Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.379
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731937

ABSTRACT

Due to the favorable features obtained through the incorporation of fluorine atom(s), fluorinated drugs are a group with emerging pharmaceutical importance. As their commercial availability is still very limited, to expand the range of possible candidates, new fluorinated tryptophan analogs were synthesized. Control of enantiopurity during the synthesis procedure requires that highly efficient enantioseparation methods be available. In this work, the enantioseparation of seven fluorinated tryptophans and tryptophan was studied and compared systematically to (i) develop analytical methods for enantioselective separations and (ii) explore the chromatographic features of the fluorotrytophans. For enantioresolution, macrocyclic glycopeptide-based selectors linked to core-shell particles were utilized, applying liquid chromatography-based methods. Application of the polar-ionic mode resulted in asymmetric and broadened peaks, while reversed-phase conditions, together with mobile-phase additives, resulted in baseline separation for all studied fluorinated tryptophans. The marked differences observed between the methanol and acetonitrile-containing eluent systems can be explained by the different solvation abilities of the bulk solvents of the applied mobile phases. Among the studied chiral selectors, teicoplanin and teicoplanin aglycone were found to work effectively. Under optimized conditions, baseline separations were achieved within 6 min. Ionic interactions were semi-quantitatively characterized and found to not influence enantiorecognition. Interestingly, fluorination of the analytes does not lead to marked changes in the chromatographic characteristics of the methanol-containing eluents, while larger differences were noticed when the polar but aprotic acetonitrile was applied. Experiments conducted on the influence of the separation temperature indicated that the separations are enthalpically driven, with only one exception. Enantiomeric elution order was found to be constant on both teicoplanin and teicoplanin aglycone-based chiral stationary phases (L < D) under all applied chromatographic conditions.


Subject(s)
Glycopeptides , Halogenation , Teicoplanin , Tryptophan , Tryptophan/chemistry , Tryptophan/analogs & derivatives , Glycopeptides/chemistry , Stereoisomerism , Teicoplanin/chemistry , Teicoplanin/analogs & derivatives , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Macrocyclic Compounds/chemistry
2.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743074

ABSTRACT

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Subject(s)
Codonopsis , Phenotype , Tumor Microenvironment , Tumor-Associated Macrophages , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Animals , Mice , Tumor Microenvironment/drug effects , Humans , Glycopeptides/metabolism , Glycopeptides/pharmacology , Macrophage Activation/drug effects , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/immunology
3.
J Mass Spectrom ; 59(6): e5034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726698

ABSTRACT

Glycosylation is an incredibly common and diverse post-translational modification that contributes widely to cellular health and disease. Mass spectrometry is the premier technique to study glycoproteins; however, glycoproteomics has lagged behind traditional proteomics due to the challenges associated with studying glycosylation. For instance, glycans dissociate by collision-based fragmentation, thus necessitating electron-based fragmentation for site-localization. The vast glycan heterogeneity leads to lower overall abundance of each glycopeptide, and often, ion suppression is observed. One of the biggest issues facing glycoproteomics is the lack of reliable software for analysis, which necessitates manual validation and serves as a massive bottleneck in data processing. Here, I will discuss each of these challenges and some ways in which the field is attempting to address them, along with perspectives on how I believe we should move forward.


Subject(s)
Glycomics , Glycoproteins , Mass Spectrometry , Proteomics , Proteomics/methods , Glycomics/methods , Mass Spectrometry/methods , Glycoproteins/analysis , Glycoproteins/chemistry , Humans , Glycosylation , Polysaccharides/analysis , Polysaccharides/chemistry , Glycopeptides/analysis , Glycopeptides/chemistry , Software , Protein Processing, Post-Translational , Animals
4.
Ceska Gynekol ; 89(2): 89-94, 2024.
Article in English | MEDLINE | ID: mdl-38704219

