Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.414
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732111

ABSTRACT

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Subject(s)
Cartilage, Articular , Chondrocytes , Glycosphingolipids , Osteoarthritis , Regeneration , Humans , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Glycosphingolipids/metabolism , Signal Transduction , Gangliosides/metabolism
2.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Article in English | MEDLINE | ID: mdl-38775551

ABSTRACT

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Subject(s)
Glycoconjugates , Leishmania , Metabolome , Peptide Hydrolases , Leishmania/enzymology , Peptide Hydrolases/metabolism , Animals , Glycosphingolipids/metabolism , Complement System Proteins
3.
Biochem Biophys Res Commun ; 715: 149980, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678780

ABSTRACT

The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids. However, if non-vesicular ceramide transport in yeast similarly favors short chain ceramides remained unanswered. Here we employed a yeast GhLag1 strain in which the endogenous ceramide synthase is replaced by the cotton-derived GhLag1 gene, resulting in the production of short chain C18 rather than C26 ceramides. We show that block of vesicular transport through ATP-depletion or the use of temperature-sensitive sec mutants caused a reduction in inositolphosphorylceramide (IPC) synthesis to similar extent in WT and GhLag1 backgrounds. Since the remaining IPC synthesis is a readout for non-vesicular ceramide transport, our results indicate that non-vesicular ceramide transport is neither blocked nor facilitated when only short chain ceramides are present. Therefore, we propose that the sorting of ceramide into non-vesicular transport is independent of acyl chain length in budding yeast.


Subject(s)
Ceramides , Golgi Apparatus , Saccharomyces cerevisiae , Ceramides/metabolism , Golgi Apparatus/metabolism , Biological Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Endoplasmic Reticulum/metabolism , Adenosine Triphosphate/metabolism , Glycosphingolipids
4.
Anal Chem ; 96(16): 6311-6320, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38594017

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Subject(s)
Glycosphingolipids , Liver , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Glycosphingolipids/metabolism , Glycosphingolipids/chemistry , Liver/metabolism , Liver/parasitology , Cricetinae , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Mesocricetus , Chromatography, Liquid , Male
5.
Anal Chem ; 96(15): 5951-5959, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563595

ABSTRACT

Sphingolipids are an essential subset of bioactive lipids found in most eukaryotic cells that contribute to membrane biophysical properties and are involved in cellular differentiation, recognition, and mediating interactions. The described nanoHPLC-ESI-Q/ToF methodology utilizes known biosynthetic pathways, accurate mass detection, optimized collision-induced disassociation, and a robust nanoflow chromatographic separation for the analysis of intact sphingolipids found in human tissue, cells, and serum. The methodology was developed and validated with an emphasis on addressing the common issues experienced in profiling these amphipathic lipids, which are part of the glycocalyx and lipidome. The high sensitivity obtained using nanorange flow rates with robust chromatographic reproducibility over a wide range of concentrations and injection volumes results in confident identifications for profiling these low-abundant biomolecules.


Subject(s)
Glycosphingolipids , Liquid Chromatography-Mass Spectrometry , Humans , Reproducibility of Results , Chromatography, Liquid/methods , Sphingolipids , Chromatography, High Pressure Liquid/methods
6.
Mol Genet Metab ; 142(1): 108434, 2024 May.
Article in English | MEDLINE | ID: mdl-38489976

ABSTRACT

Congenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity. Associating specific symptoms to deficiencies of certain glycoproteins or glycolipids is thus a challenging task. In this review, we focus on the glycosphingolipid (GSL) synthesis pathway, which is still rather unexplored in the context of CDG, and outline the functions of the main GSLs, including gangliosides, and their role in the central nervous system. We provide an overview of GSL studies that have been performed in CDG and show that abnormal GSL levels are not only observed in CDG directly affecting GSL synthesis, but also in better known CDG, such as PMM2-CDG. We highlight the importance of studying GSLs in CDG in order to better understand the pathophysiology of these disorders.


