Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.700
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674016

ABSTRACT

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Subject(s)
Dynamins , Graft Rejection , Heart Transplantation , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Mice , Graft Rejection/metabolism , Graft Rejection/pathology , Heart Transplantation/adverse effects , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Dynamins/metabolism , Dynamins/genetics , Mitochondria/metabolism , Endothelial Cells/metabolism , Male , Mice, Inbred C57BL , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphorylation , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Signal Transduction
2.
Exp Eye Res ; 242: 109857, 2024 May.
Article in English | MEDLINE | ID: mdl-38479724

ABSTRACT

Penetrating keratoplasty remains the most common treatment to restore vision for corneal diseases. Immune rejection after corneal transplantation is one of the major causes of graft failure. In recent years, Rho-associated protein kinase (ROCK) inhibitors have been found to be associated with the activation of the STATs pathway and are widely studied in autoimmune diseases. Therefore, it may be possible that the ROCK inhibitors also participate in the local and systemic immune regulation in corneal transplantation through activation of the STATs pathway and affect the CD4+ T cell differentiation. This study aimed to explore the role of ROCK-STATs pathway in the occurrence of immune rejection in corneal transplantation by applying Y27632, a ROCK inhibitor, to the recipient mice and peripheral CD4+ T cells. We found that Y27632 significantly up-regulated the phosphorylation level of STAT5 in both spleen and lymph nodes, down-regulated the phosphorylation level of STAT3 in the CD4+ T cells in the spleen. It also increased the proportion of CD4+CD25+Foxp3+Helios+ Tregs while decreased CD4+IL17A+ -Th17 cells. Moreover, Y27632 also reduced the proportion of dendritic cells in both spleen and lymph nodes, as well as the expression level of CD86 on their surfaces in the spleen, while the proportion of macrophages was not affected. The expression levels of ROCK1, ROCK2, CD11c and IL-17A mRNA were also found to be low in the graft tissue while the expression of Helios was upregulated. Rho-kinase inhibitor can modulate the balance of Tregs/Th17 by regulating the phosphorylation levels of both STAT3 and STAT5, thereby inhibiting the occurrence of immune rejection in allogeneic corneal transplantation.


Subject(s)
Amides , CD4-Positive T-Lymphocytes , Graft Rejection , Mice, Inbred BALB C , Mice, Inbred C57BL , Pyridines , STAT3 Transcription Factor , STAT5 Transcription Factor , rho-Associated Kinases , Animals , Mice , Graft Rejection/metabolism , Graft Rejection/prevention & control , rho-Associated Kinases/antagonists & inhibitors , CD4-Positive T-Lymphocytes/immunology , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Amides/pharmacology , Amides/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Disease Models, Animal , Phosphorylation , Flow Cytometry , Keratoplasty, Penetrating , Blotting, Western , Corneal Transplantation , Male
3.
Transplantation ; 108(5): 1127-1141, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38238904

ABSTRACT

BACKGROUND: Emerging evidence has highlighted the role of macrophages in heart transplant rejection (HTR). However, the molecular signals modulating the immunometabolic phenotype of allograft-infiltrating macrophages (AIMs) during HTR remain unknown. METHODS: We analyzed single-cell RNA sequencing data from cardiac graft-infiltrating immunocytes to characterize the activation patterns and metabolic features of AIMs. We used flow cytometry to determine iNOS and PKM2 expression and MEK/ERK signaling activation levels in AIMs. We then generated macrophage-specific Mek1/2 knockout mice to determine the role of the MEK1/2-PKM2 pathway in the proinflammatory phenotype and glycolytic capacity of AIMs during HTR. RESULTS: Single-cell RNA sequencing analysis showed that AIMs had a significantly elevated proinflammatory and glycolytic phenotype. Flow cytometry analysis verified that iNOS and PKM2 expressions were significantly upregulated in AIMs. Moreover, MEK/ERK signaling was activated in AIMs and positively correlated with proinflammatory and glycolytic signatures. Macrophage-specific Mek1/2 deletion significantly protected chronic cardiac allograft rejection and inhibited the proinflammatory phenotype and glycolytic capacity of AIMs. Mek1/2 ablation also reduced the proinflammatory phenotype and glycolytic capacity of lipopolysaccharides + interferon-γ-stimulated macrophages. Mek1/2 ablation impaired nuclear translocation and PKM2 expression in macrophages. PKM2 overexpression partially restored the proinflammatory phenotype and glycolytic capacity of Mek1/2 -deficient macrophages. Moreover, trametinib, an Food and Drug Administration-approved MEK1/2 inhibitor, ameliorated chronic cardiac allograft rejection. CONCLUSIONS: These findings suggest that the MEK1/2-PKM2 pathway is essential for immunometabolic reprogramming of proinflammatory AIMs, implying that it may be a promising therapeutic target in clinical heart transplantation.


