Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.068
Filter
1.
Immunol Lett ; 266: 106839, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309375

ABSTRACT

The X-linked chronic granulomatous disease (X-CGD), a rare genetic disease characterised by recurrent infections, is caused by mutations of NOX2. Significant proportions of X-CGD patients display signs of immune dysregulation. Regulatory T cells (Tregs) are CD4+T lymphocytes that expand in active inflammation and prevent autoimmune disorders. Here we asked whether X-CGD is associated to Treg dysfunctions in adult patients. To this aim, the frequency of Tregs was analysed through intracellular flow cytometry in a cohort of adult X-CGD patients, carriers and controls. We found that Tregs were significantly expanded and activated in blood of adult X-CGD patients, and this was associated with activation of conventional CD4+T cells (Tconvs). T cell activation was characterised by accumulation of intracellular ROS, not derived from NOX2 but likely produced by cellular metabolism. The higher TNF production by Tconvs in X-CGD patients might contribute to the expansion of Tregs through the TNFR2 receptor. In summary, our data indicate that Tregs expand in adult X-CGD in response to immune activation, and that the increase of NOX2-independent ROS content is a feature of activated T cells.


Subject(s)
Granulomatous Disease, Chronic , Adult , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , T-Lymphocytes, Regulatory , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Mutation
2.
Medicine (Baltimore) ; 103(5): e37198, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306523

ABSTRACT

INTRODUCTION: X-linked recessive chronic granulomatous disease (XR-CGD) is a severe primary immunodeficiency principally caused by a CYBB (OMIM: 300481) gene variant. Recurrent fatal bacterial or fungal infections are the main clinical manifestations of XR-CGD. PATIENT CONCERNS: In the current case, in vitro fertilization (IVF) associated with preimplantation genetic testing for monogenic disorder (PGT-M) was applied for a Chinese couple who had given birth to a boy with XR-CGD. DIAGNOSIS: Next-generation sequencing-based SNP haplotyping and Sanger-sequencing were used to detect the CYBB gene variant (c.804 + 2T>C, splicing) in this family. INTERVENTIONS: The patient was treated with IVF and PGT-M successively. OUTCOMES: In this IVF cycle, 7 embryos were obtained, and 2 of them were euploid and lacked the CYBB gene variant (c.804 + 2T>C). The PGT results were verified by prenatal diagnosis after successful pregnancy, and a healthy girl was eventually born. CONCLUSION: PGT-M is an effective method for helping families with these fatal and rare inherited diseases to have healthy offspring. It can availably block the transmission of disease-causing loci to descendant.


Subject(s)
Granulomatous Disease, Chronic , Preimplantation Diagnosis , Male , Pregnancy , Female , Humans , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Preimplantation Diagnosis/methods , Genetic Testing/methods , Prenatal Diagnosis , Fertilization in Vitro , Aneuploidy , NADPH Oxidase 2/genetics
3.
Clin Immunol ; 260: 109919, 2024 03.
Article in English | MEDLINE | ID: mdl-38309448

