, Claire Sexton, the Director of Scientific Programs at the Alzheimer's Association, Ozama Ismail, and John Wiley & Sons Inc. The abstract has been withdrawn at the authors' request because the authors did not have Amyloid Solution's authorization to publish the information contained in it.


Subject(s)
Alzheimer Disease , Glycine Plasma Membrane Transport Proteins , Humans , Alzheimer Disease/drug therapy , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Animals
10.
J Labelled Comp Radiopharm ; 67(3): 91-103, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38221662

ABSTRACT

The synthesis of tritium-labelled glycine transporter 1 inhibitor Org24598 is reported. Because of the instability of the Org24598 skeleton under hydrogenation conditions, a synthetic approach using an in-house prepared tritium-labelled alkylating agent ([3 H]MeI, SA = 26.2 Ci/mmol) was employed. Alternative methods of labelling are discussed.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Glycine , Glycine/analogs & derivatives , Tritium , Glycine/pharmacology , Radiopharmaceuticals
11.
Mol Reprod Dev ; 90(12): 824-834, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37811876

ABSTRACT

Independent cell volume regulation is first acquired by the oocyte in two steps that occur during meiotic maturation: (1) activation of the glycine transporter GLYT1 (Slc6a9) that mediates the intracellular accumulation of glycine to provide osmotic support in the mature egg and early preimplantation embryo, and (2) release of the oocyte from the strong attachment to its rigid extracellular matrix shell, the zona pellucida (ZP). It was recently shown that oocyte-ZP detachment requires metallopeptidase activity that is proposed to cleave transmembrane ZP proteins connecting the oocyte to the ZP. It is unknown, however, how GLYT1 is activated. We hypothesized that oocyte-ZP detachment precedes and may be required for GLYT1 activation. In identically treated pools of oocytes, oocyte-ZP detachment occurred ~20 min before GLYT1 activation. In individual oocytes, GLYT1 activity was detected only in those that were mostly or fully detached. Blocking detachment using previously validated small molecule metallopeptidase inhibitors partly suppressed GLYT1 activation. However, removal of the ZP did not accelerate GLYT1 activation. This indicates that oocyte-ZP detachment or cleavage of transmembrane ZP proteins may be required for GLYT1 to become fully activated, or alternatively that metallopeptidase activity independently affects both detachment and GLYT1 activation.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Zona Pellucida , Zona Pellucida/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Zona Pellucida Glycoproteins/metabolism , Oocytes/metabolism , Metalloproteases/metabolism , Cell Size
12.
Cells ; 12(20)2023 10 21.
Article in English | MEDLINE | ID: mdl-37887344

ABSTRACT

Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Oocytes , Animals , Female , Mice , Blastocyst/metabolism , Glycine/metabolism , Glycine Plasma Membrane Transport Proteins/genetics , Oocytes/metabolism , Osmotic Pressure
13.
eNeuro ; 10(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37903619

ABSTRACT

Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5 Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5' and 3' untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1G307R from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1G307R did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.


Subject(s)
Glycine , Receptors, Glycine , Mice , Animals , Humans , Receptors, Glycine/metabolism , Glycine/metabolism , Mutation, Missense , Mutation , Alanine/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism
14.
J Labelled Comp Radiopharm ; 66(13): 414-427, 2023 11.
Article in English | MEDLINE | ID: mdl-37727936

ABSTRACT

Stable isotope labeled Iclepertin (BI 425809, 1) and its major metabolites are needed as internal standards in bioanalytical studies. BI 425809 consists of two main building blocks, 5-methylsulfonyl-2-[(1R)-2,2,2-trifluoro-1-methyl-ethoxy]benzoic acid (2) and 3-[(1R,5R)-3-azabicyclo[3.1.0]hexan-5-yl]-5-(trifluoromethyl)isoxazole (3) linked to each other via an amide bond. We used fluoro[13 C6 ]benzene as the starting material in the preparation of [13 C6 ]-2. This intermediate was then employed to access carbon 13 labeled Iclepertin ([13 C6 ]-1) and other metabolites. The major metabolite BI 761036 (6), which resulted from cytochrome P450 oxidation and amide hydrolysis of BI 425809, was prepared labeled with carbon 13 and nitrogen 15 via two synthetic routes. In the first route, diethyl [13 C3 ]malonate, [13 C]methyl iodide, and hydroxyl[15 N]amine were used to provide [13 C4 ,15 N]-BI 761036 ([13 C4 ,15 N]-6a) in 13 steps in 6% overall yield, whereas in the second route, [13 C3 ]propargyl alcohol, potassium [13 C]cyanide, and [15 N]ammonia were used to furnish [13 C4 ,15 N]-BI 761036 ([13 C4 ,15 N]-6b) in 11 steps in 1% overall yield. The detailed stable isotope synthesis of 1 and its major metabolites is described.


