Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.098
Filter
1.
Nat Commun ; 15(1): 3543, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730244

ABSTRACT

ß-N-Acetylgalactosamine-containing glycans play essential roles in several biological processes, including cell adhesion, signal transduction, and immune responses. ß-N-Acetylgalactosaminidases hydrolyze ß-N-acetylgalactosamine linkages of various glycoconjugates. However, their biological significance remains ambiguous, primarily because only one type of enzyme, exo-ß-N-acetylgalactosaminidases that specifically act on ß-N-acetylgalactosamine residues, has been documented to date. In this study, we identify four groups distributed among all three domains of life and characterize eight ß-N-acetylgalactosaminidases and ß-N-acetylhexosaminidase through sequence-based screening of deep-sea metagenomes and subsequent searching of public protein databases. Despite low sequence similarity, the crystal structures of these enzymes demonstrate that all enzymes share a prototype structure and have diversified their substrate specificities (oligosaccharide-releasing, oligosaccharide/monosaccharide-releasing, and monosaccharide-releasing) through the accumulation of mutations and insertional amino acid sequences. The diverse ß-N-acetylgalactosaminidases reported in this study could facilitate the comprehension of their structures and functions and present evolutionary pathways for expanding their substrate specificity.


Subject(s)
Acetylgalactosamine , Glycoside Hydrolases , Metagenome , Metagenome/genetics , Substrate Specificity , Acetylgalactosamine/metabolism , Acetylgalactosamine/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/chemistry , Phylogeny , Crystallography, X-Ray , Amino Acid Sequence , Animals
2.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726823

ABSTRACT

Can one design and automate a computational and experimental platform such that each platform iteratively guides and drives the other to achieve a pre-determined goal? Rapp and colleagues (2024) describe just this possibility in a paper that details a prototype of a self-driven laboratory that can navigate autonomously to yield an engineered enzyme with a desired attribute. This laboratory, rather, the automated protocol, is referred to by an acronym - SAMPLE. This refers to Self-driving Autonomous Machines for Protein Landscape Exploration. The paper describes a prototype involving the engineering of a glycoside hydrolase for enhanced thermostability. The 'brain', the computational component behind this automated system, was designed to learn protein sequence- function relationships from a curated dataset. These designer proteins were then evaluated by a fully automated robotic system that could synthesize and experimentally characterize the designed protein and provide feedback to the agent, i.e., the computational component, to fine-tune its understanding of the system. The SAMPLE agents were thus designed to continually refine their understanding of the protein landscape by actively acquiring information in the search process. As this intelligent agent learns protein sequence-function relationships from a curated, diverse dataset, this feedback is crucial to refine landscape exploration and the design of new proteins based on the updated hypothesis. In this prototype, four SAMPLE agents were tasked with this goal. The goal of each of these agents was to navigate the glycoside hydrolase landscape and identify enzymes with enhanced thermal tolerance. Differences in the search behavior of individual agents primarily arise from experimental measurement noise. However, despite differences in their search behavior, all four agents could converge on a thermostable glycoside hydrolase - a remarkable feat as it apparently did not need any human intervention.


Subject(s)
Glycoside Hydrolases , Protein Engineering , Protein Engineering/methods , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Robotics , Enzyme Stability
3.
Protein Expr Purif ; 219: 106486, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642864

ABSTRACT

New thermostable ß-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 µmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.


Subject(s)
Bacillus , Bacterial Proteins , Enzyme Stability , Escherichia coli , Recombinant Proteins , Bacillus/enzymology , Bacillus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Cloning, Molecular , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/biosynthesis , Gene Expression , Temperature , Substrate Specificity
4.
Planta ; 259(5): 113, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581452

ABSTRACT

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Subject(s)
Glycoside Hydrolases , Polysaccharides , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Carbohydrates , Plants/metabolism , Glycosides/metabolism
5.
Biomolecules ; 14(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672513