Subject(s)
Congenital Disorders of Glycosylation , Glycosphingolipids , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/pathology , Glycosphingolipids/metabolism , Glycosylation , Animals , Gangliosides/metabolism , Gangliosides/deficiency
7.
J Clin Invest ; 134(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357925

ABSTRACT

NKT cells recognize glycolipids presented by CD1d-expressing antigen-presenting cells (APCs) and include type I NKT cells with antitumor function and type II NKT cells, which have been reported to suppress the antitumor response. Some type II NKT cells recognize sulfatide, a glycosphingolipid with a sulfate modification of the sugar. Type I NKT cells recognize different glycosphingolipids. In this issue of the JCI, Nishio and colleagues showed that APCs could process sulfatide antigens, analogous to protein processing for peptide-reactive T cells. Antigen processing in lysosomes removed sulfate to generate a glycosphingolipid that stimulated type I NKT cells and thereby turned an antigen with no antitumor activity into one that not only stimulated type I NKT cells but also stimulated antitumor responses. These findings may extend to the development of glycolipid antigens that could stimulate anticancer responses via antigen processing by APCs.


Subject(s)
Natural Killer T-Cells , Sulfoglycosphingolipids/metabolism , Antigens, CD1d , Glycolipids/metabolism , Glycosphingolipids/metabolism , Sulfates/metabolism
8.
Hum Gene Ther ; 35(5-6): 192-201, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38386497

ABSTRACT

Fabry disease (FD) is an inherited lysosomal storage disease caused by deficiency of α-galactosidase A (α-Gal A), an enzyme that hydrolyzes glycosphingolipids in lysosome. Accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3) in tissues, induces cellular dysfunction leading to multi-organ disorder. Gene therapy is a promising strategy that can overcome these problems, and virus vectors such as adeno-associated virus (AAV) have been used for study on gene therapy. We used human Gb3 synthetase-transgenic (TgG3S)/α-Gal A knockout (GLAko) mice. TgG3S/GLAko mice have elevated Gb3 accumulation in the major organs compared with GLAko mice, which have been widely used as a model for FD. At the age of 6 weeks, male TgG3S/GLAko were injected with 2 × 1012 vector genome AAV9 vectors containing human α-Gal A cDNA. Eight weeks after intravenous injection of AAV, α-Gal A enzymatic activity was elevated in the plasma, heart, and liver of TgG3S/GLAko mice to levels corresponding to 224%, 293%, and 105% of wild-type, respectively. Gb3 amount 8 weeks after AAV injection in the heart and liver of this group was successfully reduced to levels corresponding to 16% and 3% of untreated TgG3S/GLAko mice. Although the brain and kidney of AAV9-treated TgG3S/GLAko mice showed no significant increases in α-Gal A activity, Gb3 amount was smaller than untreated littermates (48% and 44%, respectively). In this study, systemic AAV administration did not show significant extension of the lifespan of TgG3S/GLAko mice compared with the untreated littermates. The timing of AAV injection, capsid choice, administration route, and injection volume may be important to achieve sufficient expression of α-Gal A in the whole body for the amelioration of lifespan.


Subject(s)
Fabry Disease , Mice , Animals , Male , Humans , Infant , Fabry Disease/genetics , Fabry Disease/therapy , Dependovirus/genetics , Dependovirus/metabolism , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , alpha-Galactosidase/therapeutic use , Mice, Knockout , Glycosphingolipids/metabolism , Glycosphingolipids/therapeutic use , Administration, Intravenous , Disease Models, Animal
9.
Curr Opin Chem Biol ; 78: 102423, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184907

ABSTRACT

To accelerate the biological study and application of the diverse functions of glycosphingolipids (GSLs), the production of structurally defined GSLs has been greatly demanded. In this review, we focus on the recent developments in the chemical and chemoenzymatic synthesis of GSLs. In the chemical synthesis section, the syntheses based on glucosyl ceramide cassette, late-stage sialylation, and diversity-oriented strategies for GSLs or ganglioside synthesis are highlighted, which delivered terpioside B, fluorescent sialyl lactotetraosyl ceramide, and analogs of lacto-ganglio-series GSLs, respectively. In the chemoenzymatic synthesis section, the synthesis of ganglioside GM1 by multistep one-pot multienzyme method and the total synthesis of highly complex ganglioside LLG-5 using a water-soluble lactosyl ceramide as a key substrate for enzymatic sialylation are described.