ABSTRACT

Chronic granulomatous disease (CGD) in children is a rare primary immunodeficiency disorder that can lead to life-threatening infections and inflammatory complications. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is increasingly being used to treat severe CGD in children. We conducted a multicenter retrospective analysis of children with CGD who were treated with allo-HSCT at four pediatric hematopoietic stem cell transplant centers in China from September 2005 to December 2019. The study included a total of 171 patients (169 males and 2 females). The median age at the time of transplantation was 6.1 (0-16.4) years. Among them, 154 patients had X-linked recessive inheritance caused by CYBB gene mutations, 12 patients were autosomal recessive, 1 patient had DNAH11 and HYDIN gene mutations, and 4 patients had no gene mutations. The median follow-up period was 36.3 (1.9-79) months. All participating patients were applied to myeloablative conditioning (MAC) regimens. The rates of OS, EFS, and GEFS within three years were 87.5%, 85.3%, and 75.2%, respectively. The total graft failure and the total mortality rate were 5.3% and 11.1%. The cumulative incidence of acute GVHD was 53.8% and the incidence of chronic GVHD was 12.9%, The incidence of chronic GVHD was higher for patients who received unrelated donor cord blood stem cell transplantation (UD-CB) (P = 0.001). Chronic GVHD and coinfections are the risk factors for OS and EFS in patients with CGD after receiving allo-HSCT. UD-CB is a risk factor for EFS and the presence of pneumonia before transplantation is a risk factor for OS. In conclusion, through this study, we have demonstrated that allo-HSCT has excellent efficacy in the treatment of CGD in children, especially, RD-haplo is associated with a lower rate of graft failure incidence and mortality than the treatment modalities of other donor type. Therefore, allo-HSCT is strongly recommended when a well-matched donor is available. If a well-matched donor is not available, the HLA-mismatched donor should be carefully evaluated, and the conditioning regimen modified accordingly.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Male , Child , Female , Humans , Adolescent , Retrospective Studies , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/complications , Graft vs Host Disease/etiology , Unrelated Donors , Hematopoietic Stem Cell Transplantation/adverse effects , China , Transplantation Conditioning
4.
J Allergy Clin Immunol ; 153(5): 1423-1431.e2, 2024 May.
Article in English | MEDLINE | ID: mdl-38290608

ABSTRACT

BACKGROUND: P47phox (neutrophil cytosolic factor-1) deficiency is the most common cause of autosomal recessive chronic granulomatous disease (CGD) and is considered to be associated with a milder clinical phenotype. Allogeneic hematopoietic cell transplantation (HCT) for p47phox CGD is not well-described. OBJECTIVES: We sought to study HCT for p47phox CGD in North America. METHODS: Thirty patients with p47phox CGD who received allogeneic HCT at Primary Immune Deficiency Treatment Consortium centers since 1995 were included. RESULTS: Residual oxidative activity was present in 66.7% of patients. In the year before HCT, there were 0.38 CGD-related infections per person-years. Inflammatory diseases, predominantly of the lungs and bowel, occurred in 36.7% of the patients. The median age at HCT was 9.1 years (range 1.5-23.6 years). Most HCTs (90%) were performed after using reduced intensity/toxicity conditioning. HCT sources were HLA-matched (40%) and -mismatched (10%) related donors or HLA-matched (36.7%) and -mismatched (13.3%) unrelated donors. CGD-related infections after HCT decreased significantly to 0.06 per person-years (P = .038). The frequency of inflammatory bowel disease and the use of steroids also decreased. The cumulative incidence of graft failure and second HCT was 17.9%. The 2-year overall and event-free survival were 92.3% and 82.1%, respectively, while at 5 years they were 85.7% and 77.0%, respectively. In the surviving patients evaluated, ≥95% donor myeloid chimerism at 1 and 2 years after HCT was 93.8% and 87.5%, respectively. CONCLUSIONS: Patients with p47phox CGD suffer from a significant disease burden that can be effectively alleviated by HCT. Similar to other forms of CGD, HCT should be considered for patients with p47phox CGD.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , NADPH Oxidases , Humans , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/genetics , NADPH Oxidases/genetics , Male , Female , Child , Child, Preschool , Adolescent , Infant , Young Adult , Transplantation, Homologous , Transplantation Conditioning/methods , Graft vs Host Disease , Adult , Treatment Outcome
5.
Hum Gene Ther ; 35(7-8): 298-312, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38062734