Subject(s)
Graft Rejection , Heart Transplantation , MAP Kinase Kinase 1 , MAP Kinase Kinase 2 , Macrophages , Mice, Knockout , Animals , Heart Transplantation/adverse effects , Graft Rejection/immunology , Graft Rejection/metabolism , Graft Rejection/pathology , Graft Rejection/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , Thyroid Hormone-Binding Proteins , Mice, Inbred C57BL , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Signal Transduction , Carrier Proteins/metabolism , Carrier Proteins/genetics , Glycolysis , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Disease Models, Animal , Phenotype , Allografts
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768217

ABSTRACT

The complement system is an important component of transplant rejection. Sertoli cells, an immune regulatory testicular cell, survive long-term when transplanted across immunological barriers; thus, understanding the mechanisms behind this unique survival would be of great benefit to the transplantation field. This study focused on Sertoli cell inhibition of complement as relevant in xenotransplantation. Neonatal pig Sertoli cells (NPSCs) survived activated human complement in vitro while neonatal pig islet (NPI) aggregates and pig aortic endothelial cell (PAEC) survival were diminished to about 65% and 12%, respectively. PAECs cultured in NPSC-conditioned media and human complement demonstrated a 200% increase in survival suggesting that NPSCs secrete complement-inhibiting substances that confer protection. Bioinformatic and molecular analyses identified 21 complement inhibitors expressed by NPSCs with several significantly increased in NPSCs compared to NPIs or PAECs. Lastly, RNA sequencing revealed that NPSCs express 25 other complement factors including cascade components and receptors. Overall, this study identified the most comprehensive Sertoli cell complement signature to date and indicates that the expression of a variety of complement inhibitors ensures a proper regulation of complement through redundant inhibition points. Understanding the regulation of the complement system should be further investigated for extending xenograft viability.


Subject(s)
Complement System Proteins , Graft Rejection , Sertoli Cells , Humans , Male , Complement Inactivating Agents , Complement System Proteins/metabolism , Graft Rejection/metabolism , Heterografts , Sertoli Cells/metabolism , Transplantation, Heterologous , Swine , Animals
5.
Transplantation ; 107(10): 2126-2142, 2023 10 01.
Article in English | MEDLINE | ID: mdl-36808112

ABSTRACT

Solid organ transplantation is an established treatment of choice for end-stage organ failure. However, all transplant patients are at risk of developing complications, including allograft rejection and death. Histological analysis of graft biopsy is still the gold standard for evaluation of allograft injury, but it is an invasive procedure and prone to sampling errors. The past decade has seen an increased number of efforts to develop minimally invasive procedures for monitoring allograft injury. Despite the recent progress, limitations such as the complexity of proteomics-based technology, the lack of standardization, and the heterogeneity of populations that have been included in different studies have hindered proteomic tools from reaching clinical transplantation. This review focuses on the role of proteomics-based platforms in biomarker discovery and validation in solid organ transplantation. We also emphasize the value of biomarkers that provide potential mechanistic insights into the pathophysiology of allograft injury, dysfunction, or rejection. Additionally, we forecast that the growth of publicly available data sets, combined with computational methods that effectively integrate them, will facilitate a generation of more informed hypotheses for potential subsequent evaluation in preclinical and clinical studies. Finally, we illustrate the value of combining data sets through the integration of 2 independent data sets that pinpointed hub proteins in antibody-mediated rejection.