ABSTRACT

OBJECTIVE: Copeptin is a stable fragment of vasopressin. Copeptin levels have been found to reflect the degree of endothelial stress in various conditions, including acute coronary syndrome. Copeptin may be a bio marker for endothelial stress during pregnancy. However, there is still a lack of understanding of its dynamics and levels throughout pregnancy. This study aims to describe intra-individual and longitudinal changes in copeptin levels at 30th and 36th gestational weeks in healthy pregnant women with uncomplicated pregnancy and delivery and to establish specific reference ranges. METHODS: A total of 125 pregnant women with uncomplicated pregnancy and delivery were included. These women were monitored throughout their pregnancy and gave birth at the Department of Obstetrics and Gynecology Olomouc University Hospital. The blood was taken at ~30 and ~36 gestational weeks. Serum copeptin levels were measured using a Kryptor Compact PLUS analyzer. For statistics, we used R software and the "referenceRanges" package. RESULTS: It was found that serum levels of copeptin were significantly higher in the 36th week group than in the 30th week group (P < 0.05). Cook's distance was used to eliminate outliers. The 30th week median was 3.377 pmol/l, reference range = 1.343-7.829 pmol/l, and the 36 week was median 4.735 pmol/l and reference range = 2.06-13.2 pmol/l. In the 36th week reference range, the median was higher than in healthy, non-pregnant women (P < 0.05). Copeptin values can exceed 10 pmol/l, particularly after the 36th week. In the 3rd trimester, this value may indicate cardiovascular and endothelial overload. CONCLUSION: Copeptin levels were found to vary significantly depending on gestational week. The proposed reference ranges take into account the increased secretion of vasopressin in pregnancy. The existence of specific upper reference limits represents a potential advantage in detecting pregnant women prone to hypertensive disease in the 3rd trimester.


Subject(s)
Glycopeptides , Pregnancy Trimester, Third , Humans , Female , Glycopeptides/blood , Pregnancy , Reference Values , Pregnancy Trimester, Third/blood , Adult , Biomarkers/blood
5.
J Transl Med ; 22(1): 454, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741158

ABSTRACT

BACKGROUND: Glycosylation is an enzyme-catalyzed post-translational modification that is distinct from glycation and is present on a majority of plasma proteins. N-glycosylation occurs on asparagine residues predominantly within canonical N-glycosylation motifs (Asn-X-Ser/Thr) although non-canonical N-glycosylation motifs Asn-X-Cys/Val have also been reported. Albumin is the most abundant protein in plasma whose glycation is well-studied in diabetes mellitus. However, albumin has long been considered a non-glycosylated protein due to absence of canonical motifs. Albumin contains two non-canonical N-glycosylation motifs, of which one was recently reported to be glycosylated. METHODS: We enriched abundant serum proteins to investigate their N-linked glycosylation followed by trypsin digestion and glycopeptide enrichment by size-exclusion or mixed-mode anion-exchange chromatography. Glycosylation at canonical as well as non-canonical sites was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of enriched glycopeptides. Deglycosylation analysis was performed to confirm N-linked glycosylation at non-canonical sites. Albumin-derived glycopeptides were fragmented by MS3 to confirm attached glycans. Parallel reaction monitoring was carried out on twenty additional samples to validate these findings. Bovine and rabbit albumin-derived glycopeptides were similarly analyzed by LC-MS/MS. RESULTS: Human albumin is N-glycosylated at two non-canonical sites, Asn68 and Asn123. N-glycopeptides were detected at both sites bearing four complex sialylated glycans and validated by MS3-based fragmentation and deglycosylation studies. Targeted mass spectrometry confirmed glycosylation in twenty additional donor samples. Finally, the highly conserved Asn123 in bovine and rabbit serum albumin was also found to be glycosylated. CONCLUSIONS: Albumin is a glycoprotein with conserved N-linked glycosylation sites that could have potential clinical applications.