Subject(s)
Amides , Glycine Plasma Membrane Transport Proteins , Carbon Isotopes/chemistry
15.
ACS Chem Neurosci ; 14(15): 2634-2647, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37466545

ABSTRACT

Chronic pain is a complex condition that remains resistant to current therapeutics. We previously synthesized a series of N-acyl amino acids (NAAAs) that inhibit the glycine transporter, GlyT2, some of which are also positive allosteric modulators of glycine receptors (GlyRs). In this study, we have synthesized a library of NAAAs that contain a phenylene ring within the acyl tail with the objective of improving efficacy at both GlyT2 and GlyRs and also identifying compounds that are efficacious as dual-acting modulators to enhance glycine neurotransmission. The most efficacious positive allosteric modulator of GlyRs was 2-[8-(2-octylphenyl)octanoylamino]acetic acid (8-8 OPGly) which potentiates the EC5 for glycine activation of GlyRα1 by 1500% with an EC50 of 664 nM. Phenylene-containing NAAAs with a lysine headgroup were the most potent inhibitors of GlyT2 with (2S)-6-amino-2-[8-(3-octylphenyl)octanoylamino]hexanoic acid (8-8 MPLys) inhibiting GlyT2 with an IC50 of 32 nM. The optimal modulator across both proteins was (2S)-6-amino-2-[8-(2-octylphenyl)octanoylamino]hexanoic acid (8-8 OPLys), which inhibits GlyT2 with an IC50 of 192 nM and potentiates GlyRs by up to 335% at 1 µM. When tested in a dual GlyT2/GlyRα1 expression system, 8-8 OPLys caused the greatest reductions in the EC50 for glycine. This suggests that the synergistic effects of a dual-acting modulator cause greater enhancements in glycinergic activity compared to single-target modulators and may provide an alternate approach to the development of new non-opioid analgesics for the treatment of chronic pain.


Subject(s)
Chronic Pain , Glycine Plasma Membrane Transport Proteins , Humans , Glycine Plasma Membrane Transport Proteins/metabolism , Receptors, Glycine , Caproates , Glycine/pharmacology , Glycine/metabolism , Amino Acids
16.
J Labelled Comp Radiopharm ; 66(11): 336-344, 2023 09.
Article in English | MEDLINE | ID: mdl-37382087

ABSTRACT

Carbon 14 labeled Iclepertin (BI 425809, 1) and its major metabolites were needed for ADME and several other studies necessary for the advancement of this drug candidate in clinical trials. Iclepertin is composed of two main chemical blocks, (R)-5-(methylsulfonyl)-2-([1,1,1-trifluoropropan-2-yl]oxy)benzoic acid (2), and 3-[(1R,5R)-3-azabicyclo[3.1.0]hexan-5-yl]-5-(trifluoromethyl)isoxazole (3) linked to each other via an amide bond. In the first synthesis of carbon 14 labeled 1, 2-fluorobenzoic acid, carboxyl-14 C was converted to [14 C]-2 in three steps and then coupled to 3 to provide [14 C]-1a in 45% overall yield. In the second synthesis, [14 C]-3 was prepared in six radioactive steps and coupled to the acid 2 to furnish [14 C]-1b in 20% overall yield. Both synthetic routes provided [14 C]-1a and [14 C]-1b with specific activities higher than 53 mCi/mmol and radiochemical, chemical, and enantiomeric purities above 98%. Two major metabolites of 1, BI 761036 and BI 758790, were also prepared labeled with carbon 14 using intermediates already available from the synthesis of [14 C]-1.


