Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 442
Filter
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1276-1281, 2023 Dec 15.
Article in Chinese | MEDLINE | ID: mdl-38112147

ABSTRACT

A boy, aged 6 years, attended the hospital due to global developmental delay for 6 years and recurrent fever and convulsions for 5 years. The boy was found to have delayed mental and motor development at the age of 3 months and experienced recurrent fever and convulsions since the age of 1 year, with intermittent canker sores and purulent tonsillitis. During the fever period, blood tests showed elevated white blood cell count, C-reactive protein, and erythrocyte sedimentation rate, which returned to normal after the fever subsides. Electroencephalography showed epilepsy, and genetic testing showed compound heterozygous mutations in the GPAA1 gene. The boy was finally diagnosed with glycosylphosphatidylinositol biosynthesis deficiency 15 (GPIBD15) and periodic fever. The patient did not respond well to antiepileptic treatment, but showed successful fever control with glucocorticoid therapy. This article reports the first case of GPIBD15 caused by GPAA1 gene mutation in China and summarizes the genetic features, clinical features, diagnosis, and treatment of this disease, which provides a reference for the early diagnosis and treatment of GPIBD15.


Subject(s)
Glycosylphosphatidylinositols , Rare Diseases , Humans , Male , Fever , Glycosylphosphatidylinositols/genetics , Membrane Glycoproteins/genetics , Mutation , Seizures , Child
2.
Environ Mol Mutagen ; 64(8-9): 480-493, 2023.
Article in English | MEDLINE | ID: mdl-37926486

ABSTRACT

The blood cell phosphatidylinositol glycan class A (PIG-A) gene mutation assay has been extensively researched in rodents for in vivo mutagenicity testing and is now being investigated in humans. The PIG-A gene is involved in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. A single mutation in this X-linked gene can lead to loss of membrane-bound GPI anchors, which can be enumerated via corresponding GPI-anchored proteins (e.g., CD55) using flow cytometry. The studies published to date by different research groups demonstrate a remarkable consistency in PIG-A mutant frequencies. Moreover, with the low background level of mutant erythrocytes in healthy subjects (2.9-5.56 × 10-6 mutants), induction of mutation post genotoxic exposure can be detected. Cigarette smoking, radiotherapy, and occupational exposures, including lead, have been shown to increase mutant levels. Future applications of this test include identifying new harmful agents and establishing new exposure limits. This mutational monitoring approach may also identify individuals at higher risk of cancer development. In addition, identifying protective agents that could mitigate these effects may reduce baseline somatic mutation levels and such behaviors can be encouraged. Further technological progress is required including establishing underlying mechanisms of GPI anchor loss, protocol standardization, and the development of cryopreservation methods to improve GPI-anchor stability over time. If successful, this assay has the potential be widely employed, for example, in rural and low-income countries. Here, we review the current literature on PIG-A mutation in humans and discuss the potential role of this assay in human biomonitoring and disease detection.


Subject(s)
Biological Monitoring , Glycosylphosphatidylinositols , Humans , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Membrane Proteins/genetics , Mutation , Erythrocytes/metabolism
3.
Medicina (Kaunas) ; 59(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37763731

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal hematopoietic disorder characterized by the lack of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as a consequence of somatic mutations in the phosphatidylinositol glycan anchor biosynthesis class A (PIGA) gene. Clinical manifestations of PNH are intravascular hemolysis, thrombophilia, and bone marrow failure. Treatment of PNH mainly relies on the use of complement-targeted therapy (C5 inhibitors), with the newest agents being explored against other factors involved in the complement cascade to alleviate unresolved intravascular hemolysis and extravascular hemolysis. This review summarizes the biology and current treatment strategies for PNH with the aim of reaching a general audience with an interest in hematologic disorders.