Subject(s)
Glycopeptides , Glycoproteins , Glycosylation , Glycoproteins/metabolism , Glycoproteins/chemistry , Humans , Glycopeptides/metabolism , Glycopeptides/chemistry , Amino Acid Sequence , Tandem Mass Spectrometry , Animals , Molecular Sequence Data , Albumins/metabolism , Cattle , Chromatography, Liquid
6.
Peptides ; 176: 171213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604379

ABSTRACT

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Subject(s)
Adrenocorticotropic Hormone , Glucagon , Glycopeptides , Humans , Glycopeptides/metabolism , Glucagon/metabolism , Glucagon/blood , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Male , Adult , Female , Pituitary Gland/metabolism , Pituitary Gland/drug effects , Hydrocortisone/blood , Receptors, Glucagon/metabolism , Human Growth Hormone/metabolism , Growth Hormone/metabolism , Growth Hormone/blood , Middle Aged
7.
Br J Cancer ; 130(10): 1716-1724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658783

ABSTRACT

BACKGROUND: There is a need for diagnostic tests for screening, triaging and staging of epithelial ovarian cancer (EOC). Glycoproteomics of blood samples has shown promise for biomarker discovery. METHODS: We applied glycoproteomics to serum of people with EOC or benign pelvic masses and healthy controls. A total of 653 analytes were quantified and assessed in multivariable models, which were tested in an independent cohort. Additionally, we analyzed glycosylation patterns in serum markers and in tissues. RESULTS: We identified a biomarker panel that distinguished benign lesions from EOC with sensitivity and specificity of 83.5% and 90.1% in the training set, and of 86.7 and 86.7% in the test set, respectively. ROC analysis demonstrated strong performance across a range of cutoffs. Fucosylated multi-antennary glycopeptide markers were higher in late-stage than in early-stage EOC. A comparable pattern was found in late-stage EOC tissues. CONCLUSIONS: Blood glycopeptide biomarkers have the potential to distinguish benign from malignant pelvic masses, and early- from late-stage EOC. Glycosylation of circulating and tumor tissue proteins may be related. This study supports the hypothesis that blood glycoproteomic profiling can be used for EOC diagnosis and staging and it warrants further clinical evaluation.


Subject(s)
Biomarkers, Tumor , Carcinoma, Ovarian Epithelial , Neoplasm Staging , Ovarian Neoplasms , Proteomics , Humans , Female , Ovarian Neoplasms/blood , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/blood , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/pathology , Biomarkers, Tumor/blood , Proteomics/methods , Middle Aged , Aged , Glycosylation , Adult , Glycopeptides/blood , Neoplasms, Glandular and Epithelial/blood , Neoplasms, Glandular and Epithelial/diagnosis , Neoplasms, Glandular and Epithelial/pathology , Glycoproteins/blood , Case-Control Studies , Sensitivity and Specificity
8.
mSphere ; 9(4): e0006124, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38564709

ABSTRACT

Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE: This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.


Subject(s)
Bacterial Proteins , Cysteine , Energy Metabolism , Glycopeptides , Homeostasis , Mycobacterium tuberculosis , Oxidation-Reduction , Oxidative Stress , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Reactive Oxygen Species/metabolism , Antitubercular Agents/pharmacology , Ergothioneine/metabolism , Inositol/metabolism , Mycobacterium marinum/drug effects , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Gene Deletion
9.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38582075

ABSTRACT

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Subject(s)
Glycoproteins , Proteome , Proteomics , Workflow , Humans , Glycosylation , Glycoproteins/metabolism , Glycoproteins/chemistry , Proteomics/methods , Proteome/metabolism , Proteome/analysis , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/metabolism , Kininogens/metabolism , Kininogens/chemistry , Polysaccharides/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/chemistry , Fibrinogen/metabolism , Fibrinogen/chemistry , alpha-2-HS-Glycoprotein/metabolism , alpha-2-HS-Glycoprotein/analysis
10.
Carbohydr Res ; 538: 109094, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564900

ABSTRACT

Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.