Subject(s)
Organic Chemicals , Carbon Radioisotopes/chemistry , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/metabolism , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Organic Chemicals/metabolism
17.
Schizophr Res ; 256: 36-43, 2023 06.
Article in English | MEDLINE | ID: mdl-37141764

ABSTRACT

N-methyl-d-aspartate glutamate receptor (NMDAR) hypofunction is implicated in the impaired neuroplasticity and cognitive impairments associated with schizophrenia (CIAS). We hypothesized that enhancing NMDAR function by inhibiting the glycine transporter-1 (GLYT1) would improve neuroplasticity and thereby augment benefits of non-pharmacological cognitive training (CT) strategies. This study examined whether co-administration of a GLYT1 inhibitor and computerized CT would have synergistic effects on CIAS. Stable outpatients with schizophrenia participated in this double-blind, placebo-controlled, within-subject, crossover augmentation study. Participants received placebo or GLYT1 inhibitor (PF-03463275) for two 5-week periods separated by 2 weeks of washout. PF-03463275 doses (40 or 60 mg twice daily) were selected to produce high GLYT1 occupancy. To limit pharmacodynamic variability, only cytochrome P450 2D6 extensive metabolizers were included. Medication adherence was confirmed daily. Participants received 4 weeks of CT in each treatment period. Cognitive performance (MATRICS Consensus Cognitive Battery) and psychotic symptoms (Positive and Negative Syndrome Scale) were assessed in each period. 71 participants were randomized. PF-03463275 in combination with CT was feasible, safe, and well-tolerated at the doses prescribed but did not produce greater improvement in CIAS compared to CT alone. PF-03463275 was not associated with improved CT learning parameters. Participation in CT was associated with improvement in MCCB scores.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/complications , Schizophrenia/drug therapy , Glycine Plasma Membrane Transport Proteins , Cognitive Training , Antipsychotic Agents/therapeutic use , Neuronal Plasticity , Double-Blind Method
18.
Neuropharmacology ; 232: 109514, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37003571

ABSTRACT

NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Subject(s)
Glycine Plasma Membrane Transport Proteins , Receptors, N-Methyl-D-Aspartate , Central Nervous System/metabolism , Glutamic Acid/metabolism , Glycine/pharmacology , Glycine Plasma Membrane Transport Proteins/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Humans , Animals
19.
Int J Mol Sci ; 24(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37108107

ABSTRACT

A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.


Subject(s)
Glycine Plasma Membrane Transport Proteins , Posterior Horn Cells , Humans , Glycine Plasma Membrane Transport Proteins/metabolism , Posterior Horn Cells/metabolism , Neurons/metabolism , Spinal Cord Dorsal Horn/metabolism , Pain/metabolism , Spinal Cord/metabolism
20.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1557-1566, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36971864

ABSTRACT

Schizophrenia is a psychiatric disorder characterised by symptoms in three domains: positive (e.g. delusions, hallucinations), negative (e.g. social withdrawal, lack of motivation) and cognitive (e.g. working memory and executive function impairment). Cognitive impairment associated with schizophrenia (CIAS) is a major burden for patients and negatively impacts many aspects of a patient's life. Antipsychotics are the standard-of-care treatment for schizophrenia but only address positive symptoms. So far there are no approved pharmacotherapies for the treatment of CIAS. Iclepertin (BI 425809) is a novel, potent and selective glycine transporter 1 (GlyT1) inhibitor, under development by Boehringer Ingelheim for the treatment of CIAS. Phase I studies have shown it to be safe and well tolerated in healthy volunteers, and central target engagement (inhibition of GlyT1) was achieved in a dose-dependent manner from 5 to 50 mg in healthy volunteers. A Phase II study has demonstrated that iclepertin is safe and well tolerated in patients with schizophrenia and improves cognition at doses of 10 mg and 25 mg. Phase III studies are ongoing to confirm these initial positive safety and efficacy findings with the 10 mg dose, and if successful, iclepertin could become the first approved pharmacotherapy used to treat CIAS.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Humans , Schizophrenia/complications , Schizophrenia/drug therapy , Glycine Plasma Membrane Transport Proteins , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Organic Chemicals , Clinical Trials, Phase II as Topic
SELECTION OF CITATIONS
SEARCH DETAIL