Subject(s)
Hemoglobinuria, Paroxysmal , Thrombophilia , Humans , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics , Hemolysis , Complement System Proteins , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Biology
4.
Yi Chuan ; 45(8): 669-683, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37609818

ABSTRACT

In human cells, there are more than 146 glycosylphosphatidylinositol-anchored proteins (GPI-APs), including receptors, ligands, adhesion molecules and enzymes. The proteins are associated with membrane microdomains called lipid rafts through GPI, and plays a variety of important biological functions. At present, plenty of studies have been carried out on the biosynthesis of GPI-APs. The biosynthesis of GPI-APs requires at least 20 steps, and more than 40 GPI biosynthetic genes have been identified. However, it remains unclear how expression of GPI-AP related genes is regulated in normal and cancer tissues. In this study, we utilized gene expression data from both the TCGA database and GTEx portal to analysis the gene expression involved in GPI-AP biosynthesis and encoding GPI-APs in normal and cancer tissues. In order to perform a comprehensive analysis, we employed the GlycoMaple, a tool that is specifically designed to analyze glycosylation pathways. The results showed that compared with normal tissues, the expression of genes involved in GPI-AP biosynthesis in cancer tissues such as early glioma, glioblastoma multiforme, pancreatic cancer, testicular germ cell carcinoma, skin primary cutaneous melanoma and skin metastatic cutaneous melanoma, was changed significantly. Particularly, the expression of PIGY in these six cancers was increased. In addition, the expression of CD14, a GPI-AP gene, was increased in these six cancers. The expression of GAS1, GPC2 and GPC4 was increased only in early glioma and glioblastoma multiforme indicating that some GPI-APs such as GAS1 can be used as biomarkers of glioma. This study provides new insights into the expression of GPI-AP related genes in normal and cancer tissues, and lays a solid foundation for the development of GPI-APs as biomarkers.


Subject(s)
Glioblastoma , Glioma , Melanoma , Skin Neoplasms , Humans , Glycosylphosphatidylinositols/genetics , Melanoma, Cutaneous Malignant
5.
J Biol Chem ; 299(8): 105016, 2023 08.
Article in English | MEDLINE | ID: mdl-37414151

ABSTRACT

The biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in the parasitic protozoan Trypanosoma brucei involves fatty acid remodeling of the GPI precursor molecules before they are transferred to protein in the endoplasmic reticulum. The genes encoding the requisite phospholipase A2 and A1 activities for this remodeling have thus far been elusive. Here, we identify a gene, Tb927.7.6110, that encodes a protein that is both necessary and sufficient for GPI-phospholipase A2 (GPI-PLA2) activity in the procyclic form of the parasite. The predicted protein product belongs to the alkaline ceramidase, PAQR receptor, Per1, SID-1, and TMEM8 (CREST) superfamily of transmembrane hydrolase proteins and shows sequence similarity to Post-GPI-Attachment to Protein 6 (PGAP6), a GPI-PLA2 that acts after transfer of GPI precursors to protein in mammalian cells. We show the trypanosome Tb927.7.6110 GPI-PLA2 gene resides in a locus with two closely related genes Tb927.7.6150 and Tb927.7.6170, one of which (Tb927.7.6150) most likely encodes a catalytically inactive protein. The absence of GPI-PLA2 in the null mutant procyclic cells not only affected fatty acid remodeling but also reduced GPI anchor sidechain size on mature GPI-anchored procyclin glycoproteins. This reduction in GPI anchor sidechain size was reversed upon the re-addition of Tb927.7.6110 and of Tb927.7.6170, despite the latter not encoding GPI precursor GPI-PLA2 activity. Taken together, we conclude that Tb927.7.6110 encodes the GPI-PLA2 of GPI precursor fatty acid remodeling and that more work is required to assess the roles and essentiality of Tb927.7.6170 and the presumably enzymatically inactive Tb927.7.6150.


