Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829344

ABSTRACT

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Subject(s)
Calcium , Disease Resistance , Gossypium , Plant Diseases , Plant Proteins , Gossypium/microbiology , Gossypium/genetics , Gossypium/metabolism , Gossypium/immunology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Gene Expression Regulation, Plant , Calmodulin/metabolism , Calmodulin/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Ascomycota/physiology , Ascomycota/pathogenicity , Plants, Genetically Modified , Verticillium/physiology , Verticillium/pathogenicity
2.
Appl Microbiol Biotechnol ; 108(1): 364, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842723

ABSTRACT

Beauveria bassiana (Bal.-Criv.) is an important entomopathogenic fungus being used for the management of various agricultural pests worldwide. However, all strains of B. bassiana may not be effective against whitefly, Bemisia tabaci, or other pests, and strains show diversity in their growth, sporulation, virulence features, and overall bioefficacy. Thus, to select the most effective strain, a comprehensive way needs to be devised. We studied the diversity among the 102 strains of B. bassiana isolated from 19 insect species based on their physiological features, virulence, and molecular phylogeny, to identify promising ones for the management of B. tabaci. Strains showed diversity in mycelial growth, conidial production, and their virulence against B. tabaci nymphs. The highest nymphal mortality (2nd and 3rd instar) was recorded with MTCC-4511 (95.1%), MTCC-6289 (93.8%), and MTCC-4565 (89.9%) at a concentration of 1 × 106 conidia ml-1 under polyhouse conditions. The highest bioefficacy index (BI) was in MTCC-4511 (78.3%), MTCC-4565 (68.2%), and MTCC-4543 (62.1%). MTCC-4511, MTCC-4565, and MTCC-4543 clustered with positive loading of eigenvalues for the first two principal components and the cluster analysis also corresponded well with PCA (principal component analysis) (nymphal mortality and BI). The molecular phylogeny could not draw any distinct relationship between physiological features, the virulence of B. bassiana strains with the host and location. The BI, PCA, and square Euclidean distance cluster were found the most useful tools for selecting potential entomopathogenic strains. The selected strains could be utilized for the management of the B. tabaci nymphal population in the field through the development of effective formulations. KEY POINTS: • 102 B. bassiana strains showed diversity in growth and virulence against B. tabaci. • Bioefficacy index, PCA, and SED group are efficient tools for selecting potential strains. • MTCC-4511, 4565, and 4543 chosen as the most virulent strains to kill whitefly nymphs.


Subject(s)
Beauveria , Gossypium , Hemiptera , Pest Control, Biological , Phylogeny , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/classification , Beauveria/isolation & purification , Animals , Hemiptera/microbiology , Virulence , Gossypium/microbiology , Nymph/microbiology , Spores, Fungal/growth & development , Genetic Variation
3.
Appl Microbiol Biotechnol ; 108(1): 371, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861165

ABSTRACT

Understanding the extent of heritability of a plant-associated microbiome (phytobiome) is critically important for exploitation of phytobiomes in agriculture. Two crosses were made between pairs of cotton cultivars (Z2 and J11, L1 and Z49) with differential resistance to Verticillium wilt. F2 plants were grown in a field, together with the four parents to study the heritability of cotton rhizosphere microbiome. Amplicon sequencing was used to profile bacterial and fungal communities in the rhizosphere. F2 offspring plants of both crosses had higher average alpha diversity indices than the two parents; parents differed significantly from F2 offspring in Bray-Curtis beta diversity indices as well. Two types of data were used to study the heritability of rhizosphere microbiome: principal components (PCs) and individual top microbial operational taxonomic units (OTUs). For the L1 × Z49 cross, the variance among the F2 progeny genotypes (namely, genetic variance, VT) was significantly greater than the random variability (VE) for 12 and 34 out of top 100 fungal and bacterial PCs, respectively. For the Z2 × J11 cross, the corresponding values were 10 and 20 PCs. For 29 fungal OTUs and 10 bacterial OTUs out of the most abundant 100 OTUs, genetic variance (VT) was significantly greater than VE for the L1 × Z49 cross; the corresponding values for the Z2 × J11 cross were 24 and one. The estimated heritability was mostly in the range of 40% to 60%. These results suggested the existence of genetic control of polygenic nature for specific components of rhizosphere microbiome in cotton. KEY POINTS: • F2 offspring cotton plants differed significantly from parents in rhizosphere microbial diversity. • Specific rhizosphere components are likely to be genetically controlled by plants. • Common PCs and specific microbial groups are significant genetic components between the two crosses.