Subject(s)
Kidney Transplantation , Organ Transplantation , Humans , Proteomics/methods , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Graft Rejection/metabolism , Precision Medicine , Organ Transplantation/adverse effects , Kidney Transplantation/adverse effects , Biomarkers/metabolism
6.
Transpl Immunol ; 76: 101771, 2023 02.
Article in English | MEDLINE | ID: mdl-36473577

ABSTRACT

PURPOSE: To describe the evolution of the serum levels of soluble HLA-G (s-HLA-G) during the first 12 months after heart transplantation (HT) and to correlate it with clinical outcomes. METHODS: Observational study based in a single-center cohort of 59 patients who underwent HT between December-2003 and March-2010. Soluble HLA-G levels were measured from serum samples extracted before HT, and 1, 3, 6 and 12 months after HT. The cumulative burden of s-HLA-G expression during the first post-transplant year was assessed by means of the area under the curve (AUC) of s-HLA-G levels over time and correlated with the acute rejection burden -as assessed by a rejection score-, the presence of coronary allograft vasculopathy (CAV) grade ≥ 1 and infections during the first post-transplant year; as well as with long-term patient and graft survival. Mean follow-up was 12.4 years. RESULTS: Soluble HLA-G levels decreased over the first post-transplant year (p = 0.020). The AUC of s-HLA-G levels during the first post-transplant year was higher among patients with infections vs. those without infections (p = 0.006). No association was found between the AUC of s-HLA-G levels and the burden of acute rejection or the development of CAV. Overall long-term survival, long-term survival free of late graft failure and cancer-free survival were not significantly different in patients with an AUC of s-HLA-G levels higher or lower than the median of the study population. CONCLUSIONS: Soluble HLA-G levels decreased over the first year after HT. Higher HLA-G expression was associated with a higher frequency of infections, but not with the burden of acute rejection or the development of CAV, neither with long-term patient or graft survival.


Subject(s)
HLA-G Antigens , Patient Outcome Assessment , Transplant Recipients , Humans , Graft Rejection/metabolism , Graft Survival/physiology , Heart Transplantation/adverse effects , HLA-G Antigens/blood , HLA-G Antigens/chemistry
7.
Transplant Proc ; 54(9): 2570-2577, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36400592

ABSTRACT

BACKGROUND: One of the most important possible complications determining long-term graft survival after kidney transplant is antibody-mediated rejection (ABMR). The criterion standard approach to recognize ABMR is currently the kidney biopsy with histopathologic analysis. However, this test has limitations because of difficulties in timing of sampling, the evaluability of histology because of the questionable representativeness of specimens, and the limited number of this intervention. Hence, new reliable, noninvasive biomarkers are required to detect the development of ABMR in time. METHODS: In this study, we analyzed the clinical data of 45 kidney transplant patients (mean age of 44.51 years, 20 male and 25 female subjects). These participants were recruited into 5 subcohorts based on their clinical status, histologic findings, and level of donor-specific anti-HLA antibodies. Circulating microRNAs (miR-21, miR-181b, miR-146a, miR-223, miR-155, miR-150) in plasma samples were quantified by quantitative polymerase chain reaction and their levels were correlated with the clinical characteristics in different subgroups. RESULTS: The relative expression of plasma miR-155 (P = .0003), miR-223 (P = .0316), and miR-21 (P = .0147) were significantly higher in patients who had subsequent histology-approved ABMR with donor-specific anti-HLA antibody positivity (n = 10) than in the "triple negative" group (n = 21), and miR-155 showed the highest sensitivity (90%) and specificity (81%) to indicate ABMR development based on receiver operating characteristic analysis. CONCLUSIONS: According to our preliminary data, plasma miR-155, miR-21, and miR-223 can indicate the development of ABMR after kidney transplant in correlation with classic clinical parameters. However, future studies with larger number of participants are necessary to further evaluate the diagnostic properties of blood miRNAs in prediction of this life-threatening condition.


Subject(s)
Circulating MicroRNA , Graft Rejection , Kidney Transplantation , Adult , Female , Humans , Male , Allografts , Antibodies/immunology , Antibodies/metabolism , Circulating MicroRNA/blood , Circulating MicroRNA/chemistry , Graft Rejection/genetics , Graft Rejection/metabolism , Isoantibodies , Kidney Transplantation/adverse effects , MicroRNAs/blood , MicroRNAs/chemistry
8.
Transplant Proc ; 54(7): 2021-2024, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35933232

ABSTRACT

BACKGROUND: To investigate the changes and significance of interleukin-17 (IL-17) in acute rejection following rat kidney transplantation. METHODS: Using inbred Sprague Dawley rats as donors and Wistar rats as recipients, an acute rejection model of kidney transplantation was established to evaluate the effects of IL-17. Reverse transcription polymerase chain reaction and immunohistochemistry were used to detect IL-17. RESULTS: Compared with those in the normal control group, the rats in the allogeneic transplantation (ATX) group had different degrees of acute rejection 3, 5, and 7 days after operation, and the expression of IL-17 mRNA in the transplanted kidney was significantly increased (P < .05). In the ATX group, acute rejection was observed 7 days after operation, and the integrated optical density (IOD) value of IL-17 was significantly increased (P < .05). Compared with the normal control group, acute rejection occurred in varying degrees at 3, 5, and 7 days after operation in the ATX group, and the IOD value of IL-17 significantly increased (P < .05). CONCLUSIONS: IL-17 expression is increased in acute rejection after renal transplantation in rats. Other surgical factors in addition to acute rejection had no effect on IL-17 expression in rat kidney transplants. The immunosuppressant cyclosporin A was used to prevent the expression of IL-17 in rats with acute rejection.