ABSTRACT

Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein stability and solubility. Mutations in these enzymes have been implicated in a spectrum of diseases, prompting critical research into the structural and functional consequences of such genetic variations. This study compiles an extensive dataset from ClinVar and UniProt, providing a nuanced analysis of 2603 variants within 343 GT and GH genes. We conduct thorough MTR score analyses for the proteins with the most documented variants using MTR3D-AF2 via AlphaFold2 (AlphaFold v2.2.4) predicted protein structure, with the analyses indicating that pathogenic mutations frequently correlate with Beta Bridge secondary structures. Further, the calculation of the solvent accessibility score and variant visualisation show that pathogenic mutations exhibit reduced solvent accessibility, suggesting the mutated residues are likely buried and their localisation is within protein cores. We also find that pathogenic variants are often found proximal to active and binding sites, which may interfere with substrate interactions. We also incorporate computational predictions to assess the impact of these mutations on protein function, utilising tools such as mCSM to predict the destabilisation effect of variants. By identifying these critical regions that are prone to disease-associated mutations, our study opens avenues for designing small molecules or biologics that can modulate enzyme function or compensate for the loss of stability due to these mutations.


Subject(s)
Glycoside Hydrolases , Glycosyltransferases , Mutation , Humans , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Glycosylation
6.
Int J Biol Macromol ; 266(Pt 2): 131352, 2024 May.
Article in English | MEDLINE | ID: mdl-38574926

ABSTRACT

Domain engineering, including domain truncation, fusion, or swapping, has become a common strategy to improve properties of enzymes, especially glycosyl hydrolases. However, there are few reports explaining the mechanism of increased activity from a protein structure perspective. Amy703 is an alkaline amylase with a unique N-terminal domain. Prior studies have shown that N-Amy, a mutant without an N-terminal domain, exhibits improved activity, stability, and calcium ion independence. In this study, we have used X-ray crystallography to determine the crystal structure of N-Amy and used AlphaFold2 to model the Amy703 structure, respectively. We further used size exclusion chromatography to show that Amy703 existed as a monomer, whereas N-Amy formed a unique dimer. It was found that the N-terminus of one monomer of N-Amy was inserted into the catalytic domain of its symmetrical subunit, resulting in the expansion of the catalytic pocket. This also significantly increased the pKa of the hydrogen donor Glu350, thereby enhancing substrate binding affinity and contributing to increased N-Amy activity. Meanwhile, two calcium ions were found to bind to N-Amy at different binding sites, which also contributed to the stability of protein. Therefore, this study provided new structural insights into the mechanisms of various glycosyl hydrolases.


Subject(s)
Calcium , Enzyme Stability , Protein Multimerization , Calcium/metabolism , Calcium/chemistry , Models, Molecular , Catalytic Domain , Protein Domains , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Crystallography, X-Ray
7.
Int J Biol Macromol ; 266(Pt 2): 131413, 2024 May.
Article in English | MEDLINE | ID: mdl-38582482

ABSTRACT

ß-1,3-Galactanases selectively degrade ß-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-ß-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using ß-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only ß-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 ß-1,3-galactanase for the degradation of arabinogalactan.


Subject(s)
Glycoside Hydrolases , Paenibacillus , Paenibacillus/enzymology , Paenibacillus/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Substrate Specificity , Protein Domains , Hydrogen-Ion Concentration , Enzyme Stability , Kinetics , Hydrolysis , Galactans/metabolism , Amino Acid Sequence , Temperature
8.
Int J Biol Macromol ; 266(Pt 2): 131047, 2024 May.
Article in English | MEDLINE | ID: mdl-38521325

ABSTRACT

This investigation aimed to scrutinize the chemical and structural analogies between chitosan extracted from crab exoskeleton (High Molecular Weight Chitosan, HMWC) and chitosan obtained from mushrooms (Mushroom-derived Chitosan, MRC), and to assess their biological functionalities. The resulting hydrolysates from the hydrolysis of HMWC by chitosanase were categorized as chitosan oligosaccharides (csCOS), while those from MRC were denoted as mrCOS. The molecular weights (MW) of csCOS and mrCOS were determined using Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. Furthermore, structural resemblances of csCOS and mrCOS were assessed utilizing X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Intriguingly, no apparent structural disparity between csCOS and mrCOS was noted in terms of the glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) composition ratios. Consequently, the enzymatic activities of chitosanase for HMWC and MRC exhibited remarkable similarity. A topological examination was performed between the enzyme and the substrate to deduce the alteration in MW of COSs following enzymatic hydrolysis. Moreover, the evaluation of antioxidant activity for each COS revealed insignificance in the structural disparity between HMWC and MRC. In summary, grounded on the chemical structural similarity of HMWC and MRC, we propose the potential substitution of HMWC with MRC, incorporating diverse biological functionalities.


