Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Appl Biochem Biotechnol ; 184(3): 909-918, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28918449

ABSTRACT

The compound 2-deoxy-2-fluoro-α-D-glucopyranosyl fluoride (F2Glc), which is a nonmetabolized superior glucose analogue, is a potent inhibitor of glycogen phosphorylase and pharmacological properties are reported. Glycogen phosphorylase (GP) and glycogen synthase (GS) are responsible of the degradation and synthesis, respectively, of glycogen which is a polymer of glucose units that provides a readily available source of energy in mammals. GP and GS are two key enzymes that modulate cellular glucose and glycogen levels; therefore, these proteins are suggested as potential targets for the treatment of diseases related to glycogen metabolism disorders. We studied by Western Blot technique that F2Glc decreased GP activity, and we also showed that F2Glc did not affect GS activity and its translocation from a uniform cytosolic distribution to the hepatocyte periphery, which is crucial for glycogen synthesis, using immunoblotting and immunofluorescence labeling techniques. F2Glc specifically inhibits glycogenolysis pathway and permits a greater deposition of glycogen. These observations open up the possibility of further develop drugs that act specifically on GP. The ability to selectively inhibit GP, which is a key enzyme for the release of glucose from the hepatic glycogen reserve, may represent a new approach for the treatment of hyperglycemia in type 2 diabetes.


Subject(s)
Deoxyglucose/analogs & derivatives , Glycogen Synthase/biosynthesis , Glycogen Synthase/metabolism , Hepatocytes/metabolism , Animals , Deoxyglucose/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Glycogen , Hepatocytes/cytology , Male , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley
2.
Mol Cell Biochem ; 424(1-2): 203-208, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27785702

ABSTRACT

Glycogen synthase kinase 3ß (GSK3ß) is a ubiquitous serine/threonine kinase and has important roles in glycogen metabolism biosynthesis. Studies have revealed that GSK3ß can directly regulate the glycogen synthase activity, yet little is known about the regulation of GSK3ß on GYS1 gene transcription. Here, we show that overexpression of GSK3ß decreased the mRNA expression level of GYS1. Then we cloned approximately 1.5 kb of pig GYS1 gene promoter region, generated sequential deletion constructs, and evaluated their activity. A gradual increase of the promoter activity was seen with increasing length of the promoter sequence, reaching its highest activity to the sequence corresponding to nt -350 to +224, and then decreased. However, the activities of constructed promoter fragments show different responses to GSK3ß co-transfection. By analyzing a series of GYS1 promoter reporter constructs, we have defined two crucial regions (-1488 to -539, -350 to -147) that are responsible for GSK3ß-induced transcriptional repression. Furthermore, the ChIP results revealed that only the first and second NF-κB sites of GYS1 promoter could bind to p65, and overexpression of GSK3ß induced a significant decrease in p65 binding to the second NF-κB binding site, suggesting that GSK3ß may regulate expression of GYS1 gene through binding to the second rather than the first NF-κB site. These data suggest that the NF-κB plays important roles in the transcriptional activity of pig GYS1 gene regulated by GSK3ß.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase/biosynthesis , Response Elements/physiology , Transcription Factor RelA/metabolism , Transcription, Genetic/physiology , Animals , Cell Line , Glycogen Synthase/genetics , Glycogen Synthase Kinase 3 beta/genetics , Swine , Transcription Factor RelA/genetics
3.
Diabetologia ; 58(7): 1569-78, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25870023

ABSTRACT

AIMS/HYPOTHESIS: Insulin and exercise stimulate skeletal muscle glycogen synthase (GS) activity by dephosphorylation and changes in kinetic properties. The aim of this study was to investigate the effects of insulin, exercise and post-exercise insulin stimulation on GS phosphorylation, activity and substrate affinity in obesity and type 2 diabetes. METHODS: Obese men with type 2 diabetes (n = 13) and weight-matched controls (n = 14) underwent euglycaemic-hyperinsulinaemic clamps in the rested state and 3 h after 60 min of cycling (70% maximal pulmonary oxygen uptake [VO2max]). Biopsies from vastus lateralis muscle were obtained before and after clamps, and before and immediately after exercise. RESULTS: Insulin-stimulated glucose uptake was lower in diabetic patients vs obese controls with or without prior exercise. Post exercise, glucose partitioning shifted away from oxidation and towards storage in both groups. Insulin and, more potently, exercise increased GS activity (fractional velocity [FV]) and substrate affinity in both groups. Both stimuli caused dephosphorylation of GS at sites 3a + 3b, with exercise additionally decreasing phosphorylation at sites 2 + 2a. In both groups, changes in GS activity, substrate affinity and dephosphorylation at sites 3a + 3b by exercise were sustained 3 h post exercise and further enhanced by insulin. Post exercise, reduced GS activity and substrate affinity as well as increased phosphorylation at sites 2 + 2a were found in diabetic patients vs obese controls. CONCLUSIONS/INTERPRETATION: Exercise-induced activation of muscle GS in obesity and type 2 diabetes involves dephosphorylation of GS at sites 3a + 3b and 2 + 2a and enhanced substrate affinity, which is likely to facilitate glucose partitioning towards storage. Lower GS activity and increased phosphorylation at sites 2 + 2a in type 2 diabetes in the recovery period imply an impaired response to exercise.


