Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.041
Filter
1.
Saudi Med J ; 45(4): 424-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657993

ABSTRACT

OBJECTIVES: To suggest the presence of a hyperimmune state in patients, and indicate that immune system attack on glycosylphosphatidylinositol (+) (GPI+) cells while escaping GPI- cell immunity. METHODS: We retrospective the immune cell subtypes in peripheral blood from 25 patients visiting Tianjin Medical University General Hospital, Tianjin, China, with classical paroxysmal nocturnal hemoglobinuria (PNH) and 50 healthy controls. RESULTS: The total CD3+ and CD3+CD8+ cell levels were higher in patients with PNH. The CD3+ cells are positively, correlated with lactate dehydrogenase (LDH; r=0.5453, p=0.0040), indirect bilirubin (r=0.4260, p=0.0379) and Flear- cells in monocytes (r=0.4099, p=0.0303). However, a negative correlation was observed between CD3+ cells and hemoglobin (r= -0.4530, p=0.0105). The total CD19+ cells decreased in patients, and CD19+ cells were negatively correlated with LDH (r= -0.5640, p=0.0077) and Flear- cells in monocytes (r= -0.4432, p=0.0341). Patients showed an increased proportion of total dendritic cells (DCs), with a higher proportion of myeloid DCs (mDCs) within the DC population. Moreover, the proportion of mDC/DC was positively correlated with CD59- cells (II + III types) in red cells (r=0.7941, p=0.0004), Flear- cells in granulocytes (r=0.5357, p=0.0396), and monocytes (r=0.6445, p=0.0095). CONCLUSION: Our results demonstrated that immune abnormalities are associated with PNH development.


Subject(s)
Disease Progression , Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/immunology , Hemoglobinuria, Paroxysmal/blood , Male , Female , Adult , Middle Aged , Retrospective Studies , L-Lactate Dehydrogenase/blood , Monocytes/immunology , Dendritic Cells/immunology , CD3 Complex/metabolism , Case-Control Studies , Glycosylphosphatidylinositols/immunology , Young Adult , Antigens, CD19
2.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573857

ABSTRACT

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Subject(s)
Acyltransferases , CD24 Antigen , Ovarian Neoplasms , Phagocytosis , Animals , Female , Humans , Mice , Acyltransferases/metabolism , Amidohydrolases/metabolism , Amidohydrolases/genetics , CD24 Antigen/metabolism , Cell Line, Tumor , Glycosylphosphatidylinositols/metabolism , Macrophages/metabolism , Macrophages/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy
3.
FEBS Lett ; 598(5): 548-555, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395606

ABSTRACT

Cells sense and control the number and quality of their organelles, but the underlying mechanisms of this regulation are not understood. Our recent research in the yeast Saccharomyces cerevisiae has shown that long acyl chain ceramides in the endoplasmic reticulum (ER) membrane and the lipid moiety of glycosylphosphatidylinositol (GPI) anchor determine the sorting of GPI-anchored proteins in the ER. Here, we show that a mutant strain, which produces shorter ceramides than the wild-type strain, displays a different count of Golgi cisternae. Moreover, deletions of proteins that remodel the lipid portion of GPI anchors resulted in an abnormal number of Golgi cisternae. Thus, our study reveals that protein sorting in the ER plays a critical role in maintaining Golgi biogenesis.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Saccharomycetales/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Protein Transport , Ceramides/metabolism , Glycosylphosphatidylinositols/metabolism
4.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38289859

ABSTRACT

The decline in protein homeostasis (proteostasis) is a hallmark of cellular aging and aging-related diseases. Maintaining a balanced proteostasis requires a complex network of molecular machineries that govern protein synthesis, folding, localization, and degradation. Under proteotoxic stress, misfolded proteins that accumulate in cytosol can be imported into mitochondria for degradation through the "mitochondrial as guardian in cytosol" (MAGIC) pathway. Here, we report an unexpected role of Gas1, a cell wall-bound glycosylphosphatidylinositol (GPI)-anchored ß-1,3-glucanosyltransferase in the budding yeast, in differentially regulating MAGIC and ubiquitin-proteasome system (UPS). Deletion of GAS1 inhibits MAGIC but elevates protein ubiquitination and UPS-mediated protein degradation. Interestingly, we found that the Gas1 protein exhibits mitochondrial localization attributed to its C-terminal GPI anchor signal. But this mitochondria-associated GPI anchor signal is not required for mitochondrial import and degradation of misfolded proteins through MAGIC. By contrast, catalytic inactivation of Gas1 via the gas1-E161Q mutation inhibits MAGIC but not its mitochondrial localization. These data suggest that the glucanosyltransferase activity of Gas1 is important for regulating cytosolic proteostasis.