Subject(s)
Gangliosides , Glycosphingolipids
10.
Sci Rep ; 13(1): 22487, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38110538

ABSTRACT

Focal segmental glomerulosclerosis, characterized by decreased numbers of podocytes in glomeruli, is a common cause of refractory nephrotic syndrome. Recently, we showed that enhanced glycosphingolipid GM3 expression after administration of valproic acid, an upregulator of ST3GAL5/St3gal5, was effective in preventing albuminuria and podocyte injury. We also revealed the molecular mechanism for this preventive effect, which involves GM3 directly binding nephrin that then act together in glycolipid-enriched membrane (GEM) fractions under normal conditions and in non-GEM fractions under nephrin injury conditions. Kidney disease is frequently referred to as a "silent killer" because it is often difficult to detect subjective symptoms. Thus, primary treatment for these diseases is initiated after the onset of disease progression. Consequently, the efficacy of enhanced levels of GM3 induced by valproic acid needs to be evaluated after the onset of the disease with severe albuminuria such as focal segmental glomerulosclerosis. Here, we report the therapeutic effect of enhanced GM3 expression induced via administration of valproic acid on albuminuria and podocyte injury after the onset focal segmental glomerulosclerosis in anti-nephrin antibody treated mice. Our findings suggest elevated levels of GM3 following treatment with valproic acid has therapeutic utility for kidney disease associated with severe albuminuria and podocyte injury.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Mice , Animals , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Albuminuria/metabolism , Valproic Acid/adverse effects , Glycosphingolipids/metabolism
11.
J Agric Food Chem ; 71(47): 18578-18586, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966061

ABSTRACT

Glycosphingolipids participate in brain development, intestinal tract maturation, and defense against gut pathogens. Here, we performed a qualitative and quantitative comparison of milk glycosphingolipids from secretors and nonsecretors. Hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometry was employed, along with an internal standard, to resolve the complications presented by the fact that glycosphingolipids are structurally diverse, varying in glycan composition and ceramide. In total, 101 glycosphingolipids were detected, of which 76 were reported for the first time, including fucose-modified neutral glycosphingolipids. Seventy-eight glycosphingolipids differed significantly between secretor and nonsecretor milk (p < 0.05), resulting in higher levels of certain neutral species (p < 0.001) but lower levels of fucose-modified monosialylated and disialylated species in secretor mothers (p < 0.01). In both milk types, the most abundant glycosphingolipids were of the monosialylated type, followed by disialylated, neutral, and trisialylated ones. Notably, fucose-modified monosialylated glycosphingolipids accounted for the highest proportion.


Subject(s)
Milk, Human , Tandem Mass Spectrometry , Female , Humans , Milk, Human/chemistry , Fucose , Glycosphingolipids/chemistry , Mothers , Oligosaccharides/chemistry
12.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003679

ABSTRACT

Lupus nephritis (LN) is a serious complication for many patients who develop systemic lupus erythematosus, which primarily afflicts women. Our studies to identify biomarkers and the pathogenic mechanisms underlying LN will provide a better understanding of disease progression and sex bias, and lead to identification of additional potential therapeutic targets. The glycosphingolipid lactosylceramide (LacCer) and N-linked glycosylated proteins (N-glycans) were measured in urine and serum collected from LN and healthy control (HC) subjects (10 females and 10 males in each group). The sera from the LN and HC subjects were used to stimulate cytokine secretion and intracellular Ca2+ flux in female- and male-derived primary human renal mesangial cells (hRMCs). Significant differences were observed in the urine of LN patients compared to HCs. All major LacCers species were significantly elevated and differences between LN and HC were more pronounced in males. 72 individual N-glycans were altered in LN compared to HC and three N-glycans were significantly different between the sexes. In hRMCs, Ca2+ flux, but not cytokine secretion, was higher in response to LN sera compared to HC sera. Ca2+ flux, cytokine secretion, and glycosphingolipid levels were significantly higher in female-derived compared to male-derived hRMCs. Relative abundance of some LacCers and hexosylceramides were higher in female-derived compared to male-derived hRMCs. Urine LacCers and N-glycome could serve as definitive LN biomarkers and likely reflect renal disease activity. Despite higher sensitivity of female hRMCs, males may experience greater increases in LacCers, which may underscore worse disease in males. Elevated glycosphingolipid metabolism may poise renal cells to be more sensitive to external stimuli.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Female , Male , Lupus Nephritis/pathology , Biomarkers , Cytokines , Glycosphingolipids , Polysaccharides
13.
Dev Cell ; 58(22): 2447-2459.e5, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37989081