Subject(s)
Kidney Transplantation , Rats , Animals , Kidney Transplantation/adverse effects , Graft Rejection/prevention & control , Graft Rejection/metabolism , Interleukin-17/genetics , Rats, Wistar , Rats, Sprague-Dawley , Transplantation, Homologous , Kidney , Allografts
9.
Exp Eye Res ; 222: 109167, 2022 09.
Article in English | MEDLINE | ID: mdl-35777471

ABSTRACT

Graft rejection is still the major obstacle causing corneal transplantation failure. However, the underlying pathogenesis remains largely unclear. The iris-ciliary body (I-C) is enriched with blood vessels and various immune cell populations, presumably predisposed to be involved in corneal transplantation rejection. After penetrating keratoplasty, compared to the normal (Nor) and syngeneic (Syn) groups, I-C tissues in the allogeneic (Allo) group displayed stronger alloimmune responses, with more infiltrations of CD45+ inflammatory cells and CD3+ lymphocytes, increased transcriptional levels of pro-inflammatory cytokines, and elevated NF-κB activity. This histopathology was similar to the pathological alterations of corneal allografts. Angiography analysis revealed the abnormal vasculature in the iris during allograft rejection, characterized by vasodilatation, increased vessel density, and vascular permeability. While, immunofluorescence staining showed the intact tight junction of the posterior iris epithelium. In vitro, human microvascular endothelial cells (HMECs) stimulated by tumor necrosis factor-α (TNF-α) showed an increased Evans blue (EB)-albumin leakage, with lower expression of zonula occludens-1 (ZO-1) and Occludin. The increased EB-albumin leakage, up-regulated NF-κB activity, and reduced expression of ZO-1 and Occludin could be partially reversed after cyclosporine A (CsA) administration. In contrast, the barrier function in primary mouse iris pigment epithelial cells (IPEs) after TNF-α treatment remained largely unchanged. These findings revealed the vigorous alloimmunity in I-C tissues, characterized with impaired vascularization but intact posterior epithelial barrier in the iris, which allowed proteins and immune cells to be exudated from the front surface of I-C tissues, and facilitated immune reaction in the anterior chamber, thereby contributing to aggravated corneal transplantation rejection.


Subject(s)
Corneal Diseases , Corneal Transplantation , Albumins , Animals , Ciliary Body , Endothelial Cells , Graft Rejection/metabolism , Humans , Iris , Mice , NF-kappa B , Occludin , Tumor Necrosis Factor-alpha
10.
Ann Transplant ; 27: e936276, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35879888

ABSTRACT

BACKGROUND After renal transplantation, immunosuppressants should be administered to prevent organ rejection and prolong graft survival. One of them is tacrolimus, which is metabolized by the CYP3A enzyme family. The variability of the CYP3A5 gene in renal transplant recipients has been previously studied for its correlation with acute rejection and allogeneic kidney function. CYP3A5 enzyme is also present in the renal tissue, and its relevance has not yet been extensively investigated. This study aimed to evaluate the effect of donor and recipient CYP3A5 expression status on early and long-term transplant outcomes. MATERIAL AND METHODS Single-nucleotide polymorphism in CYP3A5 (rs776746) was analyzed in 95 kidney transplant recipients and their grafts. The effect of donor and recipient genotypes on the primary endpoint, which was the loss of the renal graft over 5-year follow-up, was assessed. The secondary endpoints were biopsy-proven acute rejection, proteinuria, delayed graft function, and renal function. RESULTS Patients who received a CYP3A5*1 allele-carrying kidney (n=16) were at greater risk of graft loss (adjusted hazard ratio, 95% CI: 10.61, 2.28-49.42, P=.003) than those with the CYP3A5*3/*3 genotype (n=79). Renal CYP3A5 expression was also a predictor of acute rejection between the 2nd and 12th post-transplant months (adjusted odds ratio, 95% CI: 4.36; 1.08-17.6, P=.038) and proteinuria at different time intervals. No effect of the recipient CYP3A5 genotype was observed. CONCLUSIONS The donor CYP3A5 genotype is associated with inferior transplantation outcomes. Local renal tacrolimus metabolism is a potential target for improving long-term transplantation outcomes.