Subject(s)
Proteostasis , Saccharomycetales , Glycosylphosphatidylinositols/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Saccharomycetales/metabolism
5.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38261271

ABSTRACT

The nuclear lamina (NL) plays various roles and participates in nuclear integrity, chromatin organization, and transcriptional regulation. Lamin proteins, the main components of the NL, form a homogeneous meshwork structure under the nuclear envelope. Lamins are essential, but it is unknown whether their homogeneous distribution is important for nuclear function. Here, we found that PIGB, an enzyme involved in glycosylphosphatidylinositol (GPI) synthesis, is responsible for the homogeneous lamin meshwork in Drosophila. Loss of PIGB resulted in heterogeneous distributions of B-type lamin and lamin-binding proteins in larval muscles. These phenotypes were rescued by expression of PIGB lacking GPI synthesis activity. The PIGB mutant exhibited changes in lamina-associated domains that are large heterochromatic genomic regions in the NL, reduction of nuclear stiffness, and deformation of muscle fibers. These results suggest that PIGB maintains the homogeneous meshwork of the NL, which may be essential for chromatin distribution and nuclear mechanical properties.


Subject(s)
Drosophila Proteins , Drosophila , Muscle, Skeletal , Nuclear Lamina , Animals , Lamin Type B/genetics , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Nuclear Lamina/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Glycosylphosphatidylinositols/metabolism
6.
Nat Commun ; 15(1): 8, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167496

ABSTRACT

The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.


Subject(s)
Inositol , Membrane Proteins , Animals , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Inositol/metabolism , Phosphoric Monoester Hydrolases/metabolism , Hydrolases , Quality Control , Glycosylphosphatidylinositols/chemistry
7.
Trends Parasitol ; 40(2): 131-146, 2024 02.
Article in English | MEDLINE | ID: mdl-38262838

ABSTRACT

In malaria parasites, although post-translational modification of proteins with N-. O-, and C-glycosidic bond-linked glycans is limited, it is confined to relatively fewer proteins in which the glycans are present at significant levels and may have important functions. Furthermore, several proteins are modified with glycosylphosphatidylinositols (GPIs) which represent the predominant glycan synthesized by parasites. Modification of proteins with GPIs is obligatory for parasite survival as GPI-anchored proteins (GPI-APs) play essential roles in all life cycle stages of the parasites, including development, egress, gametogenesis, motility, and host cell adhesion and invasion. Here, we discuss the current knowledge on the structures and potential functions of the glycan moieties of parasite proteins. The knowledge has important implications for the development of drugs and vaccines for malaria.


Subject(s)
Parasites , Animals , Glycosylation , Parasites/metabolism , Plasmodium falciparum , Protein Processing, Post-Translational , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , Polysaccharides/metabolism , Protozoan Proteins/metabolism
8.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256120

ABSTRACT

Folate receptor α (FR) was discovered many decades ago, along with drugs that target intracellular folate metabolism, such as pemetrexed and methotrexate. Folate is taken up by the cell via this receptor, which also targeted by many cancer agents due to the over-expression of the receptor by cancer cells. FR is a membrane-bound glycosyl-phosphatidylinositol (GPI) anchor glycoprotein encoded by the folate receptor 1 (FOLR1) gene. FR plays a significant role in DNA synthesis, cell proliferation, DNA repair, and intracellular signaling, all of which are essential for tumorigenesis. FR is more prevalent in cancer cells compared to normal tissues, which makes it an excellent target for oncologic therapeutics. FRα is found in many cancer types, including ovarian cancer, non-small-cell lung cancer (NSCLC), and colon cancer. FR is widely used in antibody drug conjugates, small-molecule-drug conjugates, and chimeric antigen-receptor T cells. Current oncolytic therapeutics include mirvetuximab soravtansine, and ongoing clinical trials are underway to investigate chimeric antigen receptor T cells (CAR-T cells) and vaccines. Additionally, FRα has been used in a myriad of other applications, including as a tool in the identification of tumor types, and as a prognostic marker, as a surrogate of chemotherapy resistance. As such, FRα identification has become an essential part of precision medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Folate Receptor 1/genetics , Precision Medicine , Folic Acid , Glycosylphosphatidylinositols
9.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38233143