Subject(s)
Agaricales , Animal Shells , Brachyura , Chitosan , Molecular Weight , Chitosan/chemistry , Brachyura/chemistry , Animal Shells/chemistry , Animals , Hydrolysis , Agaricales/chemistry , Agaricales/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Molecular Structure
9.
Int J Biol Macromol ; 266(Pt 1): 130992, 2024 May.
Article in English | MEDLINE | ID: mdl-38521318

ABSTRACT

The multiscale structure, gel strength and digestibility of rice starch modified by the two-step modification of pullulanase (PUL) pretreatment and transglucosidase (TG) treatment for 6, 12, 18 and 24 h were investigated. The debranching hydrolysis of PUL produced some linear chains, which rearranged to form stable crystalline structures, reducing the digestible starch content, but weakening the gel strength. TG treatment connected some short chains to longer linear chains via α-1,6-glycosidic bonds, generating the structures of linear chain with fewer branches. The short branches promoted the interaction between starch molecules to form a more compact three-dimensional gel network structure, showing higher hardness and springiness. Moreover, these chains could form more stable crystals, reducing the digestible starch content, and the increase of branching degree inhibited digestive enzyme hydrolysis, reducing the digestion rate. The multiscale structure of starch tended to stabilize after TG treatment for 18 h, which could form a gel with stronger strength and lower digestibility than native starch gel. Therefore, the two-step modification of PUL and TG was an effective way to change the structure of rice starch to improve the gel strength and reduce the digestibility.


Subject(s)
Gels , Glycoside Hydrolases , Oryza , Starch , Oryza/chemistry , Starch/chemistry , Starch/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Gels/chemistry , Hydrolysis , Digestion
10.
Int J Biol Macromol ; 265(Pt 2): 131131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527679

ABSTRACT

Glycoside hydrolases (GHs) are industrially important enzymes that hydrolyze glycosidic bonds in glycoconjugates. In this study, we found a GH3 ß-glucosidase (CcBgl3B) from Cellulosimicrobium cellulans sp. 21 was able to selectively hydrolyze the ß-1,6-glucosidic bond linked glucose of ginsenosides. X-ray crystallographic studies of the ligand complex ginsenoside-specific ß-glucosidase provided a novel finding that support the catalytic mechanism of GH3. The substrate was clearly identified within the catalytic center of wild-type CcBgl3B, revealing that the C1 atom of the glucose was covalently bound to the Oδ1 group of the conserved catalytic nucleophile Asp264 as an enzyme-glycosyl intermediate. The glycosylated Asp264 could be identified by mass spectrometry. Through site-directed mutagenesis studies with Asp264, it was found that the covalent intermediate state formed by Asp264 and the substrate was critical for catalysis. In addition, Glu525 variants (E525A, E525Q and E525D) showed no or marginal activity against pNPßGlc; thus, this residue could supply a proton for the reaction. Overall, our study provides an insight into the catalytic mechanism of the GH3 enzyme CcBgl3B.


Subject(s)
Glycoside Hydrolases , beta-Glucosidase , X-Rays , Hydrolysis , Models, Molecular , beta-Glucosidase/chemistry , Glycoside Hydrolases/chemistry , Glucose/metabolism , Catalysis , Crystallography, X-Ray , Substrate Specificity
11.
Int J Biol Macromol ; 265(Pt 1): 130993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508567

ABSTRACT

Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.


Subject(s)
Bacteria , Biofuels , Reproducibility of Results , Glycoside Hydrolases/chemistry , Lignin
12.
Int J Biol Macromol ; 264(Pt 2): 130753, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462094

ABSTRACT

Chitooligosaccharides (COS) possess versatile functional properties that have found extensive applications across various fields. Chitosanase can specifically hydrolyze ß-1,4 glycosidic bonds in chitosan to produce COS. In this study, Csn-PD, a glycoside hydrolase family 46 chitosanase from Paenibacillus dendritiformis, which produces (GlcN)2 as its main product, was rationally redesigned aiming to improve its catalytic performance. Based on the results of molecular docking analysis and multiple sequence alignment, four amino acid residues in Csn-PD (I101, T120, T220, and Y259) were pinpointed for targeted mutations. Beneficial mutations in terms of enhanced catalytic activity were then combined by site-directed mutagenesis. Notably, the most promising variant, Csn-PDT6 (Csn-PD I101M/T120E/T220G), exhibited an impressive eight-fold surge in activity compared to the wild-type Csn-PD. This heightened enzymatic activity was complemented by an enhanced pH stability profile. A compelling feature of Csn-PDT6 is its preservation of the hydrolytic product profile observed in Csn-PD. This characteristic further accentuates its candidacy for the targeted production of (GlcN)2. The success of our strategic approach is vividly illustrated by the significant improvements achieved in the catalytic performance of the chitosanase, encompassing both its activity and stability. These developments offer a valuable model that may have implications for the semi-rational design of other enzymes.