Subject(s)
Glycopeptides , Glycoproteins , Humans , Glycopeptides/chemistry , Glycoproteins/chemistry , Glycosylation , Mass Spectrometry/methods , Polysaccharides
11.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675717

ABSTRACT

In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly, L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half maximal inhibitory concentrations (IC50s) were 75.5 µM and 101.9 µM for D-glu-LPPA-1 and D-gal-LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ). These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Glycosylation , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Drug Design , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/chemical synthesis , Glycopeptides/chemistry , Glycopeptides/chemical synthesis , Glycopeptides/pharmacology , Tumor Microenvironment/drug effects , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor
12.
J Transl Med ; 22(1): 331, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575942

ABSTRACT

BACKGROUND: A better diagnostic marker is in need to distinguish breast cancer from suspicious breast lesions. The abnormal glycosylation of haptoglobin has been documented to assist cancer diagnosis. This study aims to evaluate disease-specific haptoglobin (DSHp)-ß N-glycosylation as a potential biomarker for breast cancer diagnosis. METHODS: DSHp-ß chains of 497 patients with suspicious breast lesions who underwent breast surgery were separated from serum immunoinflammatory-related protein complexes. DSHp-ß N-glycosylation was quantified by mass spectrometric analysis. After missing data imputation and propensity score matching, patients were randomly assigned to the training set (n = 269) and validation set (n = 113). Logistic regression analysis was employed in model and nomogram construction. The diagnostic performance was analyzed with receiver operating characteristic and calibration curves. RESULTS: 95 N-glycopeptides at glycosylation sites N207/N211, N241, and N184 were identified in 235 patients with benign breast diseases and 262 patients with breast cancer. DSHp-ß N-tetrafucosyl and hexafucosyl were significantly increased in breast cancer compared with benign diseases (p < 0.001 and p = 0.001, respectively). The new diagnostic model and nomogram included GN2F2, G6N3F6, GN2FS at N184, G-N&G2S2, G2&G3NFS, G2N3F, GN3 at N207/N211, CEA, CA153, and could reliably distinguish breast cancer from benign diseases. For the training set, validation set, and training and validation sets, the area under the curves (AUCs) were 0.80 (95% CI: 0.75-0.86, specificity: 87%, sensitivity: 62%), 0.77 (95% CI:0.69-0.86, specificity: 75%, sensitivity: 69%), and 0.80 (95% CI:0.76-0.84, specificity: 77%, sensitivity: 68%), respectively. CEA, CA153, and their combination yielded AUCs of 0.62 (95% CI: 0.56-0.67, specificity: 29%, sensitivity: 90%), 0.65 (95% CI: 0.60-0.71, specificity: 74%, sensitivity: 51%), and 0.67 (95% CI: 0.62-0.73, specificity: 60%, sensitivity: 68%), respectively. CONCLUSIONS: The combination of DSHp-ß N-glycopeptides, CEA, and CA153 might be a better serologic marker to differentiate between breast cancer and benign breast diseases. The dysregulated N-glycosylation of serum DSHp-ß could provide insights into breast tumorigenesis.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Nomograms , Haptoglobins/chemistry , Glycosylation , Glycopeptides/analysis
13.
Int J Biol Macromol ; 267(Pt 2): 131613, 2024 May.
Article in English | MEDLINE | ID: mdl-38642686

ABSTRACT

As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms. This study aimed to identify and analyze O-linked glycans in HM by high-throughput mass spectrometry. 184 longitudinal HM samples from 66 donors from day 3 and months 1, 2, and 3 postpartum were subjected to a post-translational modification specific enrichment-based strategy using TiO2 and ZrO2 beads for O-linked glycopeptide enrichment. ß-CN was found to be a major O-linked glycoprotein, additionally, αS1-CN, κ-CN, lactotransferrin, and albumin also contained O-linked glycans. As glycosyltransferases and glycosidases are involved in assembling the glycans including O-linked glycosylations, these were further investigated. Some glycosyltransferases and glycosidases were found to be significantly decreasing through lactation, including two O-linked glycan initiator enzymes (GLNT1 and GLNT2). Despite their decrease, the overall level of O-linked glycans remained stable in HM over lactation. Three different motifs for O-linked glycosylation were enriched in HM proteins: Gly-Xxx-Xxx-Gly-Ser/Thr, Arg-Ser/Thr and Lys-Ser/Thr. Further O-linked glycan motifs on ß-CN were observed to differ between intact proteins and endogenous peptides in HM.