Subject(s)
Cytochrome P-450 CYP3A , Kidney Transplantation , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genotype , Graft Rejection/genetics , Graft Rejection/metabolism , Humans , Immunosuppressive Agents/therapeutic use , Kidney/metabolism , Polymorphism, Single Nucleotide , Proteinuria , Tacrolimus/therapeutic use , Transplant Recipients
11.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35285873

ABSTRACT

Acute cellular rejection is common after lung transplantation and is associated with an increased risk of early chronic rejection. We present combined single-cell RNA and TCR sequencing on recipient-derived T cells obtained from the bronchoalveolar lavage of three lung transplant recipients with rejection and compare them with T cells obtained from the same patients after treatment of rejection with high-dose systemic glucocorticoids. At the time of rejection, we found an oligoclonal expansion of cytotoxic CD8+ T cells that all persisted as tissue resident memory T cells after successful treatment. Persisting CD8+ allograft-resident T cells have reduced gene expression for cytotoxic mediators after therapy with glucocorticoids but accumulate around airways. This clonal expansion is discordant with circulating T cell clonal expansion at the time of rejection, suggesting in situ expansion. We thus highlight the accumulation of cytotoxic, recipient-derived tissue resident memory T cells within the lung allograft that persist despite the administration of high-dose systemic glucocorticoids. The long-term clinical consequences of this persistence have yet to be characterized.


Subject(s)
Glucocorticoids , Lung Transplantation , CD8-Positive T-Lymphocytes/metabolism , Glucocorticoids/metabolism , Graft Rejection/genetics , Graft Rejection/metabolism , Humans , Memory T Cells
12.
Sci Rep ; 12(1): 3046, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197503

ABSTRACT

We examined whether haem oxygenase-1 (HO-1) could enhance the immunosuppressive effects of bone marrow mesenchymal stem cells (BMMSCs) on the rejection of transplanted liver allografts in rats. The animals were divided into three groups: the normal saline (NS) group, BMMSC group and HO-1/BMMSCs group. In vitro, the extraction, culture and HO-1 transfection of BMMSCs were performed. Mixed lymphocyte response (MLR) analysis of HO-1/BMMSCs efficacy was performed. The rejection model of orthotopic liver transplantation in rats was established when BMMSCs and HO-1/BMMSCs were transfused via the portal vein. To reduce research bias, we established an isogenic Liver transplantation model of (LEW → LEW) and (BN → BN), which can achieve tolerance. Changes in histopathology and liver function in the transplanted liver and changes in regulatory T cell (Tregs), natural killer (NK) cells and cytokines after transplantation were observed in the different groups. The severe acute rejection after liver transplantation on postoperative Day 10 was observed in the NS group. The BMMSC group showed strong protective effects against rejection within the first 10 days after transplantation, while HO-1/BMMSCs showed stronger effects on rejection than BMMSCs alone. In addition, the activity of natural killer (NK) cells decreased significantly, the levels of regulatory T cells (Tregs), interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß) increased significantly and the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased significantly in the HO-1/BMMSC group compared with the BMMSC group. HO-1/BMMSCs showed better immunosuppressive effects after liver transplantation than the other treatments. Our findings reveal that HO-1 can enhance the effects of BMMSCs on inhibiting acute rejection in orthotopic liver transplantation in rats.


Subject(s)
Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/immunology , Liver Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Animals , Cytokines/blood , Disease Models, Animal , Graft Rejection/immunology , Graft Rejection/metabolism , Graft Rejection/pathology , Graft Rejection/prevention & control , HEK293 Cells , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocytes/metabolism , Male , Mesenchymal Stem Cells/cytology , Rats, Inbred BN , Rats, Inbred Lew , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation, Isogeneic/methods
13.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35015736