Subject(s)
Diabetes Mellitus, Type 2/enzymology , Exercise , Glycogen Synthase/biosynthesis , Muscle, Skeletal/enzymology , Bicycling , Biopsy , Cohort Studies , Diabetes Mellitus, Type 2/complications , Glucose Clamp Technique , Glycogen/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Insulin/pharmacology , Kinetics , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Phosphorylation , Uridine Diphosphate Glucose/metabolism
4.
Protein Expr Purif ; 108: 23-29, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25527037

ABSTRACT

We report the successful expression and purification of functional human muscle glycogen synthase (GYS1) in complex with human glycogenin-1 (GN1). Stoichiometric GYS1:GN1 complex was produced by co-expression of GYS1 and GN1 using a bicistronic pFastBac™-Dual expression vector, followed by affinity purification and subsequent size-exclusion chromatography. Mass spectrometry analysis identified that GYS1 is phosphorylated at several well-characterised and uncharacterised Ser/Thr residues. Biochemical analysis, including activity ratio (in the absence relative to that in the presence of glucose-6-phosphate) measurement, covalently attached phosphate estimation as well as phosphatase treatment, revealed that recombinant GYS1 is substantially more heavily phosphorylated than would be observed in intact human or rodent muscle tissues. A large quantity of highly-pure stoichiometric GYS1:GN1 complex will be useful to study its structural and biochemical properties in the future, which would reveal mechanistic insights into its functional role in glycogen biosynthesis.


Subject(s)
Gene Expression , Glucosyltransferases , Glycogen Synthase , Glycoproteins , Multienzyme Complexes , Animals , Glucosyltransferases/biosynthesis , Glucosyltransferases/genetics , Glucosyltransferases/isolation & purification , Glycogen Synthase/biosynthesis , Glycogen Synthase/genetics , Glycogen Synthase/isolation & purification , Glycoproteins/biosynthesis , Glycoproteins/genetics , Glycoproteins/isolation & purification , Humans , Multienzyme Complexes/biosynthesis , Multienzyme Complexes/genetics , Multienzyme Complexes/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sf9 Cells , Spodoptera
5.
Histochem Cell Biol ; 143(3): 313-24, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25371328

ABSTRACT

Diabetic nephropathy (DN) is a major complication of diabetic patients and the leading cause of end-stage renal disease. Glomerular dysfunction plays a critical role in DN, but deterioration of renal function also correlates with tubular alterations. Human DN is characterized by glycogen accumulation in tubules. Although this pathological feature has long been recognized, little information exists about the triggering mechanism. In this study, we detected over-expression of muscle glycogen synthase (MGS) in diabetic human kidney. This enhanced expression suggests the participation of MGS in renal metabolic changes associated with diabetes. HK2 human renal cell line exhibited an intrinsic ability to synthesize glycogen, which was enhanced after over-expression of protein targeting to glycogen. A correlation between increased glycogen amount and cell death was observed. Based on a previous transcriptome study on human diabetic kidney disease, significant differences in the expression of genes involved in glycogen metabolism were analyzed. We propose that glucose, but not insulin, is the main modulator of MGS activity in HK2 cells, suggesting that blood glucose control is the best approach to modulate renal glycogen-induced damage during long-term diabetes.