Subject(s)
Caseins , Lactation , Milk, Human , Whey Proteins , Humans , Milk, Human/chemistry , Glycosylation , Female , Caseins/metabolism , Caseins/chemistry , Lactation/metabolism , Whey Proteins/chemistry , Whey Proteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Protein Processing, Post-Translational
14.
Int J Surg ; 110(4): 2355-2365, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38668663

ABSTRACT

BACKGROUND: Sepsis syndromes are a major burden in the ICU with very high mortality. Vasopressin and copeptin are released in response to hypovolemia and have shown potential significance in diagnosing sepsis. OBJECTIVE: To investigate the levels of copeptin in patients with sepsis syndromes and evaluate its relation with patient prognosis and mortality. METHODS: Four databases were searched for literature published from inception to the 8th of November 2022. Original research articles where copeptin was measured in sepsis patients and compared with controls were included. Data extraction and synthesis: study characteristics, levels of copeptin in the participants, and copeptin assay description were extracted. Levels of copeptin in patients were pooled and compared with controls in terms of the standard mean difference (SMD) generated using a random-effects model. RESULTS: Fifteen studies met the selection criteria. Copeptin levels were significantly higher in patients with sepsis, severe sepsis, and septic shock as compared to controls [(SMD: 1.49, 95% CI: 0.81-2.16, P<0.0001), (SMD: 1.94, 95% CI: 0.34-3.54, P=0.02), and (SMD: 2.17, 95% CI: 0.68-3.66, P=0.004), respectively]. The highest copeptin levels were noted in septic shock patients. The admission copeptin levels were significantly lower in survivors as compared to nonsurvivors (SMD: -1.73; 95% CI: -2.41 to -1.06, P<0.001). CONCLUSION AND RELEVANCE: Copeptin was significantly elevated in sepsis, severe sepsis, and septic shock. Survivors had a significantly lower copeptin during admission. Copeptin offered an excellent predictability to predict 1-month mortality. Measuring the copeptin in sepsis patients can aid treating physicians to foresee patients' prognosis.


Subject(s)
Glycopeptides , Sepsis , Humans , Glycopeptides/blood , Prognosis , Sepsis/mortality , Sepsis/blood , Sepsis/diagnosis , Biomarkers/blood
15.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587076

ABSTRACT

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Complement C4 , Glycopeptides , Biomarkers , Polysaccharides
16.
J Appl Lab Med ; 9(3): 430-439, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38576222

ABSTRACT

BACKGROUND: Plasma copeptin measurement is useful for the differential diagnoses of polyuria-polydipsia syndrome. It has also been proposed as a prognostic marker for cardiovascular diseases. However, limited information is available about the within- (CVI) and between-subject (CVG) biological variation (BV). This study presents BV estimates for copeptin in healthy individuals. METHODS: Samples were collected weekly from 41 healthy subjects over 5 weeks and analyzed using the BRAHMS Copeptin proAVP KRYPTOR assay after at least 8 h of food and fluid abstinence. Outlier detection, variance homogeneity, and trend analysis were performed followed by CV-ANOVA for BV and analytical variation (CVA) estimation with 95% confidence intervals. Reference change values (RCVs), index of individuality (II), and analytical performance specification (APS) were also calculated. RESULTS: The analysis included 178 results from 20 males and 202 values from 21 females. Copeptin concentrations were significantly higher in males than in females (mean 8.5 vs 5.2 pmol/L, P < 0.0001). CVI estimates were 18.0% (95% CI, 15.4%-21.6%) and 19.0% (95% CI, 16.4%-22.6%), for males and females, respectively; RCVs were -35% (decreasing value) and 54% (increasing value). There was marked individuality for copeptin. No result exceeded the diagnostic threshold (>21.4 pmol/L) for arginine vasopressin resistance. CONCLUSIONS: The availability of BV data allows for refined APS and associated II, and RCVs applicable as aids in the serial monitoring of patients with specific diseases such as heart failure. The BV estimates are only applicable in subjects who abstained from oral intake due to the rapid and marked effects of fluids on copeptin physiology.