ABSTRACT

Glycosphingolipids (GSLs) display diverse functions during embryonic development. Here, we examined the GSL profiles of extracellular vesicles (EVs) secreted from human embryonic stem cells (hESCs) and investigated their functions in priming macrophages to enhance immune tolerance of embryo implantation. When peripheral blood mononuclear cells were incubated with ESC-secreted EVs, globo-series GSLs (GHCer, SSEA3Cer, and SSEA4Cer) were transferred via EVs into monocytes/macrophages. Incubation of monocytes during their differentiation into macrophages with either EVs or synthetic globo-series GSLs induced macrophages to exhibit phenotypic features that imitate immune receptivity, i.e., macrophage polarization, augmented phagocytic activity, suppression of T cell proliferation, and the increased trophoblast invasion. It was also demonstrated that decidual macrophages in first-trimester tissues expressed globo-series GSLs. These findings highlight the role of globo-series GSLs via transfer from EVs in priming macrophages to display decidual macrophage phenotypes, which may facilitate healthy pregnancy.


Subject(s)
Glycosphingolipids , Leukocytes, Mononuclear , Pregnancy , Female , Humans , Macrophages , Cell Differentiation , Immune Tolerance
14.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37815467

ABSTRACT

The lipid storage disease Niemann Pick type C (NPC) causes neurodegeneration owing primarily to loss of NPC1. Here, we employed a Drosophila model to test links between glycosphingolipids, neurotransmission and neurodegeneration. We found that Npc1a nulls had elevated neurotransmission at the glutamatergic neuromuscular junction (NMJ), which was phenocopied in brainiac (brn) mutants, impairing mannosyl glucosylceramide (MacCer) glycosylation. Npc1a; brn double mutants had the same elevated synaptic transmission, suggesting that Npc1a and brn function within the same pathway. Glucosylceramide (GlcCer) synthase inhibition with miglustat prevented elevated neurotransmission in Npc1a and brn mutants, further suggesting epistasis. Synaptic MacCer did not accumulate in the NPC model, but GlcCer levels were increased, suggesting that GlcCer is responsible for the elevated synaptic transmission. Null Npc1a mutants had heightened neurodegeneration, but no significant motor neuron or glial cell death, indicating that dying cells are interneurons and that elevated neurotransmission precedes neurodegeneration. Glycosphingolipid synthesis mutants also had greatly heightened neurodegeneration, with similar neurodegeneration in Npc1a; brn double mutants, again suggesting that Npc1a and brn function in the same pathway. These findings indicate causal links between glycosphingolipid-dependent neurotransmission and neurodegeneration in this NPC disease model.


Subject(s)
Drosophila , Glycosphingolipids , Neurodegenerative Diseases , Niemann-Pick Disease, Type C , Animals , Glucosylceramides/metabolism , Glycosphingolipids/metabolism , Niemann-Pick Disease, Type C/metabolism , Synaptic Transmission , Disease Models, Animal , Neurodegenerative Diseases/metabolism
15.
J Biochem ; 175(1): 115-124, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37827526

ABSTRACT

A convenient method for the determination of plant sphingolipids (glycosylinositol phosphoceramide, GIPC; glucosylceramide, GluCer; phytoceramide 1-phosphate, PC1P and phytoceramide, PCer) was developed. This method includes the extraction of lipids using 1-butanol, alkali hydrolysis with methylamine and separation by TLC. The amounts of sphingolipids in the sample were determined based on the relative intensities of standard sphingolipids visualized by primulin/UV on TLC. Using this method, we found that almost all GIPCs were degraded in response to tissue homogenization in cruciferous plants (cabbage, broccoli and Arabidopsis thaliana). The decrease in GIPCs was compensated for by increases in PC1P and PCer, indicating that GIPC was degraded by hydrolysis at the D and C positions of GIPC, respectively. In carrot roots and leaves, most of GIPC degradation was compensated for by an increase in PCer. In rice roots, the decrease in GIPCs was not fully explained by the increases in PC1P and PCer, indicating that enzymes other than phospholipase C and D activities operated. As the visualization of lipids on TLC is useful for detecting the appearance or disappearance of lipids, this method will be available for the characterization of metabolism of sphingolipids in plants.