Subject(s)
Glycosylphosphatidylinositols , Trypanosoma brucei brucei , Animals , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Membrane Proteins/metabolism , Phospholipases A2/metabolism , GPI-Linked Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Mammals/metabolism
6.
Genes (Basel) ; 14(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37510348

ABSTRACT

Glycosylphosphatidylinositol biosynthesis defect 15 is a rare autosomal recessive disorder due to biallelic loss of function of GPAA1. At the moment, less than twenty patients have been reported, usually compound heterozygous for GPAA1 variants. The main clinical features are intellectual disability, hypotonia, seizures, and cerebellar atrophy. We describe a 4-year-old male with a novel, homozygous variant. The patient presents with typical features, such as developmental delay, hypotonia, seizures, and atypical features, such as macrocephaly, preauricular, and cheek appendages. When he was 15 months, the cerebellum was normal. When he was 33 months old, after the molecular diagnosis, magnetic resonance imaging was repeated, showing cerebellar atrophy. This case extends the clinical spectrum of the GPAA1-related disorder and helps to delineate phenotypic differences with defects of other subunits of the transamidase complex.


Subject(s)
Cerebellar Diseases , Intellectual Disability , Male , Humans , Child, Preschool , Glycosylphosphatidylinositols/genetics , Muscle Hypotonia , Seizures , Intellectual Disability/genetics , Atrophy , Membrane Glycoproteins
7.
Clin Genet ; 104(5): 598-603, 2023 11.
Article in English | MEDLINE | ID: mdl-37489290

ABSTRACT

Glycosylphosphatidylinositol anchoring disorders (GPI-ADs) are a subgroup of congenital disorders of glycosylation. GPI biosynthesis requires proteins encoded by over 30 genes of which 24 genes are linked to neurodevelopmental disorders. Patients, especially those with PIGA-encephalopathy, have a high risk of premature mortality which sometimes is attributed to cardiomyopathy. We aimed to explore the occurrence of cardiomyopathy among patients with GPI-ADs and to raise awareness about this potentially lethal feature. Unpublished patients with genetically proven GPI-ADs and cardiomyopathy were identified through an international collaboration and recruited through the respective clinicians. We also reviewed the literature for published patients with cardiomyopathy and GPI-AD and contacted the corresponding authors for additional information. We identified four novel and unrelated patients with GPI-AD and cardiomyopathy. Cardiomyopathy was diagnosed before adulthood and was the cause of early demise in two patients. Only one patients underwent cardiac workup after being diagnosed with a GPI-AD. All were diagnosed with PIGA-encephalopathy and three had a disease-causing variant at the same residue. The literature reports five additional children with GPI-AD related cardiomyopathy, three of which died before adulthood. We have shown that patients with GPI-ADs are at risk of developing cardiomyopathy and that regular cardiac workup with echocardiography is necessary.


Subject(s)
Brain Diseases , Cardiomyopathies , Child , Humans , Adult , Glycosylphosphatidylinositols/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics
8.
BMC Plant Biol ; 23(1): 191, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038106

ABSTRACT

BACKGROUND: Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize. RESULTS: In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted. CONCLUSIONS: Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.


Subject(s)
Proteome , Zea mays , Humans , Zea mays/metabolism , Proteome/metabolism , Multiomics , Cell Membrane/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism
9.
Acta Neuropathol ; 145(5): 637-650, 2023 05.
Article in English | MEDLINE | ID: mdl-36879070