Subject(s)
Bacteria , Fungi , Gossypium , Microbiota , Rhizosphere , Soil Microbiology , Gossypium/microbiology , Gossypium/genetics , Microbiota/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Roots/genetics , Genetic Variation , Verticillium/genetics , Genotype
4.
BMC Plant Biol ; 24(1): 457, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797823

ABSTRACT

BACKGROUND: Cotton is globally important crop. Verticillium wilt (VW), caused by Verticillium dahliae, is the most destructive disease in cotton, reducing yield and fiber quality by over 50% of cotton acreage. Breeding resistant cotton cultivars has proven to be an efficient strategy for improving the resistance of cotton to V. dahliae. However, the lack of understanding of the genetic basis of VW resistance may hinder the progress in deploying elite cultivars with proven resistance. RESULTS: We planted the VW-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2) in an artificial greenhouse and disease nursery. ZZM2 cotton was subsequently subjected to transcriptome sequencing after Vd991 inoculation (6, 12, 24, 48, and 72 h post-inoculation). Several differentially expressed genes (DEGs) were identified in response to V. dahliae infection, mainly involved in resistance processes, such as flavonoid and terpenoid quinone biosynthesis, plant hormone signaling, MAPK signaling, phenylpropanoid biosynthesis, and pyruvate metabolism. Compared to the susceptible cultivar Junmian No.1 (J1), oxidoreductase activity and reactive oxygen species (ROS) production were significantly increased in ZZM2. Furthermore, gene silencing of cytochrome c oxidase subunit 1 (COX1), which is involved in the oxidation-reduction process in ZZM2, compromised its resistance to V. dahliae, suggesting that COX1 contributes to VW resistance in ZZM2. CONCLUSIONS: Our data demonstrate that the G. hirsutum cultivar ZZM2 responds to V. dahliae inoculation through resistance-related processes, especially the oxidation-reduction process. This enhances our understanding of the mechanisms regulating the ZZM2 defense against VW.


Subject(s)
Disease Resistance , Gene Expression Profiling , Gene Regulatory Networks , Gossypium , Plant Diseases , Gossypium/genetics , Gossypium/microbiology , Gossypium/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Ascomycota/physiology , Gene Expression Regulation, Plant , Transcriptome , Verticillium
5.
BMC Biol ; 22(1): 116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764012

ABSTRACT

BACKGROUND: Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS: The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS: This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.


Subject(s)
Bacillus , Gossypium , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus/physiology , Gossypium/microbiology , Gossypium/growth & development , Ascomycota/physiology , Verticillium/physiology , Phylogeny , Biological Control Agents
6.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791224

ABSTRACT

Cotton Verticillium wilt is mainly caused by the fungus Verticillium dahliae, which threatens the production of cotton. Its pathogen can survive in the soil for several years in the form of microsclerotia, making it a destructive soil-borne disease. The accurate, sensitive, and rapid detection of V. dahliae from complex soil samples is of great significance for the early warning and management of cotton Verticillium wilt. In this study, we combined the loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a technology to develop an accurate, sensitive, and rapid detection method for V. dahliae. Initially, LAMP primers and CRISPR RNA (crRNA) were designed based on a specific DNA sequence of V. dahliae, which was validated using several closely related Verticillium spp. The lower detection limit of the LAMP-CRISPR/Cas12a combined with the fluorescent visualization detection system is approximately ~10 fg/µL genomic DNA per reaction. When combined with crude DNA-extraction methods, it is possible to detect as few as two microsclerotia per gram of soil, with the total detection process taking less than 90 min. Furthermore, to improve the method's user and field friendliness, the field detection results were visualized using lateral flow strips (LFS). The LAMP-CRISPR/Cas12a-LFS system has a lower detection limit of ~1 fg/µL genomic DNA of the V. dahliae, and when combined with the field crude DNA-extraction method, it can detect as few as six microsclerotia per gram of soil, with the total detection process taking less than 2 h. In summary, this study expands the application of LAMP-CRISPR/Cas12a nucleic acid detection in V. dahliae and will contribute to the development of field-deployable diagnostic productions.