Subject(s)
Arabidopsis , Brassica , Glycosphingolipids/metabolism , Sphingolipids/metabolism , Plants/metabolism , Arabidopsis/metabolism
16.
PLoS One ; 18(10): e0292514, 2023.
Article in English | MEDLINE | ID: mdl-37812617

ABSTRACT

Rabbit anti-asialo-GM1 (ASGM1) serum or polyclonal antibodies can eliminate mouse splenic natural killer (NK) cell activity in vitro and in vivo. We developed rabbit monoclonal antibodies (mAbs) against ASGM1 using a single-cell analysis and isolation system. Five mAbs (GA109, GA115, GA116, GA131, and GA134) that were reactive to ASGM1 were isolated from the spleen lymphocytes of rabbits immunized with ASGM1. Enzyme-linked immunosorbent assay and thin-layer chromatography immunostaining results showed that the mAbs strongly reacted with ASGM1. Two mAbs (GA116 and GA134) reacted exclusively with ASGM1, whereas three mAbs (GA109, GA115, and GA131) showed slight or considerable cross-reactivity with GM1. The administration of the mAbs (4-20 µg) to BALB/c mice completely abolished NK cell activity in vivo. The anti-ASGM1 rabbit mAbs obtained in this study may provide a useful and reproducible tool for various future studies, such as depleting NK cell activity to enhance xenograft engraftment in mouse models.


Subject(s)
G(M1) Ganglioside , Killer Cells, Natural , Humans , Mice , Animals , Antibodies, Monoclonal , Mice, Inbred BALB C , Enzyme-Linked Immunosorbent Assay , Glycosphingolipids , Mice, Inbred C57BL
17.
Hum Mol Genet ; 32(24): 3323-3341, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37676252

ABSTRACT

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.


Subject(s)
Gangliosides , Glycosphingolipids , Humans , Erlotinib Hydrochloride , Glycosphingolipids/metabolism , G(M3) Ganglioside/genetics , G(M3) Ganglioside/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Signal Transduction
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(11): 159384, 2023 11.
Article in English | MEDLINE | ID: mdl-37673393

ABSTRACT

Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.


Subject(s)
Glycosphingolipids , Sphingolipids , Host-Pathogen Interactions
19.
Biophys J ; 122(20): 4104-4112, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37735870

ABSTRACT

Fluorescent lipid probes are an invaluable tool for investigating lipid membranes. In particular, localizing certain receptor lipids such as glycosphingolipids within phase-separated membranes is of pivotal interest to understanding the influence of protein-receptor lipid binding on membrane organization. However, fluorescent labeling can readily alter the phase behavior of a lipid membrane because of the interaction of the fluorescent moiety with the membrane interface. Here, we investigated Gb3 glycosphingolipids, serving as receptor lipids for the protein Shiga toxin, with a headgroup attached BODIPY fluorophore separated by a polyethylene glycol (PEG) spacer of different lengths. We found that the diffusion coefficients of the fluorescently labeled Gb3 species in 1,2-dioleoyl-sn-glycero-3-phosphocholine/Gb3 (98:2, n/n) supported lipid bilayers are unaltered by the PEG spacer length. However, quenching as well as graphene-induced energy transfer experiments indicated that the length of the PEG spacer (n = 3 and n = 13) alters the position of the BODIPY fluorophore. In particular, the graphene-induced energy transfer technique provided accurate end-to-end distances between the fluorophores in the two leaflets of the bilayer thus enabling us to quantify the distance between the membrane interface and the fluorophore with sub-nanometer resolution. The spacer with three oligo ethylene glycol groups positioned the BODIPY fluorophore directly at the membrane interface favoring its interaction with the bilayer and thus may disturb lipid packing. However, the longer PEG spacer (n = 13) separated the BODIPY moiety from the membrane surface by 1.5 nm.


Subject(s)
Graphite , Lipid Bilayers , Glycosphingolipids , Boron Compounds , Fluorescent Dyes , Polyethylene Glycols , Phosphatidylcholines
20.
Glycobiology ; 33(10): 801-816, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37622990

ABSTRACT

Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.


Subject(s)
Cholera , Humans , Fucose , Cholera Toxin/chemistry , Cholera Toxin/metabolism , Ligands , Glycoconjugates , Polysaccharides , Glycosphingolipids
SELECTION OF CITATIONS
SEARCH DETAIL
...