ABSTRACT

A missense variant from methionine to arginine at codon 232 (M232R) of the prion protein gene accounts for ~ 15% of Japanese patients with genetic prion diseases. However, pathogenic roles of the M232R substitution for the induction of prion disease have remained elusive because family history is usually absent in patients with M232R. In addition, the clinicopathologic phenotypes of patients with M232R are indistinguishable from those of sporadic Creutzfeldt-Jakob disease patients. Furthermore, the M232R substitution is located in the glycosylphosphatidylinositol (GPI)-attachment signal peptide that is cleaved off during the maturation of prion proteins. Therefore, there has been an argument that the M232R substitution might be an uncommon polymorphism rather than a pathogenic mutation. To unveil the role of the M232R substitution in the GPI-attachment signal peptide of prion protein in the pathogenesis of prion disease, here we generated a mouse model expressing human prion proteins with M232R and investigated the susceptibility to prion disease. The M232R substitution accelerates the development of prion disease in a prion strain-dependent manner, without affecting prion strain-specific histopathologic and biochemical features. The M232R substitution did not alter the attachment of GPI nor GPI-attachment site. Instead, the substitution altered endoplasmic reticulum translocation pathway of prion proteins by reducing the hydrophobicity of the GPI-attachment signal peptide, resulting in the reduction of N-linked glycosylation and GPI glycosylation of prion proteins. To the best of our knowledge, this is the first time to show a direct relationship between a point mutation in the GPI-attachment signal peptide and the development of disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Mice , Humans , Prion Proteins/genetics , Point Mutation , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Protein Sorting Signals/genetics , Prion Diseases/genetics , Prion Diseases/pathology , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Prions/genetics , Prions/metabolism , Mutation/genetics
10.
Sci Adv ; 9(1): eabq0844, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36608130

ABSTRACT

Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.


Subject(s)
Drosophila melanogaster , Glycosylphosphatidylinositols , Animals , Humans , Glycosylphosphatidylinositols/genetics , Drosophila melanogaster/genetics , Genome-Wide Association Study/methods , Zebrafish/genetics , Chromosome Mapping , Genetic Testing , Sleep/genetics
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009881

ABSTRACT

A boy, aged 6 years, attended the hospital due to global developmental delay for 6 years and recurrent fever and convulsions for 5 years. The boy was found to have delayed mental and motor development at the age of 3 months and experienced recurrent fever and convulsions since the age of 1 year, with intermittent canker sores and purulent tonsillitis. During the fever period, blood tests showed elevated white blood cell count, C-reactive protein, and erythrocyte sedimentation rate, which returned to normal after the fever subsides. Electroencephalography showed epilepsy, and genetic testing showed compound heterozygous mutations in the GPAA1 gene. The boy was finally diagnosed with glycosylphosphatidylinositol biosynthesis deficiency 15 (GPIBD15) and periodic fever. The patient did not respond well to antiepileptic treatment, but showed successful fever control with glucocorticoid therapy. This article reports the first case of GPIBD15 caused by GPAA1 gene mutation in China and summarizes the genetic features, clinical features, diagnosis, and treatment of this disease, which provides a reference for the early diagnosis and treatment of GPIBD15.


Subject(s)
Humans , Male , Child , Fever , Glycosylphosphatidylinositols/genetics , Membrane Glycoproteins/genetics , Mutation , Rare Diseases , Seizures
12.
Front Immunol ; 14: 1329403, 2023.
Article in English | MEDLINE | ID: mdl-38288112