Subject(s)
CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Plant Diseases , Soil Microbiology , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/isolation & purification , Molecular Diagnostic Techniques/methods , Gossypium/microbiology , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Verticillium/genetics
7.
Bioresour Technol ; 403: 130859, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777228

ABSTRACT

The effects of microbial agents on nitrogen (N) conversion during cotton straw composting remains unclear. In this study, inoculation increased the germination index and total nitrogen (TN) by 24-29 % and 7-10 g/kg, respectively. Inoculation enhanced the abundance of nifH, glnA, and amoA and reduced that of major denitrification genes (nirK, narG, and nirS). Inoculation not only produced high differences in the assembly process and strong community replacement but also weakened environmental constraints. Partial least squares path modelling demonstrated that enzyme activity and bacterial community were the main driving factors influencing TN. In addition, network analysis and the random forest model showed distinct changing patterns of bacterial communities after inoculation and identified keystone microorganisms in maintaining network complexity and synergy, as well as system function to promote nitrogen preservation. Findings provide a novel perspective on high-quality resource recovery of agricultural waste.


Subject(s)
Bacteria , Composting , Gossypium , Nitrogen , Gossypium/microbiology , Gossypium/genetics , Composting/methods , Bacteria/genetics , Genes, Bacterial , Denitrification , Soil Microbiology , Soil/chemistry
8.
J Microbiol Biotechnol ; 34(5): 1040-1050, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38604803

ABSTRACT

To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42°C), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ΔNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMΔNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.


Subject(s)
Fermentation , Gossypium , Plant Diseases , Pseudomonas aeruginosa , Verticillium , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gossypium/microbiology , Antibiosis , Metalloproteases/metabolism , Virulence Factors/genetics
9.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674085

ABSTRACT

DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Plant Diseases , Verticillium , Disease Resistance , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Genome, Plant , Gossypium/genetics , Gossypium/microbiology , Phylogeny , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Verticillium/drug effects , Verticillium/physiology
10.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594616

ABSTRACT

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Subject(s)
Microbiota , Verticillium , Verticillium/physiology , Gossypium/genetics , Gossypium/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Seeds/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
11.
Plant J ; 118(6): 2154-2168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558071

ABSTRACT

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.


Subject(s)
Ascomycota , Disease Resistance , Gossypium , Plant Diseases , Plant Proteins , Gossypium/genetics , Gossypium/microbiology , Gossypium/immunology , Gossypium/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Ascomycota/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Respiratory Burst , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Plants, Genetically Modified , Verticillium
12.
Plant Physiol ; 195(2): 1681-1693, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38478507

ABSTRACT

Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.


Subject(s)
Arabidopsis , Cell Death , Fusarium , Nicotiana , Plant Diseases , Fusarium/pathogenicity , Virulence , Arabidopsis/microbiology , Arabidopsis/genetics , Plant Diseases/microbiology , Nicotiana/microbiology , Nicotiana/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Subtilisins/metabolism , Subtilisins/genetics , Gossypium/microbiology , Plant Leaves/microbiology , Plant Cells/microbiology
13.
J Exp Bot ; 75(11): 3500-3520, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38517318

ABSTRACT

Verticillium wilt, a soilborne vascular disease caused by Verticillium dahliae, strongly affects cotton yield and quality. In this study, an isolated rhizosphere bacterium, designated Bacillus velezensis BvZ45-1, exhibited >46% biocontrol efficacy against cotton verticillium wilt under greenhouse and field conditions. Moreover, through crude protein extraction and mass spectrometry analyses, we found many antifungal compounds present in the crude protein extract of BvZ45-1. The purified oxalate decarboxylase Odx_S12 from BvZ45-1 inhibited the growth of V. dahliae Vd080 by reducing the spore yield, causing mycelia to rupture, spore morphology changes, cell membrane rupture, and cell death. Subsequently, overexpression of Odx_S12 in Arabidopsis significantly improved plant resistance to V. dahliae. Through studies of the resistance mechanism of Odx_S12, V. dahliae was shown to produce oxalic acid (OA), which has a toxic effect on Arabidopsis leaves. Odx_S12 overexpression reduced Arabidopsis OA content, enhanced tolerance to OA, and improved resistance to verticillium wilt. Transcriptomics and quantitative real-time PCR analysis revealed that Odx_S12 promoted a reactive oxygen species burst and a salicylic acid- and abscisic acid-mediated defence response in Arabidopsis. In summary, this study not only identified B. velezensis BvZ45-1 as an efficient biological control agent, but also identified the resistance gene Odx_S12 as a candidate for cotton breeding against verticillium wilt.