Subject(s)
Biomarkers , Glycopeptides , Humans , Glycopeptides/blood , Male , Female , Adult , Biomarkers/blood , Middle Aged , Reference Values , Polyuria/blood , Polyuria/diagnosis , Polydipsia/blood , Polydipsia/diagnosis , Young Adult
17.
J Proteome Res ; 23(5): 1571-1582, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38594959

ABSTRACT

Reproducibility is a "proteomic dream" yet to be fully realized. A typical data analysis workflow utilizing extracted ion chromatograms (XICs) often treats the information path from identification to quantification as a one-way street. Here, we propose an XIC-centric approach in which the data flow is bidirectional: identifications are used to derive XICs whose information is in turn applied to validate the identifications. In this study, we employed liquid chromatography-mass spectrometry data from glycoprotein and human hair samples to illustrate the XIC-centric concept. At the core of this approach was XIC-based monoisotope repicking. Taking advantage of the intensity information for all detected isotopes across the whole range of an XIC peak significantly improved the accuracy and uncovered misidentifications originating from monoisotope assignment mistakes. It could also rescue non-top-ranked glycopeptide hits. Identification of glycopeptides is particularly susceptible to precursor mass errors for their low abundances, large masses, and glycans differing by 1 or 2 Da easily confused as isotopes. In addition, the XIC-centric strategy significantly reduced the problem of one XIC peak associated with multiple unique identifications, a source of quantitative irreproducibility. Taken together, the proposed approach can lead to improved identification and quantification accuracy and, ultimately, enhanced reproducibility in proteomic data analyses.


Subject(s)
Hair , Proteomics , Proteomics/methods , Humans , Chromatography, Liquid/methods , Hair/chemistry , Reproducibility of Results , Glycoproteins/analysis , Glycoproteins/chemistry , Glycopeptides/analysis , Glycopeptides/chemistry , Data Analysis , Mass Spectrometry/methods , Tandem Mass Spectrometry/methods
18.
Article in English | MEDLINE | ID: mdl-38547700

ABSTRACT

Glycopeptide enrichment is a crucial step in glycoproteomic analysis, often achieved through solid-phase extraction (SPE) on polar stationary phases in hydrophilic interaction liquid chromatography (HILIC). This study explores the potential of polyaniline (PANI)-coated silica gel for enriching human immunoglobulin G (IgG). Experimental conditions were varied to assess their impact on glycopeptide enrichment efficiency, comparing PANI-cotton wool SPE with conventional cotton wool as SPE sorbents. Two formic acid concentrations (0.1% and 1%) in elution solvent were tested, revealing that higher concentrations led to earlier elution of studied glycopeptides, especially for sialylated glycopeptides. Substituting formic acid with acetic acid increased the interaction of neutral glycopeptides with the PANI-modified sorbent, while sialylated glycopeptides showed no significant change in enrichment efficiency. Acetonitrile concentration in the elution solvent (5%, 10%, and 20%) affected the enrichment efficiency with most glycopeptides eluting at the lowest acetonitrile concentration. The acetonitrile concentration in conditioning and washing solutions (65%, 75%, and 85%) played a crucial role; at 65% acetonitrile, glycopeptides were least retained on the stationary phase, and neutral glycopeptides were even detected in the flow-through fraction. This study shows the potential of in-house-prepared PANI-modified sorbents for SPE-HILIC glycopeptide enrichment, highlighting the crucial role of tuning experimental conditions in sample preparation to enhance enrichment efficiency and selectivity.