ABSTRACT

Introduction: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hematological disease characterized by intravascular hemolysis, thrombosis, and bone marrow (BM) failure. Although PNH is caused by excessive proliferation of hematopoietic stem cell (HSC) clones with loss of function mutations in phosphatidylinositol N-acetylglucosaminyltransferase subunit A (PIGA) genes, what drives PNH clones to expand remains elusive. Case description: We present a case of a 26-year-old female who presented with hemolytic anemia, thrombocytopenia, and leukopenia. Flow cytometry analysis of peripheral blood showed that 71.9% and 15.3% of the granulocytes and erythrocytes were glycosylphosphatidylinositol-anchored protein deficient (GPI[-]) cells. The patient was diagnosed with PNH with non-severe aplastic anemia. Deep-targeted sequencing covering 390 different genes of sorted GPI(-) granulocytes revealed three different PIGA mutations (p.I69fs, variant allele frequency (VAF) 24.2%; p.T192P, VAF 5.8%; p.V300fs, VAF 5.1%) and no other mutations. She received six cycles of eculizumab and oral cyclosporine. Although the patient's serum lactate dehydrogenase level decreased, she remained dependent on red blood cell transfusion. Six months after diagnosis, she received a syngeneic bone marrow transplant (BMT) from a genetically identical healthy twin, following an immune ablative conditioning regimen consisting of cyclophosphamide 200 mg/kg and rabbit anti-thymocyte globulin 10 mg/kg. After four years, the patient's blood count remained normal without any signs of hemolysis. However, the peripheral blood still contained 0.2% GPI (-) granulocytes, and the three PIGA mutations that had been detected before BMT persisted at similar proportions to those before transplantation (p.I69fs, VAF 36.1%; p.T192P, VAF 3.7%; p.V300fs, VAF 8.6%) in the small PNH clones that persisted after transplantation. Conclusions: The PNH clones that had increased excessively before BMT decreased, but persisted at low percentages for more than four years after the immunoablative conditioning regimen followed by syngeneic BMT. These findings indicate that as opposed to conventional theory, immune pressure on HSCs, which caused BM failure before BMT, was sufficient for PIGA-mutated HSCs to clonally expand to develop PNH.


Subject(s)
Anemia, Aplastic , Hemoglobinuria, Paroxysmal , Female , Humans , Adult , Hemoglobinuria, Paroxysmal/diagnosis , Glycosylphosphatidylinositols/genetics , Hematopoietic Stem Cells/metabolism , Anemia, Aplastic/genetics , Anemia, Aplastic/complications , Clone Cells/metabolism
13.
Semin Hematol ; 59(3): 143-149, 2022 07.
Article in English | MEDLINE | ID: mdl-36115691

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disorder caused by a mutation of the X-linked PIGA gene, resulting in a deficient expression of glycosylphosphatidylinositol (GPI)-anchored proteins. While large clonal expansions of GPI(-) cells cause hemolytic symptoms, tiny GPI(-) cell populations can be found in healthy individuals and remain miniscule throughout life. The slight expansion of PNH clones often occurs in patients with acquired aplastic anemia (AA), an autoimmune bone marrow (BM) failure caused by autoreactive cytotoxic T lymphocyte attack on hematopoietic stem and progenitor cells (HSPCs). The presence of PNH clones is thought to represent the immune pathophysiology of BM failure and be derived from GPI(-) HSPCs that evaded immune attack against HSPCs. However, which mechanisms underlie the selection of GPI(-) HSPCs as well as their overwhelming clonal expansion remains unclear. Ancestral or secondary somatic mutations in GPI(-) HSPCs contribute to the clonal expansion of the aberrant HSPCs in certain patients with PNH; however, it remains unclear whether such driver mutations are responsible for clonal expansion of all patients. Increased sensitivity to TGF-ß in GPI(-) HSPCs partly explains the predominance of GPI(-) erythrocytes in immune-mediated BM failure. CD4+ T cells specific to antigens presented by HLA-DR15 on HSPCs also contribute to the immune escape of GPI(-) HSPCs. Studying the evolution of HSPCs in AA and PNH will yield further information for understanding human autoimmunity and stem cell biology.


Subject(s)
Hemoglobinuria, Paroxysmal , Bone Marrow Failure Disorders , Glycosylphosphatidylinositols/genetics , Hemoglobinuria, Paroxysmal/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Transforming Growth Factor beta
14.
Nat Commun ; 13(1): 3107, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661110

ABSTRACT

Inherited glycosylphosphatidylinositol (GPI) deficiency (IGD) is caused by mutations in GPI biosynthesis genes. The mechanisms of its systemic, especially neurological, symptoms are not clarified and fundamental therapy has not been established. Here, we report establishment of mouse models of IGD caused by PIGO mutations as well as development of effective gene therapy. As the clinical manifestations of IGD are systemic and lifelong lasting, we treated the mice with adeno-associated virus for homology-independent knock-in as well as extra-chromosomal expression of Pigo cDNA. Significant amelioration of neuronal phenotypes and growth defect was achieved, opening a new avenue for curing IGDs.