ABSTRACT

Type 1 diabetes is an autoimmune disease characterized by insulin-producing ß cell destruction. Although islet transplantation restores euglycemia and improves patient outcomes, an ideal transplant site remains elusive. Brown adipose tissue (BAT) has a highly vascularized and antiinflammatory microenvironment. Because these tissue features can promote islet graft survival, we hypothesized that islets transplanted into BAT will maintain islet graft and BAT function while delaying immune-mediated rejection. We transplanted syngeneic and allogeneic islets into BAT or under the kidney capsule of streptozotocin-induced diabetic NOD.Rag and NOD mice to investigate islet graft function, BAT function, metabolism, and immune-mediated rejection. Islet grafts within BAT restored euglycemia similarly to kidney capsule controls. Islets transplanted in BAT maintained expression of islet hormones and transcription factors and were vascularized. Compared with those in kidney capsule and euglycemic mock-surgery controls, no differences in glucose or insulin tolerance, thermogenic regulation, or energy expenditure were observed with islet grafts in BAT. Immune profiling of BAT revealed enriched antiinflammatory macrophages and T cells. Compared with the kidney capsule control, there were significant delays in autoimmune and allograft rejection of islets transplanted in BAT, possibly due to increased antiinflammatory immune populations. Our data support BAT as an alternative islet transplant site that may improve graft survival.


Subject(s)
Adipose Tissue, Brown/surgery , Diabetes Mellitus, Type 1/surgery , Gene Expression Regulation , Graft Rejection/genetics , Homeodomain Proteins/genetics , Islets of Langerhans Transplantation/methods , Trans-Activators/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Animals , Cell Differentiation , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Graft Rejection/immunology , Graft Rejection/metabolism , Graft Survival , Homeodomain Proteins/biosynthesis , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , RNA/genetics , Trans-Activators/biosynthesis , Transplantation, Homologous
14.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-34990406

ABSTRACT

CMV infection remains an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Several investigators have reported that adaptive NKG2C+ NK cells persistently expand during CMV reactivation. In our study, 2 cohorts were enrolled to explore the relationships among the NKG2C genotype, NKG2C+ NK cell reconstitution, and CMV infection. Multivariate analysis showed that donor NKG2C gene deletion was an independent prognostic factor for CMV reactivation and refractory CMV reactivation. Furthermore, adaptive NKG2C+ NK cells' quantitative and qualitative reconstitution, along with their anti-CMV function after transplantation, was significantly lower in patients grafted with NKG2Cwt/del donor cells than in those grafted with NKG2Cwt/wt donor cells. At day 30 after transplantation, quantitative reconstitution of NKG2C+ NK cells was significantly lower in patients with treatment-refractory CMV reactivation than in patients without CMV reactivation and those with nonrefractory CMV reactivation. In humanized CMV-infected mice, we found that, compared with those from NKG2Cwt/del donors, adaptive NKG2C+ NK cells from NKG2Cwt/wt donors induced earlier and stronger expansion of NKG2C+ NK cells as well as earlier and stronger CMV clearance in vivo. In conclusion, donor NKG2C homozygosity contributes to CMV clearance by promoting the quantitative and qualitative reconstruction of adaptive NKG2C+ NK cells after haploidentical allo-HSCT.


Subject(s)
Cytomegalovirus Infections/genetics , Graft Rejection/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Killer Cells, Natural/pathology , Mutation , NK Cell Lectin-Like Receptor Subfamily C/genetics , Tissue Donors , Adolescent , Adult , Animals , Cell Line , Cytomegalovirus/physiology , Cytomegalovirus Infections/virology , DNA/genetics , DNA Mutational Analysis , Female , Follow-Up Studies , Graft Rejection/metabolism , Graft Rejection/pathology , Homozygote , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/virology , Male , Mice , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Prospective Studies , Transplantation, Haploidentical , Virus Activation , Young Adult
15.
ACS Chem Biol ; 17(1): 129-137, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35018777

ABSTRACT

Renal rejection is a major incidence in patients after kidney transplantation and associated with allograft scarring and function loss, especially in antibody-mediated rejection. Regular clinical monitoring of kidney-transplanted patients is thus necessary, but measuring donor-specific antibodies is not always predictive, and graft biopsies are time-consuming and costly and may come up with a histological result unsuspicious for rejection. Therefore, a noninvasive diagnostic approach to estimate an increased probability of kidney graft rejection by measuring specific biomarkers is highly desired. The chemokine CXCL9 is described as an early indicator of rejection. In this work, we identified clickmers and an aptamer by split-combine click-SELEX (systematic evolution of ligands by exponential enrichment) that bind CXLC9 with high affinity. The aptamers recognize native CXCL9 and maintain binding properties under urine conditions. These features render the molecules as potential binding and detector probes for developing point-of-care devices, e.g., lateral flow assays, enabling the noninvasive monitoring of CXCL9 in renal allograft patients.