ABSTRACT

The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Drosophila , Membrane Proteins/genetics , Membrane Proteins/metabolism , Motor Neurons/metabolism
10.
Nat Commun ; 15(1): 659, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253565

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Glycosylphosphatidylinositols , Animals , Mice , Humans , HEK293 Cells , Proteomics , GPI-Linked Proteins , Proteins
11.
Curr Opin Chem Biol ; 78: 102421, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181647

ABSTRACT

Glycosylphosphatidylinositol (GPI) attachment to the C-terminus of proteins is a prevalent posttranslational modification in eukaryotic species, and GPIs help anchor proteins to the cell surface. GPI-anchored proteins (GPI-APs) play a key role in various biological events. However, GPI-APs are difficult to access and investigate. To tackle the problem, chemical and chemoenzymatic methods have been explored for the preparation of GPI-APs, as well as GPI probes that facilitate the study of GPIs on live cells. Substantial progress has also been made regarding GPI-AP biosynthesis, which is helpful for developing new synthetic methods for GPI-APs. This article reviews the recent advancements in the study of GPI-AP biosynthesis, GPI-AP synthesis, and GPI interaction with the cell membrane utilizing synthetic probes.


Subject(s)
Glycosylphosphatidylinositols , Membrane Proteins , Glycosylphosphatidylinositols/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational
12.
Neurol Sci ; 45(5): 2253-2260, 2024 May.
Article in English | MEDLINE | ID: mdl-38055078

ABSTRACT

INTRODUCTION: PIGW-related glycosylphosphatidylinositol deficiency is a rare disease that manifests heterogeneous clinical phenotypes. METHODS: We describe a patient with PIGW deficiency and summarize the clinical characteristics of the case. In addition, we conducted a literature review of previously reported patients with pathogenic variants of PIGW. RESULTS: A Chinese girl presented with refractory epilepsy, severe intellectual disability, recurrent respiratory infections, and hyperphosphatasia. Seizures worsened during fever and infections, making her more susceptible to epileptic status. She was found to carry a heterozygous variant of PIGW and a deletion of chromosome 17q12 containing PIGW. Only six patients with homozygous or compound heterozygous pathogenic variants of PIGW have been identified in the literature thus far. Epileptic seizures were reported in all patients, and the most common types of seizures were epileptic spasms. Distinctive facial and physical features and recurrent respiratory infections are common in these patients with developmental delays. Serum alkaline phosphatase (ALP) levels were elevated in four of the six patients. CONCLUSIONS: PIGW-related glycosylphosphatidylinositol deficiency is characterized by developmental delay, epilepsy, distinctive facial features, and multiple organ anomalies. Genetic testing is an important method for diagnosing this disease, and flow cytometry and serum ALP level detection are crucial complements for genetic testing.


Subject(s)
Abnormalities, Multiple , Epilepsy , Glycosylphosphatidylinositols/deficiency , Intellectual Disability , Respiratory Tract Infections , Humans , Female , Seizures/genetics , Epilepsy/genetics , Epilepsy/diagnosis , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Abnormalities, Multiple/genetics
13.
Chemistry ; 30(8): e202303047, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37966101

ABSTRACT

Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.


Subject(s)
Glycosylphosphatidylinositols , Polysaccharides , Glycosylphosphatidylinositols/chemistry , Cell Membrane/metabolism , Polysaccharides/metabolism , Membrane Proteins/metabolism , Signal Transduction
14.
Article in English | MEDLINE | ID: mdl-37497882