Subject(s)
Glycosylphosphatidylinositols , Seizures , Animals , Disease Models, Animal , Genetic Therapy , Glycosylphosphatidylinositols/deficiency , Glycosylphosphatidylinositols/genetics , Immunoglobulin D/genetics , Mice , Seizures/genetics
15.
EMBO Rep ; 23(7): e54352, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35603428

ABSTRACT

Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine-phosphate (EthN-P). It is postulated that EthN-P on the third mannose (EthN-P-Man3) is the bridge between GPI and the protein and the second (EthN-P-Man2) is removed after GPI-protein attachment. However, EthN-P-Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN-P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN-P on Man2 is the preferential bridge in some GPI-APs, among them, the Ect-5'-nucleotidase and Netrin G2. We find that CD59, a GPI-AP, is attached via EthN-P-Man2 both in PIGB-knockout cells, in which GPI lacks Man3, and with a small fraction in wild-type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations.


Subject(s)
Glycosylphosphatidylinositols , Mannose , Animals , Ethanolamines/metabolism , GPI-Linked Proteins/genetics , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Mammals/metabolism , Mannose/metabolism , Phosphates
16.
J Biol Chem ; 298(6): 102011, 2022 06.
Article in English | MEDLINE | ID: mdl-35525268

ABSTRACT

Glycosylphosphatidylinositol (GPI)-anchored proteins play crucial roles in various enzyme activities, cell signaling and adhesion, and immune responses. While the molecular mechanism underlying GPI-anchored protein biosynthesis has been well studied, the role of zinc transport in this process has not yet been elucidated. Zn transporter (ZNT) proteins mobilize cytosolic zinc to the extracellular space and to intracellular compartments. Here, we report that the early secretory pathway ZNTs (ZNT5-ZNT6 heterodimers [ZNT5-6] and ZNT7-ZNT7 homodimers [ZNT7]), which supply zinc to the lumen of the early secretory pathway compartments are essential for GPI-anchored protein expression on the cell surface. We show, using overexpression and gene disruption/re-expression strategies in cultured human cells, that loss of ZNT5-6 and ZNT7 zinc transport functions results in significant reduction in GPI-anchored protein levels similar to that in mutant cells lacking phosphatidylinositol glycan anchor biosynthesis (PIG) genes. Furthermore, medaka fish with disrupted Znt5 and Znt7 genes show touch-insensitive phenotypes similar to zebrafish Pig mutants. These findings provide a previously unappreciated insight into the regulation of GPI-anchored protein expression and protein quality control in the early secretory pathway.


Subject(s)
Cation Transport Proteins , GPI-Linked Proteins , Zinc , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Chickens/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Glycosylphosphatidylinositols/genetics , Membrane Proteins/metabolism , Zebrafish/metabolism , Zinc/metabolism
17.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328406

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchoring is a common post-translational modification in eukaryotic cells and has been demonstrated to have a wide range of biological functions, such as signal transduction, cellular adhesion, protein transport, immune response, and maintaining cell wall integrity. More than 25 proteins have been proven to participate in the GPI anchor synthesis pathway which occurs in the cytoplasmic and the luminal face of the ER membrane. However, the essential proteins of the GPI anchor synthesis pathway are still less characterized in maize pathogen Colletotrichum graminicola. In the present study, we analyzed the biological function of the GPI anchor synthesis pathway-related gene, CgGPI7, that encodes an ethanolamine phosphate transferase, which is localized in ER. The vegetative growth and conidia development of the ΔCgGPI7 mutant was significantly impaired in C. graminicola. and qRT-PCR results showed that the transcriptional level of CgGPI7 was specifically induced in the initial infection stage and that the pathogenicity of ΔCgGPI7 mutant was also significantly decreased compared with the wild type. Furthermore, the ΔCgGPI7 mutant displayed more sensitivity to cell wall stresses, suggesting that CgGPI7 may play a role in the cell wall integrity of C. graminicola. Cell wall synthesis-associated genes were also quantified in the ΔCgGPI7 mutant, and the results showed that chitin and ß-1,3-glucans synthesis genes were significantly up-regulated in ΔCgGPI7 mutants. Our results suggested that CgGPI7 is required for vegetative growth and pathogenicity and might depend on the cell wall integrity of C. graminicola.


Subject(s)
Colletotrichum , Glycosylphosphatidylinositols , Cell Wall/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Virulence/genetics
18.
Curr Biol ; 32(9): 1909-1923.e5, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35316654

ABSTRACT

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen. We identify HLD1/AtPGAP1, an ortholog of the human GPI-inositol deacylase PGAP1, as a critical component required for the SI response. Besides a delay in flowering time, no developmental defects were observed in HLD1/AtPGAP1 knockout plants, but SI was completely abolished. We demonstrate that HLD1/AtPGAP1 functions as a GPI-inositol deacylase and that this GPI-remodeling activity is essential for SI. Using GFP-SKU5 as a representative GPI-AP, we show that the HLD1/AtPGAP1 mutation does not affect GPI-AP production and targeting but affects their cleavage and release from membranes in vivo. Our data not only implicate GPI-APs in SI, providing new directions to investigate SI mechanisms, but also identify a key functional role for GPI-AP remodeling by inositol deacylation in planta.


Subject(s)
Arabidopsis , Papaver , Arabidopsis/metabolism , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Humans , Inositol/metabolism , Papaver/genetics , Papaver/metabolism , Pollen/metabolism
19.
Cerebellum ; 21(4): 525-530, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34089469

ABSTRACT

The glycophosphatidylinositol (GPI) anchor pathway plays an essential role in posttranslational modification of proteins to facilitate proper membrane anchoring and trafficking to lipid rafts, which is critical for many cell functions, including embryogenesis and neurogenesis. GPI biosynthesis is a multi-step process requiring the activity of over 25 distinct genes, most of them belonging to the phosphatidylinositol glycan (PIG) family and associated with rare neurodevelopmental disorders. PIGQ encodes the phosphatidylinositol glycan class Q protein and is part of the GPI-N-acetylglucosaminyltransferase complex that initiates GPI biosynthesis from phosphatidylinositol (PI) and N-acetylglucosamine (GlcNAc) on the cytoplasmic side of the endoplasmic reticulum (ER). Pathogenic variants in the PIGQ gene have been previously reported in 10 patients with congenital hypotonia, early-infantile epileptic encephalopathy, and premature death occurring in more than half cases. We detected a novel homozygous variant in PIGQ (NM_004204.5: c.1631dupA; p.Tyr544fs*79) by WES trio-analysis of a male patient with a neurodevelopmental disorder characterized by nonprogressive congenital ataxia, intellectual disability, generalized epilepsy, and cerebellar atrophy. Flow cytometry confirmed deficiency of several GPI-anchored proteins on leukocytes (CD14, FLAER). Clinical features of this case broaden the phenotypic spectrum of PIGQ-related GPI deficiency, outlining the importance of glycophosphatidylinositol (GPI) anchor pathway in the pathogenesis of cerebellar ataxia.


Subject(s)
Cerebellar Ataxia , Glycosylphosphatidylinositols , Cerebellar Ataxia/genetics , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Humans , Male , Membrane Proteins/genetics , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Mutation , Pedigree , Seizures
20.
Plant Physiol ; 187(4): 2156-2173, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34618080

ABSTRACT

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Membrane Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Transport/physiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Membrane Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Protein Transport/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...