Subject(s)
Chemokine CXCL9/chemistry , Click Chemistry , Graft Rejection/metabolism , Biomarkers/metabolism , Humans , Ligands , Protein Binding
16.
Br J Ophthalmol ; 106(11): 1617-1626, 2022 11.
Article in English | MEDLINE | ID: mdl-34810177

ABSTRACT

AIMS: Pathological neovascularisation of the host bed and the transplant itself is the main risk factor for graft rejection after corneal transplantation. This study aims to prevent this process by preincubation of the corneal donor tissue ex vivo with an antivascular endothelial growth factor (VEGF) cytokine trap blocking additional postsurgical hemangiogenesis and lymphangiogenesis to promote high-risk graft survival. METHODS: The donor tissue was preincubated with a VEGFR1R2 cytokine trap for 24 hours prior to murine high-risk corneal transplantation (human IgG Fc was used as the control). The distribution of VEGFR1R2 Trap in the cornea was investigated by immunohistochemistry. Corneas were excised to quantify the blood vessels (BVs) and lymphatic vessels (LVs) and draining lymph nodes (dLNs) were harvested to analyse the phenotype of dendritic cells (DCs) and T cells at week 1, 2 and 8 post-transplantation. Graft survival was compared between preincubation with VEGFR1R2 Trap and human IgG Fc in high-risk recipients. RESULTS: VEGFR1R2 Trap was present in the graft for at least 2 weeks after surgery and additionally diffused into the corneal recipient. BVs, LVs and macrophages in the whole cornea were significantly decreased 1-week and 2-week post-transplantation (p<0.05). In dLNs the frequency of CD11c+DCs was significantly reduced, whereas CD200R+ regulatory DCs were significantly increased after keratoplasty (p<0.05). Furthermore, long-term high-risk graft survival was significantly improved (p<0.01). CONCLUSIONS: Preincubation of corneal donor tissue with a VEGFR1R2 cytokine trap can significantly promote subsequent high-risk corneal transplant survival and thereby opens new treatment avenues for high-risk corneal transplantation.


Subject(s)
Corneal Neovascularization , Corneal Transplantation , Animals , Humans , Mice , Cornea/pathology , Corneal Neovascularization/metabolism , Cytokines , Endothelial Growth Factors , Graft Rejection/prevention & control , Graft Rejection/metabolism , Graft Survival , Immunoglobulin G , Lymphangiogenesis , Vascular Endothelial Growth Factor A
17.
Sci Rep ; 11(1): 23815, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893663

ABSTRACT

Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.


Subject(s)
Dendritic Cells/immunology , Graft Rejection/immunology , Graft Rejection/metabolism , Heart Transplantation , Immunomodulation , Receptors, CXCR4/antagonists & inhibitors , Allografts , Animals , Benzylamines/pharmacology , Biomarkers , Cyclams/pharmacology , Dendritic Cells/metabolism , Disease Models, Animal , Drug Synergism , Graft Rejection/diagnosis , Graft Survival/drug effects , Graft Survival/immunology , Heart Transplantation/adverse effects , Heart Transplantation/methods , Mice , Prognosis , Sirolimus/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation Immunology , Treatment Outcome
18.
Front Immunol ; 12: 738795, 2021.
Article in English | MEDLINE | ID: mdl-34795664

ABSTRACT

In solid-organ transplantation, microRNAs (miRNAs) have emerged as key players in the regulation of allograft cells function in response to injury. To gain insight into the role of miRNAs in antibody-mediated rejection, a rejection phenotype histologically defined by microvascular inflammation, kidney allograft biopsies were subjected to miRNA but also messenger RNA (mRNA) profiling. Using a unique multistep selection process specific to the BIOMARGIN study (discovery cohort, N=86; selection cohort, N=99; validation cohort, N=298), six differentially expressed miRNAs were consistently identified: miR-139-5p (down) and miR-142-3p/150-5p/155-5p/222-3p/223-3p (up). Their expression level gradually correlated with microvascular inflammation intensity. The cell specificity of miRNAs target genes was investigated by integrating their in vivo mRNA targets with single-cell RNA sequencing from an independent allograft biopsy cohort. Endothelial-derived miR-139-5p expression correlated negatively with MHC-related genes expression. Conversely, epithelial-derived miR-222-3p overexpression was strongly associated with degraded renal electrolyte homeostasis and repressed immune-related pathways. In immune cells, miR-150-5p regulated NF-κB activation in T lymphocytes whereas miR-155-5p regulated mRNA splicing in antigen-presenting cells. Altogether, integrated omics enabled us to unravel new pathways involved in microvascular inflammation and suggests that metabolism modifications in tubular epithelial cells occur as a consequence of antibody-mediated rejection, beyond the nearby endothelial compartment.