Subject(s)
Aniline Compounds , Formates , Glycopeptides , Solid Phase Extraction , Humans , Glycopeptides/chemistry , Chromatography, Liquid/methods , Solvents , Solid Phase Extraction/methods , Hydrophobic and Hydrophilic Interactions , Acetonitriles
19.
J Pharm Biomed Anal ; 244: 116123, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554555

ABSTRACT

Monoclonal antibodies like Herceptin play a pivotal role in modern therapeutics, with their glycosylation patterns significantly influencing their bioactivity. To characterize the N-glycan profile and their relative abundance in Herceptin, we employed two analytical methods: hydrophilic interaction chromatography with fluorescence detection (HILIC-FLD) for released glycans and liquid chromatography tandem mass spectrometry (LC-MS/MS) for glycopeptides. Our analysis included 21 European Union (EU)-Herceptin lots and 14 United States (US)-Herceptin lots. HILIC-FLD detected 25 glycan species, including positional isomers, revealing comparable chromatographic profiles for both EU and US lots. On the other hand, LC-MS/MS identified 26 glycoforms within the glycopeptide EEQYNSTYR. Both methods showed that a subset of glycans dominated the total abundance. Notably, EU-Herceptin lots with an expiration date of October 2022 exhibited increased levels of afucosylated and high mannose N-glycans. Our statistical comparisons showed that the difference in quantitative results between HILIC-FLD and LC-MS/MS is significant, indicating that the absolute quantitative values depend on the choice of the analytical method. However, despite these differences, both methods demonstrated a strong correlation in relative glycan proportions. This study contributes to the comprehensive analysis of Herceptin's glycosylation, offering insights into the influence of analytical methods on glycan quantification and providing valuable information for the biopharmaceutical industry.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Polysaccharides , Tandem Mass Spectrometry , Trastuzumab , Trastuzumab/analysis , Trastuzumab/chemistry , Glycosylation , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Polysaccharides/analysis , Polysaccharides/chemistry , Humans , Glycopeptides/analysis , Glycopeptides/chemistry , Antineoplastic Agents, Immunological/analysis , Antineoplastic Agents, Immunological/chemistry , Liquid Chromatography-Mass Spectrometry
20.
J Pediatr Endocrinol Metab ; 37(5): 441-444, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38462927

ABSTRACT

OBJECTIVES: Arginine-stimulated serum copeptin has been proposed as a new method to diagnose arginine vasopressin (AVP) deficiency in children and adolescents. Herein we investigated the secretagogic potential of clonidine or L-Dopa on the copeptin serum levels in children. METHODS: Eight stimulation tests (4 with clonidine and 4 with L-Dopa) were performed in eight children (5 boys and 3 girls) with a median age of 6.5 years-old, evaluated for short stature due to possible growth hormone deficiency. Serum copeptin levels were measured at 30, 60, 90, and 120 min after administration of clonidine or L-Dopa. RESULTS: Copeptin levels in serum did not show any significant change in either test (clonidine or L-Dopa). The values of copeptin levels compared to the baseline value did not deviate more than 5 % in the clonidine arm (p=0.60) or 8 % in the L-Dopa arm (p=0.75) respectively. CONCLUSIONS: Data do not support the use of L-Dopa or clonidine as stimulants for evaluating AVP relating disorders in clinical pediatric practice.


Subject(s)
Clonidine , Glycopeptides , Levodopa , Humans , Child , Male , Female , Levodopa/therapeutic use , Glycopeptides/blood , Child, Preschool , Adolescent , Growth Disorders/blood , Growth Disorders/diagnosis , Growth Disorders/drug therapy , Biomarkers/blood , Arginine Vasopressin/blood , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...