Subject(s)
Arabidopsis , Ascomycota , Bacillus , Carboxy-Lyases , Gossypium , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/immunology , Bacillus/physiology , Gossypium/genetics , Gossypium/microbiology , Gossypium/metabolism , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/immunology , Ascomycota/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Disease Resistance/genetics , Verticillium/physiology
14.
Plant Dis ; 108(5): 1363-1373, 2024 May.
Article in English | MEDLINE | ID: mdl-38105453

ABSTRACT

Many oomycete species are associated with the seedlings of crops, including upland cotton (Gossypium hirsutum L.), which leads to annual threats. The diversity of oomycete species in Alabama needs to be better understood since the last survey of oomycetes associated with cotton in Alabama was 20 years ago-before significant updates to taxonomy and improvements in identification of oomycetes using molecular tools. Our current study aimed to identify oomycetes associated with Alabama cotton seedlings, correlate diversity with soil edaphic factors, and assess virulence toward cotton seed. Thirty symptomatic cotton seedlings were collected independently from 25 fields in 2021 and 2022 2 to 4 weeks after planting. Oomycetes were isolated by plating root sections onto a semiselective medium. The internal transcribed spacer (ITS) region was sequenced to identify the resulting isolates. A seed virulence assay was conducted in vitro to verify pathogenicity, and 347 oomycete isolates were obtained representing 36 species. Northern Alabama soils had the richest oomycete communities and a greater silt and clay concentration than sandier soils in the central and southern coastal plains. Globisporangium irregulare and Phytophthora nicotianae were consistently recovered from cotton roots in both years. Globisporangium irregulare was pathogenic and recovered from all Alabama regions, whereas P. nicotianae was pathogenic but recovered primarily in areas with lower sand content in northern Alabama. Many oomycete species have not been previously reported in Alabama or the southeastern United States. Altogether, this knowledge will help facilitate effective management strategies for cotton seedling diseases caused by oomycetes in Alabama and the United States.


Subject(s)
Gossypium , Oomycetes , Plant Diseases , Seedlings , Gossypium/microbiology , Alabama , Seedlings/microbiology , Oomycetes/genetics , Oomycetes/classification , Plant Diseases/microbiology , Soil Microbiology , Soil , Biodiversity , Virulence , Plant Roots/microbiology
15.
Mol Genet Genomics ; 298(6): 1579-1589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37923792

ABSTRACT

Upland cotton (Gossypium hirsutum) is the most important fiber crop for the global textile industry. Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive soil-borne fungal pathogens in cotton. Among eight pathogenic races and other strains, FOV race 4 (FOV4) is the most virulent race in US cotton production. A single nucleotide polymorphism (SNP) in a glutamate receptor-like gene (GhGLR4.8) on chromosome D03 was previously identified and validated to confer resistance to FOV race 7, and targeted genome sequencing demonstrated that it was also associated with resistance to FOV4. The objective of this study was to develop an easy and convenient PCR-based marker assay. To target the resistance SNP, a forward primer for the SNP with a mismatch in the 3rd position was designed for both the resistance (R) and susceptibility (S) alleles, respectively, with addition of 20-mer T7 promoter primer to the 5' end of the forward primer for the R allele. The two forward primers, in combination with each of five common reverse primers, were targeted to amplify amplicons of 50-260 bp in size with R and S alleles differing in 20 bp. Results showed that each of three common reverse primers in combination with the two forward primers produced polymorphic markers between R and S plants that were consistent with the targeted genome sequencing results. The polymorphism was distinctly resolved using both polyacrylamide and agarose gel electrophoreses. In addition, a sequence comparative analysis between the resistance gene and homologous sequences in sequenced tetraploid and diploid A and D genome species showed that none of the species possessed the resistance gene allele, suggesting its recent origin from a natural point mutation. The allele-specific PCR-based SNP typing method based on a three-primer combination provides a fast and convenient marker-assisted selection method to search and select for FOV4-resistant Upland cotton.