Subject(s)
Gene Expression Profiling , Graft Rejection/genetics , Inflammation/genetics , Kidney Transplantation/adverse effects , Kidney/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , Transcriptome , Biopsy , Europe , Graft Rejection/diagnosis , Graft Rejection/immunology , Graft Rejection/metabolism , Humans , Inflammation/diagnosis , Inflammation/immunology , Inflammation/metabolism , Kidney/immunology , Kidney/pathology , MicroRNAs/metabolism , Prospective Studies , RNA, Messenger/metabolism , RNA-Seq , Single-Cell Analysis , Systems Integration , Treatment Outcome
19.
Cells ; 10(11)2021 11 03.
Article in English | MEDLINE | ID: mdl-34831212

ABSTRACT

Small extracellular vesicles (sEV), which are released to body fluids (e.g., serum, urine) by all types of human cells, may stimulate or inhibit the innate and adaptive immune response through multiple mechanisms. Exosomes or sEV have on their surface many key receptors of immune response, including major histocompatibility complex (MHC) components, identical to their cellular origin. They also exhibit an ability to carry antigen and target leukocytes either via interaction with cell surface receptors or intracellular delivery of inflammatory mediators, receptors, enzymes, mRNAs, and noncoding RNAs. By the transfer of donor MHC antigens to recipient antigen presenting cells sEV may also contribute to T cell allorecognition and alloresponse. Here, we review the influence of sEV on the development of rejection or tolerance in the setting of solid organ and tissue allotransplantation. We also summarize and discuss potential applications of plasma and urinary sEV as biomarkers in the context of transplantation. We focus on the attempts to use sEV as a noninvasive approach to detecting allograft rejection. Preliminary studies show that both sEV total levels and a set of specific molecules included in their cargo may be an evidence of ongoing allograft rejection.


Subject(s)
Extracellular Vesicles/metabolism , Graft Rejection/metabolism , Animals , Antibodies/metabolism , Graft Rejection/immunology , Humans , Immune Tolerance , Liquid Biopsy , Organ Transplantation
20.
Front Immunol ; 12: 778359, 2021.
Article in English | MEDLINE | ID: mdl-34777394

ABSTRACT

Acute antibody-mediated rejection (AAMR) is an important cause of cardiac allograft dysfunction, and more effective strategies need to be explored to improve allograft prognosis. Interleukin (IL)-6/IL-6R signaling plays a key role in the activation of immune cells including B cells, T cells and macrophages, which participate in the progression of AAMR. In this study, we investigated the effect of IL-6/IL-6R signaling blockade on the prevention of AAMR in a mouse model. We established a mouse model of AAMR for cardiac transplantation via presensitization of skin grafts and addition of cyclosporin A, and sequentially analyzed its features. Tocilizumab, anti-IL-6R antibody, and recipient IL-6 knockout were used to block IL-6/IL-6R signaling. We demonstrated that blockade of IL-6/IL-6R signaling significantly attenuated allograft injury and improved survival. Further mechanistic research revealed that signaling blockade decreased B cells in circulation, spleens, and allografts, thus inhibiting donor-specific antibody production and complement activation. Moreover, macrophage, T cell, and pro-inflammatory cytokine infiltration in allografts was also reduced. Collectively, we provided a highly practical mouse model of AAMR and demonstrated that blockade of IL-6/IL-6R signaling markedly alleviated AAMR, which is expected to provide a superior option for the treatment of AAMR in clinic.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , B-Lymphocytes/drug effects , Graft Rejection/prevention & control , Graft Survival/drug effects , Heart Transplantation/adverse effects , Immunosuppressive Agents/pharmacology , Interleukin-6/metabolism , Isoantibodies/immunology , Receptors, Interleukin-6/antagonists & inhibitors , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cytokines/metabolism , Disease Models, Animal , Graft Rejection/immunology , Graft Rejection/metabolism , Graft Rejection/pathology , Inflammation Mediators/metabolism , Interleukin-6/genetics , Isoantibodies/blood , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology , Receptors, Interleukin-6/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...