ABSTRACT

Climate change is a change in the usual weather found in a place. The climate change has a major impact not only on natural disasters of the Earth but also on human health. The climate crisis is then no longer a future concern. It includes both the global warming driven by human emissions of greenhouse gases (GHG), and the resulting large-scale shifts in weather patterns. Global warming can occur from a variety of causes, both natural and human induced. The primary GHG in Earth's atmosphere, listed in decreasing order of average global mole fraction, are: water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). Today, scientists around the world continue to try and solve the puzzle of climate change. It is clear that to address climate change, the amount of CO2 released into the atmosphere by industrial process has to be reduced because once it is added to the atmosphere, it can continue to affect climate for thousands of years. For such a purpose, an approach to intervention using expression vectors for any protein targeting to the cell plasma membrane via the glycosylphosphatidylinositol, GPI, anchor is suggested. The resulting GPI-anchored proteins would be useful for studying intermolecular interactions, especially gene-environment interactions, in investigating the potential impact of any chemical compounds on any genes of interest and could be used for carbonic anhydrase (CA)-based CO2-capture (environmental application). This approach would be crucial not only for capturing CO2 via GPI and CA but also for the production of CA enzyme as well as its stabilization and therefore useful for combating the global warming of climate change.


Subject(s)
Carbonic Anhydrases , Climate Change , Humans , Carbon Dioxide/metabolism , Glycosylphosphatidylinositols , Greenhouse Effect , Carbonic Anhydrases/genetics
15.
J Org Chem ; 89(2): 1345-1352, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38153341

ABSTRACT

A glycosylphosphatidylinositol (GPI) derivative with biotin linked to its mannose III 6-O-position was prepared by a convergent strategy. This biotinylated GPI was demonstrated to bind avidinated proteins readily through biotin-avidin interaction and, therefore, can serve as a universal platform to access various biologically significant GPI-anchored protein analogues.


Subject(s)
Biotin , Glycosylphosphatidylinositols , Glycosylphosphatidylinositols/metabolism , GPI-Linked Proteins
16.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38124489

ABSTRACT

Mutations in the phosphatidylinositol glycan biosynthesis class A (PIGA) gene cause a rare, X-linked recessive congenital disorder of glycosylation. Phosphatidylinositol glycan biosynthesis class A congenital disorder of glycosylation (PIGA-CDG) is characterized by seizures, intellectual and developmental delay, and congenital malformations. The PIGA gene encodes an enzyme involved in the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis. There are over 100 GPI-anchored proteins that attach to the cell surface and are involved in cell signaling, immunity, and adhesion. Little is known about the pathophysiology of PIGA-CDG. Here, we describe the first Drosophila model of PIGA-CDG and demonstrate that loss of PIG-A function in Drosophila accurately models the human disease. As expected, complete loss of PIG-A function is larval lethal. Heterozygous null animals appear healthy but, when challenged, have a seizure phenotype similar to what is observed in patients. To identify the cell-type specific contributions to disease, we generated neuron- and glia-specific knockdown of PIG-A. Neuron-specific knockdown resulted in reduced lifespan and a number of neurological phenotypes but no seizure phenotype. Glia-knockdown also reduced lifespan and, notably, resulted in a very strong seizure phenotype. RNA sequencing analyses demonstrated that there are fundamentally different molecular processes that are disrupted when PIG-A function is eliminated in different cell types. In particular, loss of PIG-A in neurons resulted in upregulation of glycolysis, but loss of PIG-A in glia resulted in upregulation of protein translation machinery. Here, we demonstrate that Drosophila is a good model of PIGA-CDG and provide new data resources for future study of PIGA-CDG and other GPI anchor disorders.


Subject(s)
Drosophila , Glycosylphosphatidylinositols , Animals , Humans , Glycosylation , Phosphatidylinositols , Phenotype , Seizures/genetics , Mutation
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1276-1281, 2023 Dec 15.
Article in Chinese | MEDLINE | ID: mdl-38112147

ABSTRACT

A boy, aged 6 years, attended the hospital due to global developmental delay for 6 years and recurrent fever and convulsions for 5 years. The boy was found to have delayed mental and motor development at the age of 3 months and experienced recurrent fever and convulsions since the age of 1 year, with intermittent canker sores and purulent tonsillitis. During the fever period, blood tests showed elevated white blood cell count, C-reactive protein, and erythrocyte sedimentation rate, which returned to normal after the fever subsides. Electroencephalography showed epilepsy, and genetic testing showed compound heterozygous mutations in the GPAA1 gene. The boy was finally diagnosed with glycosylphosphatidylinositol biosynthesis deficiency 15 (GPIBD15) and periodic fever. The patient did not respond well to antiepileptic treatment, but showed successful fever control with glucocorticoid therapy. This article reports the first case of GPIBD15 caused by GPAA1 gene mutation in China and summarizes the genetic features, clinical features, diagnosis, and treatment of this disease, which provides a reference for the early diagnosis and treatment of GPIBD15.