Subject(s)
Fusarium , Gossypium , Gossypium/genetics , Gossypium/microbiology , Alleles , Polymorphism, Single Nucleotide/genetics , Fusarium/genetics , Polymerase Chain Reaction , Chromosomes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology
16.
Int J Biol Macromol ; 245: 125577, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37379944

ABSTRACT

In this study, graphene oxide/N-halamine nanocomposite was synthesized through Pickering miniemulsion polymerization, which was then coated on cotton surface. The modified cotton exhibited excellent superhydrophobicity, which could effectively prevent microbial infestation and reduce the probability of hydrolysis of active chlorine, with virtually no active chlorine released in water after 72 h. Deposition of reduced graphene oxide nanosheets endowed cotton with ultraviolet-blocking properties, attributing to enhanced UV adsorption and long UV paths. Moreover, encapsulation of polymeric N-halamine resulted in improved UV stability, thus extending the life of N-halamine-based agents. After 24 h of irradiation, 85 % of original biocidal component (active chlorine content) was retained, and approximately 97 % of initial chlorine could be regenerated. Modified cotton has been proven to be an effective oxidizing material against organic pollutants and a potential antimicrobial substance. Inoculated bacteria were completely killed after 1 and 10 min of contact time, respectively. An innovative and simple scheme for determination of active chlorine content was also devised, and real-time inspection of bactericidal activity could be achieved to assure antimicrobial sustainability. Moreover, this method could be utilized to evaluate hazard classification of microbial contamination in different locations, thus broadening the application scope of N-halamine-based cotton fabrics.


Subject(s)
Amines , Anti-Bacterial Agents , Cotton Fiber , Gossypium , Latex , Nanostructures , Polymerization , Amines/chemistry , Amines/radiation effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Biofilms/drug effects , Chlorine/chemistry , Coloring Agents , Cotton Fiber/microbiology , Cotton Fiber/radiation effects , Disinfectants/chemistry , Disinfectants/radiation effects , Electric Conductivity , Equipment Contamination/prevention & control , Gossypium/chemistry , Gossypium/microbiology , Graphite/chemistry , Halogenation , Hydrophobic and Hydrophilic Interactions , Latex/chemistry , Latex/radiation effects , Nanostructures/chemistry , Nanostructures/radiation effects , Particle Size , Spectroscopy, Fourier Transform Infrared , Textile Industry/methods , Ultraviolet Rays , Water/chemistry
17.
Int J Mol Sci ; 24(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298354

ABSTRACT

Verticillium wilt caused by Verticillium dahliae is a notorious soil-borne fungal disease and seriously threatens the yield of economic crops worldwide. During host infection, V. dahliae secretes many effectors that manipulate host immunity, among which small cysteine-rich proteins (SCPs) play an important role. However, the exact roles of many SCPs from V. dahliae are unknown and varied. In this study, we show that the small cysteine-rich protein VdSCP23 inhibits cell necrosis in Nicotiana benthamiana leaves, as well as the reactive oxygen species (ROS) burst, electrolyte leakage and the expression of defense-related genes. VdSCP23 is mainly localized in the plant cell plasma membrane and nucleus, but its inhibition of immune responses was independent of its nuclear localization. Site-directed mutagenesis and peptide truncation showed that the inhibition function of VdSCP23 was independent of cysteine residues but was dependent on the N-glycosylation sites and the integrity of VdSCP23 protein structure. Deletion of VdSCP23 did not affect the growth and development of mycelia or conidial production in V. dahliae. Unexpectedly, VdSCP23 deletion strains still maintained their virulence for N. benthamiana, Gossypium hirsutum and Arabidopsis thaliana seedlings. This study demonstrates an important role for VdSCP23 in the inhibition of plant immune responses; however, it is not required for normal growth or virulence in V. dahliae.


Subject(s)
Ascomycota , Verticillium , Cysteine/metabolism , Ascomycota/metabolism , Plant Diseases/microbiology , Gossypium/microbiology , Disease Resistance/genetics , Gene Expression Regulation, Plant
18.
Mol Genet Genomics ; 298(4): 895-903, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37120777

ABSTRACT

Fusarium wilt caused by the soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) has become one of the most important emerging diseases in US cotton production. Numerous QTLs have been reported for resistance to FOV; however, no major FOV4-resistance QTL or gene has been identified and used in breeding Upland cotton (Gossypium hirsutum) for FOV4 resistance. In this study, a panel of 223 Chinese Upland cotton accessions was evaluated for FOV4 resistance based on seedling mortality rate (MR) and stem and root vascular discoloration (SVD and RVD). SNP markers were developed based on targeted genome sequencing using AgriPlex Genomics. The chromosome region at 2.130-2.292 Mb on D03 was significantly correlated with both SVD and RVD but not with MR. Based on the two most significant SNP markers, accessions homozygous for AA or TT SNP genotype averaged significantly lower SVD (0.88 vs. 2.54) and RVD (1.46 vs. 3.02) than those homozygous for CC or GG SNP genotype. The results suggested that a gene or genes within the region conferred resistance to vascular discoloration caused by FOV4. The Chinese Upland accessions had 37.22% homozygous AA or TT SNP genotype and 11.66% heterozygous AC or TG SNP genotype, while 32 US elite public breeding lines all had the CC or GG SNP genotype. Among 463 obsolete US Upland accessions, only 0.86% possessed the AA or TT SNP genotype. This study, for the first time, has developed diagnostic SNPs for marker-assisted selection and identified FOV4-resistant Upland germplasms with the SNPs.