Subject(s)
Chitosan , Paenibacillus , Molecular Docking Simulation , Glycoside Hydrolases/chemistry , Chitosan/chemistry , Hydrolysis
13.
Int J Biol Macromol ; 266(Pt 1): 131275, 2024 May.
Article in English | MEDLINE | ID: mdl-38556222

ABSTRACT

Carbohydrate-binding module (CBM) family 91 is a novel module primarily associated with glycoside hydrolase (GH) family 43 enzymes. However, our current understanding of its function remains limited. PphXyl43B is a ß-xylosidase/α-L-arabinofuranosidase bifunctional enzyme from physcomitrellae patens XB belonging to the GH43_11 subfamily and containing CBM91 at its C terminus. To fully elucidate the contributions of the CBM91 module, the truncated proteins consisting only the GH43_11 catalytic module (rPphXyl43B-dCBM91) and only the CBM91 module (rCBM91) of PphXyl43B were constructed, respectively. The result showed that rPphXyl43B-dCBM91 completely lost hydrolysis activity against both p-nitrophenyl-ß-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside; it also exhibited significantly reduced activity towards xylobiose, xylotriose, oat spelt xylan and corncob xylan compared to the control. Thus, the CBM91 module is crucial for the ß-xylosidase/α-L-arabinofuranosidase activities in PphXyl43B. However, rCBM91 did not exhibit any binding capability towards corncob xylan. Structural analysis indicated that CBM91 of PphXyl43B might adopt a loop conformation (residues 496-511: ILSDDYVVQSYGGFFT) to actively contribute to the catalytic pocket formation rather than substrate binding capability. This study provides important insights into understanding the function of CBM91 and can be used as a reference for analyzing the action mechanism of GH43_11 enzymes and their application in biomass energy conversion.


Subject(s)
Catalytic Domain , Glycoside Hydrolases , Paenibacillus , Xylosidases , Xylosidases/chemistry , Xylosidases/metabolism , Xylosidases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Paenibacillus/enzymology , Substrate Specificity , Hydrolysis , Models, Molecular , Protein Conformation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Arabinose/metabolism , Arabinose/analogs & derivatives
14.
Int J Biol Macromol ; 262(Pt 2): 130089, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360236

ABSTRACT

Brevicoryne brassicae, an aphid species, exclusively consumes plants from the Brassicaceae family and employs a sophisticated defense mechanism involving a myrosinase enzyme that breaks down glucosinolates obtained from its host plants. In this work, we employed combined quantum mechanical and molecular mechanical (QM/MM) calculations and molecular dynamics (MD) simulations to study the catalytic reaction of aphid myrosinase. A proper QM region to study the myrosinase reaction should contain the whole substrate, models of Gln-19, His-122, Asp-124, Asn-166, Glu-167, Lys-173, Tyr-180, Val-228, Tyr-309, Tyr-346, Ile-347, Glu-374, Glu-423, Trp-424, and a water molecule. The calculations show that Asp-124 and Glu-423 must be charged, His-122 must be protonated on NE2, and Glu-167 must be protonated on OE2. Our model reproduces the anomeric retaining characteristic of myrosinase and indicates that the deglycosylation reaction is the rate-determining step of the reaction. Based on the calculations, we propose a reaction mechanism for aphid myrosinase-mediated hydrolysis of glucosinolates with an overall barrier of 15.2 kcal/mol. According to the results, removing a proton from Arg-312 or altering it to valine or methionine increases glycosylation barriers but decreases the deglycosylation barrier.