Subject(s)
Diabetes Mellitus, Type 2/enzymology , Diabetic Nephropathies/enzymology , Gene Expression Regulation, Enzymologic , Glycogen Synthase/biosynthesis , Muscles/enzymology , Aged , Cells, Cultured , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/pathology , Female , Gene Expression Profiling , Glycogen Synthase/metabolism , Humans , Immunohistochemistry , Male , Real-Time Polymerase Chain Reaction
6.
Nat Commun ; 4: 2316, 2013.
Article in English | MEDLINE | ID: mdl-23939267

ABSTRACT

During fasting, animals maintain their energy balance by shifting their energy source from carbohydrates to triglycerides. However, the trigger for this switch has not yet been entirely elucidated. Here we show that a selective hepatic vagotomy slows the speed of fat consumption by attenuating sympathetic nerve-mediated lipolysis in adipose tissue. Hepatic glycogen pre-loading by the adenoviral overexpression of glycogen synthase or the transcription factor TFE3 abolished this liver-brain-adipose axis activation. Moreover, the blockade of glycogenolysis [corrected] through the knockdown of the glycogen phosphorylase gene and the resulting elevation in the glycogen content abolished the lipolytic signal from the liver, indicating that glycogen is the key to triggering this neurocircuitry. These results demonstrate that liver glycogen shortage activates a liver-brain-adipose neural axis that has an important role in switching the fuel source from glycogen to triglycerides under prolonged fasting conditions.


Subject(s)
Adipose Tissue/innervation , Fasting/metabolism , Liver Glycogen/metabolism , Sympathetic Nervous System/metabolism , Triglycerides/metabolism , Adipose Tissue/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/metabolism , Energy Metabolism , Glycogen Phosphorylase/genetics , Glycogen Phosphorylase/metabolism , Glycogen Synthase/biosynthesis , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Glycogenolysis/genetics , Guanethidine/pharmacology , Lipolysis/physiology , Liver/innervation , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Nerve Block , Sympathetic Nervous System/drug effects , Sympatholytics/pharmacology , Vagus Nerve/surgery
7.
J Neurochem ; 118(4): 596-610, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21668450

ABSTRACT

Abnormal regulation of brain glycogen metabolism is believed to underlie insulin-induced hypoglycaemia, which may be serious or fatal in diabetic patients on insulin therapy. A key regulator of glycogen levels is glycogen targeted protein phosphatase 1 (PP1), which dephosphorylates and activates glycogen synthase (GS) leading to an increase in glycogen synthesis. In this study, we show that the gene PPP1R3F expresses a glycogen-binding protein (R3F) of 82.8 kDa, present at the high levels in rodent brain. R3F binds to PP1 through a classical 'RVxF' binding motif and substitution of Phe39 for Ala in this motif abrogates PP1 binding. A hydrophobic domain at the carboxy-terminus of R3F has similarities to the putative membrane binding domain near the carboxy-terminus of striated muscle glycogen targeting subunit G(M)/R(GL), and R3F is shown to bind not only to glycogen but also to membranes. GS interacts with PP1-R3F and is hyperphosphorylated at glycogen synthase kinase-3 sites (Ser640 and Ser644) when bound to R3F(Phe39Ala). Deprivation of glucose or stimulation with adenosine or noradrenaline leads to an increased phosphorylation of PP1-R3F bound GS at Ser640 and Ser644 curtailing glycogen synthesis and facilitating glycogen degradation to provide glucose in astrocytoma cells. Adenosine stimulation also modulates phosphorylation of R3F at Ser14/Ser18.


Subject(s)
Astrocytoma/enzymology , Brain Neoplasms/enzymology , Carrier Proteins/physiology , Extracellular Space/physiology , Glucose/pharmacology , Glycogen Synthase/biosynthesis , Phosphoprotein Phosphatases/physiology , Protein Phosphatase 1/physiology , Signal Transduction/drug effects , Adenosine/pharmacology , Adrenergic alpha-Agonists/pharmacology , Amino Acid Sequence , Animals , Astrocytoma/genetics , Brain/drug effects , Brain/enzymology , Brain Neoplasms/genetics , Carrier Proteins/genetics , Cell Line, Tumor , DNA/biosynthesis , DNA/genetics , Glycogen/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutagenesis , Norepinephrine/pharmacology , Phosphoprotein Phosphatases/genetics , Phosphorylation , Protein Phosphatase 1/genetics , RNA/biosynthesis , RNA/genetics , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
8.
Infect Immun ; 79(3): 1044-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21199910

ABSTRACT

We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes.