Subject(s)
Fusarium , Gossypium , Gossypium/genetics , Gossypium/microbiology , Phenotype , Polymorphism, Single Nucleotide/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
19.
Phytopathology ; 113(5): 812-823, 2023 May.
Article in English | MEDLINE | ID: mdl-37059968

ABSTRACT

Bacterial blight resistance gene B5 has received little attention since it was first described in 1950. A near-isogenic line (NIL) of Gossypium hirsutum cotton, AcB5, was generated in an otherwise bacterial-blight-susceptible 'Acala 44' background. The introgressed locus B5 in AcB5 conferred strong and broad-spectrum resistance to bacterial blight. Segregation patterns of test crosses under Oklahoma field conditions indicated that AcB5 is likely homozygous for resistance at two loci with partial dominance gene action. In controlled-environment conditions, two of the four copies of B5 were required for effective resistance. Contrary to expectations of gene-for-gene theory, AcB5 conferred high resistance toward isogenic strains of Xanthomonas citri subsp. malvacearum carrying cloned avirulence genes avrB4, avrb7, avrBIn, avrB101, and avrB102, respectively, and weaker resistance toward the strain carrying cloned avrb6. The hypothesis that each B gene, in the absence of a polygenic complex, triggers sesquiterpenoid phytoalexin production was tested by measurement of cadalene and lacinilene phytoalexins during resistant responses in five NILs carrying different B genes, four other lines carrying multiple resistance genes, as well as susceptible Ac44E. Phytoalexin production was an obvious, but variable, response in all nine resistant lines. AcB5 accumulated an order of magnitude more of all four phytoalexins than any of the other resistant NILs. Its total levels were comparable to those detected in OK1.2, a highly resistant line that possesses several B genes in a polygenic background.


Subject(s)
Sesquiterpenes , Xanthomonas , Gossypium/genetics , Gossypium/microbiology , Phytoalexins , Plant Diseases/microbiology , Xanthomonas/genetics
20.
Plant Dis ; 107(10): 3198-3210, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36890127

ABSTRACT

Verticillium dahliae is a fungal pathogen that causes Verticillium wilt (VW), which seriously reduces the yield of cotton owing to biological stress. The mechanism underlying the resistance of cotton to VW is highly complex, and the resistance breeding of cotton is consequently limited by the lack of in-depth research. Using quantitative trait loci (QTL) mapping, we previously identified a novel cytochrome P450 (CYP) gene on chromosome D4 of Gossypium barbadense that is associated with resistance to the nondefoliated strain of V. dahliae. In this study, the CYP gene on chromosome D4 was cloned together with its homologous gene on chromosome A4 and were denoted as GbCYP72A1d and GbCYP72A1a, respectively, according to their genomic location and protein subfamily classification. The two GbCYP72A1 genes were induced by V. dahliae and phytohormone treatment, and the findings revealed that the VW resistance of the lines with silenced GbCYP72A1 genes decreased significantly. Transcriptome sequencing and pathway enrichment analyses revealed that the GbCYP72A1 genes primarily affected disease resistance via the plant hormone signal transduction, plant-pathogen interaction, and mitogen-activated protein kinase (MAPK) signaling pathways. Interestingly, the findings revealed that although GbCYP72A1d and GbCYP72A1a had high sequence similarity and both genes enhanced the disease resistance of transgenic Arabidopsis, there was a difference between their disease resistance abilities. Protein structure analysis revealed that this difference was potentially attributed to the presence of a synaptic structure in the GbCYP72A1d protein. Altogether, the findings suggested that the GbCYP72A1 genes play an important role in plant response and resistance to VW.


Subject(s)
Verticillium , Verticillium/physiology , Disease Resistance/genetics , Plant Breeding , Quantitative Trait Loci , Gossypium/genetics , Gossypium/microbiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...