Subject(s)
Aphids , Animals , Amino Acid Sequence , Glucosinolates , Glycoside Hydrolases/chemistry
15.
Biosci Biotechnol Biochem ; 88(5): 538-545, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38331414

ABSTRACT

Bacterial α-1,3-glucanase, classified as glycoside hydrolase (GH) family 87, has been divided into 3 subgroups based on differences in gene sequences in the catalytic domain. The enzymatic properties of subgroups 1 and 3 of several bacteria have been previously investigated and reported; however, the chemical characterization of subgroup 2 enzymes has not been previously conducted. The α-1,3-glucanase gene from Paenibacillus alginolyticus NBRC15375 (PaAgl) belonging to subgroup 2 of GH family 87 was cloned and expressed in Escherichia coli. PgAgl-N1 (subgroup 3) and PgAgl-N2 (subgroup 1) from P. glycanilyticus NBRC16188 were expressed in E. coli, and their enzymatic characteristics were compared. The amino acid sequence of PaAgl demonstrated that the homology was significantly lower in other subgroups when only the catalytic domain was compared. The oligosaccharide products of the mutan-degrading reaction seemed to have different characteristics among subgroups 1, 2, and 3 in GH family 87.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Escherichia coli , Gene Expression , Glycoside Hydrolases , Paenibacillus , Paenibacillus/enzymology , Paenibacillus/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Escherichia coli/genetics , Substrate Specificity , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Catalytic Domain , Hydrogen-Ion Concentration , Oligosaccharides/metabolism
16.
J Agric Food Chem ; 72(8): 4358-4366, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349745

ABSTRACT

The hydrolytic products of chitosanase from Streptomyces avermitilis (SaCsn46A) were found to be aminoglucose and chitobiose, whereas those of chitosanase from Bacillus subtilis (BsCsn46A) were chitobiose and chitotriose. Therefore, the sequence alignment between SaCsn46A and BsCsn46A was conducted, revealing that the structure of BsCsn46A possesses an extra loop region (194N-200T) at the substrate binding pocket. To clarify the impact of this loop on hydrolytic properties, three mutants, SC, TJN, and TJA, were constructed. Eventually, the experimental results indicated that SC changed the ratio of chitobiose to chitotriose hydrolyzed by chitosanase from 1:1 into 2:3, while TJA resulted in a ratio of 15:7. This experiment combined molecular research to unveil a crucial loop within the substrate binding pocket of chitosanase. It also provides an effective strategy for mutagenesis and a foundation for altering hydrolysate composition and further applications in engineering chitosanase.


Subject(s)
Bacillus subtilis , Chitosan , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Polymerization , Glycoside Hydrolases/chemistry , Sequence Alignment
17.
Enzyme Microb Technol ; 175: 110410, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340378

ABSTRACT

Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.


Subject(s)
Phlorhizin/analogs & derivatives , Spirochaeta , Methanol , Glycoside Hydrolases/chemistry , Solvents
18.
FEBS J ; 291(9): 2009-2022, 2024 May.
Article in English | MEDLINE | ID: mdl-38380733

ABSTRACT

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Subject(s)
Oligosaccharides , Streptomyces , beta-Glucans , Streptomyces/enzymology , Streptomyces/genetics , Substrate Specificity , beta-Glucans/metabolism , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Models, Molecular , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/chemistry , Amino Acid Sequence , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Hydrogen-Ion Concentration , Kinetics
19.
Biotechnol Lett ; 46(2): 201-211, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280177

ABSTRACT

OBJECTIVES: Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS: The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION: This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.


Subject(s)
Microbiota , Polysaccharides , Oligosaccharides/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Monosaccharides
20.
Int J Biol Macromol ; 262(Pt 2): 129783, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280706

ABSTRACT

While hundreds of starch- and glycogen-degrading enzymes have been characterized experimentally in historical families such as GH13, GH14, GH15, GH57 and GH126 of the CAZy database (www.cazy.org), the α-amylase from Bacillus circulans is the only enzyme that has been characterized in family GH119. Since glycosidase families have been shown to often group enzymes with different substrates or products, a single characterized enzyme in a family is insufficient to extrapolate enzyme function based solely on sequence similarity. Here we report the rational exploration of family GH119 through the biochemical characterization of five GH119 members. All enzymes shared single α-amylase specificity but display distinct product profile. We also report the first kinetic constants in family GH119 and the first experimental validation of previously predicted catalytic residues in family GH119, confirming that families GH119 and GH57 can be grouped in the novel clan GH-T of the CAZy database.


Subject(s)
Starch , alpha-Amylases , Humans , Amino Acid Sequence , alpha-Amylases/chemistry , Glycogen , Glycoside Hydrolases/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...