Subject(s)
Chlamydia Infections/genetics , Chlamydia muridarum/genetics , Chlamydia trachomatis/genetics , Gene Expression Regulation, Bacterial/genetics , Plasmids/genetics , Toll-Like Receptor 2/metabolism , Animals , Cell Line , Chlamydia Infections/metabolism , Chlamydia muridarum/metabolism , Chlamydia muridarum/pathogenicity , Chlamydia trachomatis/metabolism , Chlamydia trachomatis/pathogenicity , Chromosomes, Bacterial/genetics , Gene Expression , Genetic Loci , Glucose/metabolism , Glycogen/metabolism , Glycogen Synthase/biosynthesis , Glycogen Synthase/genetics , Humans , Inclusion Bodies/metabolism , Mice , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Virulence/genetics
9.
J Biol Chem ; 284(6): 3425-32, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19073609

ABSTRACT

O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. We have previously shown a significant induction of O-GlcNAc modification under conditions of glucose deprivation. Increased O-GlcNAc modification was mediated by increased mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (ncOGT). We have investigated the mechanism mediating ncOGT induction with glucose deprivation. The signal does not appear to be general energy depletion because no differences in AMP-dependent kinase protein levels or phosphorylation were observed between glucose-deprived and normal glucose-treated cells. However, treatment of glucose-deprived cells with a small dose (1 mm) of glucosamine blocked the induction of ncOGT mRNA and subsequent increase in O-GlcNAc protein modification, suggesting that decreased hexosamine flux is the signal for ncOGT up-regulation. Consistent with this, treatment of glucose-deprived cells with an inhibitor of O-GlcNAcase (O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenyl carbamat) completely prevented the subsequent up-regulation of ncOGT. Glucosamine treatment also resulted in a 40% rescue of the down-regulation of glycogen synthase activity normally seen after glucose deprivation. We conclude that deglycosylation of proteins within the first few hours of glucose deprivation promotes ncOGT induction. These findings suggest a novel negative feedback regulatory loop for OGT and O-GlcNAc regulation.


Subject(s)
Acetylglucosamine/metabolism , Glucose/metabolism , N-Acetylglucosaminyltransferases/biosynthesis , Protein Processing, Post-Translational/physiology , AMP-Activated Protein Kinases/metabolism , Acetylglucosamine/pharmacology , Cell Line, Tumor , Cell Nucleus/enzymology , Cytoplasm/enzymology , Enzyme Induction/drug effects , Enzyme Induction/physiology , Glycogen Synthase/biosynthesis , Humans , Phosphorylation/drug effects , Phosphorylation/physiology , Protein Processing, Post-Translational/drug effects , RNA, Messenger/biosynthesis
10.
Am J Physiol Endocrinol Metab ; 295(4): E798-809, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18577693

ABSTRACT

Cloned mouse embryos display a marked preference for glucose-containing culture medium, with enhanced development to the blastocyst stage in glucose-containing medium attributable mainly to an early beneficial effect during the first cell cycle. This early beneficial effect of glucose is not displayed by parthenogenetic, fertilized, or tetraploid nuclear transfer control embryos, indicating that it is specific to diploid clones. Precocious localization of the glucose transporter SLC2A1 to the cell surface, as well as increased expression of glucose transporters and increased uptake of glucose at the one- and two-cell stages, is also seen in cloned embryos. To examine the role of glucose in early cloned embryo development, we examined glucose metabolism and associated metabolites, as well as mitochondrial ultrastructure, distribution, and number. Clones prepared with cumulus cell nuclei displayed significantly enhanced glucose metabolism at the two-cell stage relative to parthenogenetic controls. Despite the increase in metabolism, ATP content was reduced in clones relative to parthenotes and fertilized controls. Clones at both stages displayed elevated concentrations of glycogen compared with parthenogenetic controls. There was no difference in the number of mitochondria, but clone mitochondria displayed ultrastructural alterations. Interestingly, glucose availability positively affected mitochondrial structure and localization. We conclude that cloned embryos may be severely compromised in terms of ATP-dependent processes during the first two cell cycles and that glucose may exert its early beneficial effects via positive effects on the mitochondria.


Subject(s)
Embryonic Development/physiology , Glucose/physiology , Adenosine Triphosphate/metabolism , Adenylate Kinase/metabolism , Animals , Cell Nucleus/drug effects , Cell Nucleus/physiology , Cloning, Organism , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Female , Fertilization in Vitro , Glycogen/metabolism , Glycogen Synthase/biosynthesis , Glycogen Synthase/genetics , Hybrid Cells , Mice , Microscopy, Electron, Transmission , Oocytes/drug effects , Parthenogenesis , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL