Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.015
Filter
1.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657511

ABSTRACT

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Subject(s)
Autophagy , Chemical and Drug Induced Liver Injury , Glycyrrhetinic Acid , Trichothecenes , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Animals , Trichothecenes/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Humans , Autophagy/drug effects , Apoptosis Regulatory Proteins/metabolism , Ferritins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Male , Protective Agents/pharmacology , Nuclear Receptor Coactivators/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Hep G2 Cells
2.
Pathol Res Pract ; 257: 155295, 2024 May.
Article in English | MEDLINE | ID: mdl-38603841

ABSTRACT

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Subject(s)
Glycyrrhetinic Acid , Nanoparticles , Humans , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Antiviral Agents/pharmacology , Smoke/adverse effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Line , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Epithelial Cells/drug effects , Epithelial Cells/virology , Cigarette Smoking/adverse effects
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 474-483, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597438

ABSTRACT

OBJECTIVE: To study the inhibitory activities of 3-O-ß-chacotriosyl glycyrrhetinic acid derivatives against the entry of SARS-CoV-2 into host cells. METHODS: With pentacyclic triterpene saponin glycyrrhizic acid (a natural SARS-CoV-2 entry inhibitor) as the lead compound, a series of 3-O-ß-chacotriosyl glycyrrhetinic acid derivatives were designed and synthesized based on hypridization principle, and their inhibitory activities against virus entry were tested in SARS-CoV-2 pseudovirusinfected cells. The antiviral targets of the lead compound 1b was identified by pseudotyped SARS-CoV-2 infection assay and surface plasmon resonance (SPR) assay, and the S protein-mediated cell-cell fusion assay was used to evaluate the effect of 1b on virus-cell membrane fusion. Molecular docking and single amino acid mutagenesis were carried out to analyze the effect of 1b on binding activitiy of S protein. RESULTS: The lead compound 1b showed significant inhibitory effect against Omicron pseudovirus with an EC50 value of 3.28 µmol/L (P < 0.05), and had broad-spectrum antiviral activity against other SARS-CoV-2 pseudovirus. Spike-dependent cell-cell fusion assay demonstrated an inhibitory effect of 1b against SARS-CoV-2 S proteinmediated cell-cell fusion. Molecular docking analysis predicted that the lead compound 1b could be well fitted into a cavity between the attachment (S1) and fusion (S2) subunits at the 3-fold axis, where it formed multiple hydrophobic interactions with Glu309, Ser305, Arg765 and Lys964 residues with a KD value of -8.6 kcal/mol. The compound 1b at 10, 5, 2.5 and 1.25 µmol/L showed a significantly reduced inhibitory activity against the pseudovirus with mutated Arg765, Lys964, Glu309 and Leu303 (P < 0.01). CONCLUSION: 3-O-ß-chacotriosyl glycyrrhetinic acid derivatives are capable of stabilizing spike protein in the pre-fusion step to interfere with the fusion of SARS-CoV-2 with host cell membrane, and can thus serve as potential novel small-molecule SARS-CoV-2 fusion inhibitors.


Subject(s)
COVID-19 , Glycyrrhetinic Acid , Humans , SARS-CoV-2 , Molecular Docking Simulation , Antiviral Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Virus Internalization
4.
Phytomedicine ; 128: 155524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552435

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease. Current research suggests that the long-term persistence and recurrence of psoriasis are closely related to the feedback loop formed between keratinocytes and immune cells, especially in Th 17 or DC cells expressing CCR6. CCL20 is the ligand of CCR6. Therefore, drugs that block the expression of CCL20 or CCR6 may have a certain therapeutic effect on psoriasis. Glycyrrhetinic acid (GA) is the main active ingredient of the plant drug licorice and is often used to treat autoimmune diseases, including psoriasis. However, its mechanism of action is still unclear. METHODS: Psoriasis like skin lesion model was established by continuously applying imiquimod on the back skin of normal mice and CCR6-/- mice for 7 days. The therapeutic and preventive effects of glycyrrhetinic acid (GA) on the model were observed and compared. The severity of skin injury is estimated through clinical PASI scores and histopathological examination. qRT-PCR and multiple cytoline assay were explored to detect the expression levels of cytokines in animal dorsal skin lesions and keratinocyte line HaCaT cells, respectively. The dermis and epidermis of the mouse back were separated for the detection of CCL20 expression. Transcription factor assay was applied to screen, and luciferase activity assay to validate transcription factors regulated by GA. Technology of surface plasmon laser resonance with LC-MS (SPR-MS), molecular docking, and enzyme activity assay were used to identified the target proteins for GA. Finally, we synthesized different derivatives of 18beta-GA and compared their effects, as well as glycyrrhetinic acid (GL), on the skin lesion of imiquimod-induced mice to evaluate the active groups of 18beta-GA. RESULTS: 18ß-glycyrrhetinic acid (GA) improved IMQ-induced psoriatic lesions, and could specifically reduce the chemokine CCL20 level of the epidermis in lesion area, especially in therapeutic administration manner. The process was mainly regulated by transcription factor ATF2 in the keratinocytes. In addition, GUSB was identified as the primary target of 18ßGA. Our findings indicated that the subject on molecular target research of glycyrrhizin should be glycyrrhetinic acid (GA) instead of glycyrrhizic acid (GL), because GL showed little activity in vitro or in vivo. Apart from that, α, ß, -unsaturated carbonyl in C11/12 positions was crucial or unchangeable to its activity of 18ßGA, while proper modification of C3 or C30 position of 18ßGA may vastly increase its activity. CONCLUSION: Our research indicates that 18ßGA exerted its anti-psoriasis effect mainly by suppressing ATF2 and downstream molecule CCL20 predominately through α, ß, -unsaturated carbonyl at C11/12 position binding to GUSB in the keratinocytes, and then broke the feedback loop between keratinocytes and CCR6-expressing immune cells. GA has more advantages than GL in the external treatment of psoriasis. A highlight of this study is to investigate the influence of special active groups on the pharmacological action of a natural product, inspired by the molecular docking result.


Subject(s)
Chemokine CCL20 , Glycyrrhetinic Acid , Glycyrrhetinic Acid/analogs & derivatives , Psoriasis , Receptors, CCR6 , Signal Transduction , Animals , Glycyrrhetinic Acid/pharmacology , Chemokine CCL20/metabolism , Psoriasis/drug therapy , Humans , Mice , Signal Transduction/drug effects , Receptors, CCR6/metabolism , Activating Transcription Factor 2/metabolism , Disease Models, Animal , Keratinocytes/drug effects , HaCaT Cells , Imiquimod , Skin/drug effects , Skin/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Glycyrrhiza/chemistry
5.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401519

ABSTRACT

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycyrrhetinic Acid , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Glycyrrhetinic Acid/pharmacology , Lung Neoplasms/pathology , Caspase 3 , Peroxiredoxin VI/therapeutic use , Cell Line, Tumor , Apoptosis
6.
J Ethnopharmacol ; 326: 117909, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350503

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gancao Decoction (GCD) is widely used to treat cholestatic liver injury. However, it is unclear whether is related to prevent hepatocellular necroptosis. AIM OF THE STUDY: The purpose of this study is to clarify the therapeutic effects of GCD against hepatocellular necroptosis induced by cholestasis and its active components. MATERIALS AND METHODS: We induced cholestasis model in wild type mice by ligating the bile ducts or in Nlrp3-/- mice by intragastrical administering Alpha-naphthylisothiocyanate (ANIT). Serum biochemical indices, liver pathological changes and hepatic bile acids (BAs) were measured to evaluate GCD's hepatoprotective effects. Necroptosis was assessed by expression of hallmarkers in mice liver. Moreover, the potential anti-necroptotic effect of components from GCD were investigated and confirmed in ANIT-induced cholestasis mice and in primary hepatocytes from WT mouse stimulated with Tumor Necrosis Factor alpha (TNF-α) and cycloheximide (CHX). RESULTS: GCD dose-dependently alleviated hepatic necrosis, reduced serum aminotranferase activity in both BDL and ANIT-induced cholestasis models. More importantly, the expression of hallmarkers of necroptosis, including MLKL, RIPK1 and RIPK3 phosphorylation (p- MLKL, p-RIPK1, p-RIPK3) were reduced upon GCD treatment. Glycyrrhetinic acid (GA), the main bioactive metabolite of GCD, effectively protected against ANIT-induced cholestasis, with decreased expression of p-MLKL, p-RIPK1 and p-RIPK3. Meanwhile, the expression of Fas-associated death domain protein (FADD), long isoform of cellular FLICE-like inhibitory protein (cFLIPL) and cleaved caspase 8 were upregulated upon GA treatment. Moreover, GA significantly increased the expression of active caspase 8, and reduced that of p-MLKL in TNF-α/CHX induced hepatocytes necroptosis. CONCLUSIONS: GCD substantially inhibits necroptosis in cholestatic liver injury. GA is the main bioactive component responsible for the anti-necroptotic effects, which correlates with upregulation of c-FLIPL and active caspase 8.


Subject(s)
Cholestasis , Drugs, Chinese Herbal , Glycyrrhetinic Acid , Glycyrrhiza , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Caspase 8 , Necroptosis , Liver , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/pathology , Glycyrrhetinic Acid/pharmacology , 1-Naphthylisothiocyanate/toxicity
7.
Pharm Dev Technol ; 29(3): 176-186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376879

ABSTRACT

OBJECTIVE: To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE: The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS: This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS: The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION: These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.


Subject(s)
Glucosides , Glycyrrhetinic Acid , Liposomes , Monoterpenes , Liposomes/pharmacology , Glycyrrhetinic Acid/pharmacology , Liver , Drug Delivery Systems/methods
8.
Toxicol In Vitro ; 96: 105782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244730

ABSTRACT

Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18ß-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18ß-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18ß-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18ß-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18ß-GA, and 18ß-GA as an alternative treatment for EE-induced cholestasis.


Subject(s)
Cholestasis , Glycyrrhetinic Acid , Natural Killer T-Cells , Receptors, CXCR3 , Ursodeoxycholic Acid , Cholestasis/chemically induced , Cholestasis/drug therapy , Ethinyl Estradiol/toxicity , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Signal Transduction , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Animals , Mice
9.
Vet Res ; 55(1): 7, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225645

ABSTRACT

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.


Subject(s)
Anthelmintics , Glycyrrhetinic Acid , Haemonchus , Female , Animals , Mebendazole/pharmacology , Mebendazole/therapeutic use , Vitamin K 3/pharmacology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Larva , Glycyrrhetinic Acid/pharmacology
10.
J Ethnopharmacol ; 324: 117691, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38176667

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used in the treatment of ulcerative colitis (UC) and has good antioxidant and anti-inflammatory effects, but its specific active ingredients and mechanisms of action are still unknown. THE PURPOSE OF THE STUDY: To elucidate the specific molecular mechanisms of licorice in the treatment of UC and to experimentally verify its activity. METHODS: Through network pharmacology, the active ingredients of licorice and the molecular targets of UC were identified. A traditional Chinese medicine (TCM)-components-target-disease network diagram was established, and the binding energies of the active ingredient and targets of licorice were verified by molecular docking. A BALB/c mice model of UC was established by treatment with 3% dextran sulfate sodium (DSS). The effect of licorice on colon tissue injury was histologically assessed. The expression of IL-6 and IL-17 in colon tissue was detected by immunohistochemistry (IHC). Transmission electron microscopy (TEM) was used to observe morphological changes in mitochondria in the colon. Caco2 cells were treated with lipopolysaccharide (LPS) for 24 h to establish the cell inflammatory damage model, and cells were exposed to different concentrations of drug-containing serum of Licorice (DCSL) for 24 h. In cells treated with the drug, the contents of oxidation markers were measured and ELISA was used to determine the levels of inflammatory factors in the cells. TEM was used to observe morphological changes in mitochondria. ZO-1 and occludin were detected by Western blotting. DCSL effects on autophagy were evaluated by treating cells with DCSL and autophagy inhibitor for 24 h after LPS injection. Small interfering ribonucleic acid (si-RNA) was used to silence Nrf2 gene expression in Caco2 cells to observe the effects of DCSL on autophagy through the Nrf2/PINK1 pathway. Nrf2, PINK1, HO-1, Parkin, P62, and LC3 were detected by Western blotting. RESULTS: Ninety-one active ingredients and 339 action targets and 792 UC disease targets were identified, 99 of which were overlapping targets. Molecular docking was used to analyze the binding energies of liquiritin, liquiritigenin, glycyrrhizic acid, and glycyrrhetinic acid to the targets, with glycyrrhetinic acid having the strongest binding energy. In the UC mouse model, licorice improved colon histopathological changes, reduced levels of IL-6 and IL-17 and repaired mitochondrial damage. In the LPS-induced inflammation model of Caco2 cells, DCSL decreased MDA, IL-1ß, Il-6, and TNF-α levels and increased those of Superoxide Dismutase (SOD), glutathione peroxidase (GSH-PX), and IL-10, and improved the morphological changes of mitochondria. Increased expression of Nrf2, PINK1, Parkin, HO-1, ZO-1, occludin, P62, and LC3 promoted autophagy and reduced inflammation levels. CONCLUSION: Licorice improves UC, which may be related to the activation of the Nrf2/PINK1 signaling pathway that regulates autophagy.


Subject(s)
Colitis, Ulcerative , Colitis , Glycyrrhetinic Acid , Glycyrrhiza , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Interleukin-17/metabolism , Colon , Network Pharmacology , Caco-2 Cells , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation , Occludin/metabolism , Inflammation/pathology , Glycyrrhetinic Acid/pharmacology , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Colitis/drug therapy
11.
Eur J Med Chem ; 264: 115995, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38043488

ABSTRACT

Hepatocellular carcinoma (HCC) is a major contributor to global mortality rates, but current treatment options have limitations. Advanced theranostics are needed to effectively integrate diagnosis and therapeutic of HCC. Glycyrrhetinic acid (GA) has abundant binding sites with glycyrrhetinic acid receptors (GA-Rs) on the surface of HCC cells and has also been reported to possess ligands with mitochondrial-targeting capability but with limited efficacy. Herein, we report a near-infrared (NIR) luminescent theranostic complex 1 through conjugating an iridium(III) complex to GA, which exhibits the desired photophysical properties and promotes mitochondrial-targeting capability. Complex 1 was selectively taken up by HepG2 liver cancer cells and was imaged within mitochondria with NIR emission. Complex 1 targeted mitochondria and opened mitochondrial permeability transition pores (MPTPs), resulting in ROS accumulation, mitochondrial damage, disruption of Bax/Bcl-2 equilibrium, and tumor cell apoptosis, resulting in significantly improved anticancer activity compared to GA. This work offers a methodology for developing multifunctional theranostic probes with amplified specificity and efficacy.


Subject(s)
Carcinoma, Hepatocellular , Glycyrrhetinic Acid , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Precision Medicine , Iridium/pharmacology , Iridium/chemistry , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/chemistry , Mitochondria/metabolism , Cell Line, Tumor
12.
Int J Radiat Oncol Biol Phys ; 118(1): 218-230, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37586613

ABSTRACT

PURPOSE: Radiation-induced pulmonary fibrosis (RIPF) is a common side effect of radiation therapy for thoracic tumors without effective prevention and treatment methods at present. The aim of this study was to explore whether glycyrrhetinic acid (GA) has a protective effect on RIPF and the underlying mechanism. METHODS AND MATERIALS: A RIPF mouse model administered GA was used to determine the effect of GA on RIPF. The cocultivation of regulatory T (Treg) cells with mouse lung epithelial-12 cells or mouse embryonic fibroblasts and intervention with GA or transforming growth factor-ß1 (TGF-ß1) inhibitor to block TGF-ß1 was conducted to study the mechanism by which GA alleviates RIPF. Furthermore, injection of Treg cells into GA-treated RIPF mice to upregulate TGF-ß1 levels was performed to verify the roles of TGF-ß1 and Treg cells. RESULTS: GA intervention improved the damage to lung tissue structure and collagen deposition and inhibited Treg cell infiltration, TGF-ß1 levels, epithelial mesenchymal transition (EMT), and myofibroblast (MFB) transformation in mice after irradiation. Treg cell-induced EMT and MFB transformation in vitro were prevented by GA, as well as a TGF-ß1 inhibitor, by decreasing TGF-ß1. Furthermore, reinfusion of Treg cells upregulated TGF-ß1 levels and exacerbated RIPF in GA-treated RIPF mice. CONCLUSIONS: GA can improve RIPF in mice, and the corresponding mechanisms may be related to the inhibition of TGF-ß1 secreted by Treg cells to induce EMT and MFB transformation. Therefore, GA may be a promising therapeutic candidate for the clinical treatment of RIPF.


Subject(s)
Glycyrrhetinic Acid , Lung Injury , Pulmonary Fibrosis , Radiation Injuries , Animals , Mice , Epithelial-Mesenchymal Transition , Fibroblasts/radiation effects , Glycyrrhetinic Acid/pharmacology , Lung/radiation effects , Lung Injury/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/prevention & control , Radiation Injuries/pathology , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1
13.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5195-5204, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114109

ABSTRACT

The 3-succinate-30-stearyl glycyrrhetinic acid(18-GA-Suc) was inserted into glycyrrhetinic acid(GA)-tanshinone Ⅱ_A(TSN)-salvianolic acid B(Sal B) liposome(GTS-lip) to prepare liver targeting compound liposome(Suc-GTS-lip) mediated by GA receptors. Next, pharmacokinetics and tissue distribution of Suc-GTS-lip and GTS-lip were compared by UPLC, and in vivo imaging tracking of Suc-GTS-lip was conducted. The authors investigated the effect of Suc-GTS-lip on the proliferation inhibition of hepatic stellate cells(HSC) and explored their molecular mechanism of improving liver fibrosis. Pharmacokinetic results showed that the AUC_(Sal B) decreased from(636.06±27.73) µg·h·mL~(-1) to(550.39±12.34) µg·h·mL~(-1), and the AUC_(TSN) decreased from(1.08±0.72) µg·h·mL~(-1) to(0.65±0.04) µg·h·mL~(-1), but the AUC_(GA) increased from(43.64±3.10) µg·h·mL~(-1) to(96.21±3.75) µg·h·mL~(-1). The results of tissue distribution showed that the AUC_(Sal B) and C_(max) of Sal B in the liver of the Suc-GTS-lip group were 10.21 and 4.44 times those of the GTS-lip group, respectively. The liver targeting efficiency of Sal B, TSN, and GA in the Suc-GTS-lip group was 40.66%, 3.06%, and 22.08%, respectively. In vivo imaging studies showed that the modified liposomes tended to accumulate in the liver. MTT results showed that Suc-GTS-lip could significantly inhibit the proliferation of HSC, and RT-PCR results showed that the expression of MMP-1 was significantly increased in all groups, but that of TIMP-1 and TIMP-2 was significantly decreased. The mRNA expressions of collagen-I and collagen-Ⅲ were significantly decreased in all groups. The experimental results showed that Suc-GTS-lip had liver targeting, and it could inhibit the proliferation of HSC and induce their apoptosis, which provided the experimental basis for the targeted treatment of liver fibrosis by Suc-GTS-lip.


Subject(s)
Glycyrrhetinic Acid , Liposomes , Humans , Hepatic Stellate Cells , Glycyrrhetinic Acid/pharmacology , Liver , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Collagen/pharmacology
14.
Eur J Pharmacol ; 961: 176193, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37981257

ABSTRACT

Bile acid (BA)-induced apoptosis is a common pathologic feature of cholestatic liver injury. Glycyrrhetinic acid (GA) is the hepatoprotective constituent of licorice. In the present study, the anti-apoptotic potential of GA was investigated in wild type and macrophage-depleted C57BL/6 mice challenged with alpha-naphthyl isothiocyanate (ANIT), and hepatocytes stimulated with Taurocholic acid (TCA) or Tumor necrosis factor-alpha (TNF-α). Apoptosis was determined by TUNEL positive cells and expression of executioner caspases. Firstly, we found that GA markedly alleviated liver injury, accompanied with reduced positive TUNEL-staining cells, and expression of caspases 3, 8 and 9 in mice modeled with ANIT. Secondly, GA mitigated apoptosis in macrophage-depleted mice with exacerbated liver injury and augmented cell apoptosis. In vitro study, pre-treatment with GA reduced the expression of activated caspases 3 and 8 in hepatocytes stimulated with TCA, but not TNF-α. The ability of GA to ameliorate apoptosis was abolished in the presence of Tauroursodeoxycholic Acid (TUDCA), a chemical chaperon against Endoplasmic reticulum stress (ER stress). Furthermore, GA attenuated the over-expression of Glucose regulated protein 78 (GRP78), and blocked all three branches of Unfolded protein reaction (UPR) in cholestatic livers of mice induced by ANIT. GA also downregulated C/EBP homologous protein (CHOP) expression, accompanied with reduced expression of Death receptor 5 (DR5) and activation of caspase 8 in both ANIT-modeled mice and TCA-stimulated hepatocytes. The results indicate that GA inhibits ER stress-induced hepatocyte apoptosis in cholestasis, which correlates with blocking CHOP/DR5/Caspase 8 pathway.


Subject(s)
Cholestasis , Glycyrrhetinic Acid , Mice , Animals , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Caspase 8/metabolism , Mice, Inbred C57BL , Cholestasis/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Hepatocytes/metabolism , Transcription Factor CHOP/metabolism , Caspases/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Neurosci Biobehav Rev ; 155: 105452, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925093

ABSTRACT

Traditional and scientific evidence attribute numerous bioactivities of Licorice (Glycyrrhiza glabra Linn.) in aging-related disorders. In this state-of-art review, an extensive search in several databases was conducted to collect all relevant literature and comprehensively analyze Licorice's pharmacological attributes, neuroprotective properties, safety, and its mechanistic role in treating various neurological conditions. Network pharmacology was employed for the first time exploring the mechanistic role of Licorice in neurological disorders. Its neuroprotective role is attributed to phytoconstituents, including liquiritin, glycyrrhizic acid, liquiritigenin, glabridin, 18ß-glycyrrhetinic acid, quercetin, isoliquiritigenin, paratocarpin B, glycyglabrone, and hispaglabridin B, as evident from in vitro and in vivo studies. Network pharmacology analysis reveals that these compounds protect against long-term depression, aging-associated diseases, Alzheimer's disease, and other addictions through interactions with cholinergic, dopaminergic, and serotonergic proteins, validated in animal studies only. Future clinical trials are warranted as Licorice administration has a limiting factor of mild hypertension and hypokalemia. Hopefully, scientific updates on Licorice will propagate a paradigm shift in medicine, research propagation, and development of the central nervous system phytopharmaceuticals.


Subject(s)
Glycyrrhetinic Acid , Glycyrrhiza , Nervous System Diseases , Animals , Functional Food , Glycyrrhetinic Acid/pharmacology , Plant Extracts/pharmacology , Glycyrrhizic Acid/pharmacology , Nervous System Diseases/drug therapy
16.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37628991

ABSTRACT

Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Glycyrrhetinic Acid , Humans , Animals , Rats , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Quality of Life , alpha-Glucosidases , Glycyrrhetinic Acid/pharmacology
17.
Bull Exp Biol Med ; 175(1): 27-31, 2023 May.
Article in English | MEDLINE | ID: mdl-37338755

ABSTRACT

We studied the effects of glycyrrhetinic acid (bioactive aglycone of glycyrrhizin) and its ester derivatives at positions C-3 and C-30 on the cell volume regulation in rat thymocytes under conditions of hypoosmotic stress. Native glycyrrhetinic acid completely suppressed this process with half-maximal concentration of 12.7±1.4 µM and Hill coefficient of 3.1±0.6. Formation of esters at C-3 (esters with the acetic, cinnamic and methoxi-cinnamic acid) and at C-30 (methyl ester) drastically decreased the inhibitory activity of the molecule, suggesting that intact hydroxyl group at C-3 and carboxyl group at C-30 are structurally important determinants of biological activity of glycyrrhetinic acid towards volume regulation of thymic lymphocytes.


Subject(s)
Glycyrrhetinic Acid , Rats , Animals , Glycyrrhetinic Acid/pharmacology , Thymocytes , Glycyrrhizic Acid , Esters
18.
Aging (Albany NY) ; 15(9): 3839-3856, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37171392

ABSTRACT

There is a wide range of pharmacological effects for glycyrrhetinic acid (GRA). Previous studies have shown that GRA could inhibit the proliferation of tumor cells, showing a promising value in the treatment of gastric cancer (GC). Nonetheless, the precise mechanism of the effect of GRA on GC remains unclear. We explored cellular and molecular mechanisms of GRA based on network pharmacology and in vitro experimental validation. In this study, we predicted 156 potential therapeutic targets for GC with GRA from public databases. We then screened the hub targets using protein-protein interaction network (PPI) and conducted clinical correlation analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that GRA made anti-GC effects through multiple targets and pathways, particularly the MAPK signaling pathway. Next, molecular docking results revealed a potential interaction between GRA and MAPK3. In addition, qRT-PCR experiments revealed that 18ß-GRA was able to suppress mRNA expression of KRAS, ERK1 and ERK2 in AGS cells. Western blotting results also revealed that 18ß-GRA was able to suppress the expression of KRAS and p-ERK1/2 proteins in AGS cells. Additionally, immunofluorescence assays revealed that 18ß-GRA inhibited p-ERK1/2 nuclear translocation in AGS cells. These results systematically reveal that 18ß-GRA may have anti-tumor effects on GC by modulating the MAPK signaling pathway.


Subject(s)
Glycyrrhetinic Acid , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Network Pharmacology , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras) , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use
19.
Molecules ; 28(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37241887

ABSTRACT

OBJECTIVE: the study was to find a suitable treatment for acute drug-induced liver injury. The use of nanocarriers can improve the therapeutic effect of natural drugs by targeting hepatocytes and higher loads. METHODS: firstly, uniformly dispersed three-dimensional dendritic mesoporous silica nanospheres (MSNs) were synthesized. Glycyrrhetinic acid (GA) was covalently modified on MSN surfaces through amide bond and then loaded with COSM to form drug-loaded nanoparticles (COSM@MSN-NH2-GA). The constructed drug-loaded nano-delivery system was determined by characterization analysis. Finally, the effect of nano-drug particles on cell viability was evaluated and the cell uptake in vitro was observed. RESULTS: GA was successfully modified to obtain the spherical nano-carrier MSN-NH2-GA (≤200 nm). The neutral surface charge improves its biocompatibility. MSN-NH2-GA has high drug loading (28.36% ± 1.00) because of its suitable specific surface area and pore volume. In vitro cell experiments showed that COSM@MSN-NH2-GA significantly enhanced the uptake of liver cells (LO2) and decreased the AST and ALT indexes. CONCLUSION: this study demonstrated for the first time that formulation and delivery schemes using natural drug COSM and nanocarrier MSN have a protective effect on APAP-induced hepatocyte injury. This result provides a potential nano-delivery scheme for the targeted therapy of acute drug-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chitosan , Glycyrrhetinic Acid , Nanoparticles , Humans , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Glycyrrhetinic Acid/pharmacology , Nanoparticles/chemistry , Drug Delivery Systems , Oligosaccharides , Porosity
20.
Int J Med Sci ; 20(4): 444-454, 2023.
Article in English | MEDLINE | ID: mdl-37057216

ABSTRACT

The development of endocrine therapy resistance in the luminal A subtype of breast cancer is related to the appearance of protective autophagy. The bioactive component from the root of licorice, 18ß-glycyrrhetinic acid (18ß-GA), has many antitumor properties. Whether 18ß-GA can modulate autophagy to inhibit proliferation of the luminal A subtype is still unclear. The proportion of apoptosis caused by 18ß-GA in MCF-7 and T-47D cells was determined using flow cytometry. The autophagy marker, LC3-II conversion, was investigated using Western blotting, and a PremoTM Tandem Autophagy Sensor Kit. We found that the concentration (150-µM) of 18ß-GA caused caspase-dependent apoptosis and LC3-II accumulation or blocked autophagic flux. Moreover, 18ß-GA-mediated apoptosis was improved using rapamycin but reversed by 3-methyladenine (3-MA) addition. The phosphorylation level of Jun-amino-terminal kinase (JNK) was increased significantly in the 18ß-GA treatment and combined incubation using rapamycin. A JNK inhibitor (SP600125) significantly inhibited 18ß-GA-mediated apoptosis, LC3-II accumulation and rescued the numbers of MCF-7 and T-47D colony formation. Especially, 18ß-GA can inhibit xenograft tumor growth in BALB/c nude mice. These data indicate the combination of 18ß-GA with rapamycin or 3-MA can sensitize or decrease MCF-7 and T-47D cells to 18ß-GA-induced apoptosis, respectively. 18ß-GA modulated autophagy is cytotoxic to luminal A subtype breast cancer cells through apoptosis promotion and JNK activation.


Subject(s)
Antineoplastic Agents , Glycyrrhetinic Acid , Neoplasms , Animals , Mice , Humans , Mice, Nude , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Sirolimus/pharmacology , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL
...