Subject(s)
Glycosylphosphatidylinositols , Rare Diseases , Humans , Male , Fever , Glycosylphosphatidylinositols/genetics , Membrane Glycoproteins/genetics , Mutation , Seizures , Child
18.
Open Biol ; 13(11): 230019, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37989224

ABSTRACT

Studies at the cellular and molecular level of magnetoreception-sensing and responding to magnetic fields-are a relatively new research area. It appears that different mechanisms of magnetoreception in animals evolved from different origins, and, therefore, many questions about its mechanisms remain left open. Here we present new information regarding the Electromagnetic Perceptive Gene (EPG) from Kryptopterus vitreolus that may serve as part of the foundation to understanding and applying magnetoreception. Using HaloTag coupled with fluorescent ligands and phosphatidylinositol specific phospholipase C we show that EPG is associated with the membrane via glycosylphosphatidylinositol anchor. EPG's function of increasing intracellular calcium was also used to generate an assay using GCaMP6m to observe the function of EPG and to compare its function with that of homologous proteins. It was also revealed that EPG relies on a motif of three phenylalanine residues to function-stably swapping these residues using site directed mutagenesis resulted in a loss of function in EPG. This information not only expands upon our current understanding of magnetoreception but may provide a foundation and template to continue characterizing and discovering more within the emerging field.


Subject(s)
Glycosylphosphatidylinositols , Phenylalanine , Animals , Phosphatidylinositol Diacylglycerol-Lyase , Phosphoinositide Phospholipase C , Glycosylphosphatidylinositols/metabolism , Fishes , Mammals
19.
Environ Mol Mutagen ; 64(8-9): 480-493, 2023.
Article in English | MEDLINE | ID: mdl-37926486

ABSTRACT

The blood cell phosphatidylinositol glycan class A (PIG-A) gene mutation assay has been extensively researched in rodents for in vivo mutagenicity testing and is now being investigated in humans. The PIG-A gene is involved in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. A single mutation in this X-linked gene can lead to loss of membrane-bound GPI anchors, which can be enumerated via corresponding GPI-anchored proteins (e.g., CD55) using flow cytometry. The studies published to date by different research groups demonstrate a remarkable consistency in PIG-A mutant frequencies. Moreover, with the low background level of mutant erythrocytes in healthy subjects (2.9-5.56 × 10-6 mutants), induction of mutation post genotoxic exposure can be detected. Cigarette smoking, radiotherapy, and occupational exposures, including lead, have been shown to increase mutant levels. Future applications of this test include identifying new harmful agents and establishing new exposure limits. This mutational monitoring approach may also identify individuals at higher risk of cancer development. In addition, identifying protective agents that could mitigate these effects may reduce baseline somatic mutation levels and such behaviors can be encouraged. Further technological progress is required including establishing underlying mechanisms of GPI anchor loss, protocol standardization, and the development of cryopreservation methods to improve GPI-anchor stability over time. If successful, this assay has the potential be widely employed, for example, in rural and low-income countries. Here, we review the current literature on PIG-A mutation in humans and discuss the potential role of this assay in human biomonitoring and disease detection.


Subject(s)
Biological Monitoring , Glycosylphosphatidylinositols , Humans , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Membrane Proteins/genetics , Mutation , Erythrocytes/metabolism
20.
Medicina (Kaunas) ; 59(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37763731

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal hematopoietic disorder characterized by the lack of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as a consequence of somatic mutations in the phosphatidylinositol glycan anchor biosynthesis class A (PIGA) gene. Clinical manifestations of PNH are intravascular hemolysis, thrombophilia, and bone marrow failure. Treatment of PNH mainly relies on the use of complement-targeted therapy (C5 inhibitors), with the newest agents being explored against other factors involved in the complement cascade to alleviate unresolved intravascular hemolysis and extravascular hemolysis. This review summarizes the biology and current treatment strategies for PNH with the aim of reaching a general audience with an interest in hematologic disorders.


Subject(s)
Hemoglobinuria, Paroxysmal , Thrombophilia , Humans , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics , Hemolysis , Complement System Proteins , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...