ABSTRACT

Replacing a faulty gene with a correct copy has become a viable therapeutic option as a result of recent progress in gene editing protocols. Targeted integration of therapeutic genes in hematopoietic stem cells has been achieved for multiple genes using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system and Adeno-Associated Virus (AAV) to carry a donor template. Although this is a promising strategy to correct genetic blood disorders, it is associated with toxicity and loss of function in CD34+ hematopoietic stem and progenitor cells, which has hampered clinical application. Balancing the maximum achievable correction against deleterious effects on the cells is critical. However, multiple factors are known to contribute, and the optimization process is laborious and not always clearly defined. We have developed a flexible multidimensional Response Surface Methodology approach for optimization of gene correction. Using this approach, we could rapidly investigate and select editing conditions for CD34+ cells with the best possible balance between correction and cell/colony-forming unit (CFU) loss in a parsimonious one-shot experiment. This method revealed that using relatively low doses of AAV2/6 and CRISPR/Cas9 ribonucleoprotein complex, we can preserve the fitness of CD34+ cells and, at the same time, achieve high levels of targeted gene insertion. We then used these optimized editing conditions for the correction of p67phox-deficient chronic granulomatous disease (CGD), an autosomal recessive disorder of blood phagocytic cells resulting in severe recurrent bacterial and fungal infections and achieved rescue of p67phox expression and functional correction of CD34+-derived neutrophils from a CGD patient.


Subject(s)
Granulomatous Disease, Chronic , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Gene Editing , Genetic Therapy/methods , Antigens, CD34/genetics , Hematopoietic Stem Cells/metabolism , CRISPR-Cas Systems
6.
Clin Exp Immunol ; 215(3): 261-267, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38066563

ABSTRACT

BACKGROUND: Chronic granulomatous disease (CGD) is a heterogeneous primary immunodeficiency. X-linked (XL) CGD caused by gene defects of CYBB is the most prevalent type of CGD. OBJECTIVE: We aim to understand the clinical and molecule features of XL-CGD secondary to skewed X-chromosome inactivation (XCI) in female. METHODS: We retrospectively reviewed the medical records of a female patient diagnosed with XL-CGD. Flow cytometry was used to detect the respiratory burst function. After restriction enzyme digestion of DNA, XCI was calculated by detecting fluorescent PCR products with capillary electrophoresis. The previously published female XL-CGD cases secondary to skewed XCI was summarized. RESULTS: Clinical data were available for 15 female subjects. The median age of diagnosis was 16 years. Consistent with XL-CGD in males, infection was the most frequent manifestation in the female patients. Catalase-positive pathogens including Serratia marcescens and Staphylococcus aureus infections were the most common pathogens. Autoimmune/autoinflammation manifestations were observed in five patients. Dihydrorhodamine (DHR) assay showed that median %DHR+ values were 6.5% and the values varying with age were observed in 2 patients. All patients had a skewing XCI and there was no consistency between the daughter and carrier mother. Anti-infective treatment was effective in majority and there was no mortality reported in XL-CGD female patients to date. CONCLUSION: XL-CGD should not be neglected in female patients manifested as CGD phenotype and it is necessary to make periodic clinical evaluation of CGD female carriers as the neutrophil oxidative function may decline with aging and increase the risk for infection.


Subject(s)
Granulomatous Disease, Chronic , Male , Humans , Female , Adolescent , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/diagnosis , Retrospective Studies , X Chromosome Inactivation , Neutrophils , Chromosomes
7.
Stem Cell Res ; 74: 103269, 2024 02.
Article in English | MEDLINE | ID: mdl-38134578

ABSTRACT

Chronic granulomatous disease (CGD) is a rare X-linked recessive primary immunodeficiency disease (PID). Herein, a human induced pluripotent stem cell (iPSC) line was generated from the peripheral blood mononuclear cells (PBMCs) of a CGD patient with a mutation (c.785_786delTT) in the CYBB gene. These iPSCs showed the expression of pluripotency markers, the ability to differentiate into three germ layers. They offer a promising technique for studying the pathogenesis and conducting drug screening for CGD patients.


Subject(s)
Granulomatous Disease, Chronic , Induced Pluripotent Stem Cells , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , Granulomatous Disease, Chronic/pathology , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Cell Differentiation , Mutation/genetics
10.
Front Immunol ; 14: 1228161, 2023.
Article in English | MEDLINE | ID: mdl-38022624

ABSTRACT

Background: Chronic granulomatous disease (CGD) is a genetic disorder caused by defective oxidative burst within phagocytes, manifesting as recurrent, severe infections as well as hyperinflammation. Objective: This is the first report from the United Arab Emirates (UAE) to describe the demographic, clinical, laboratory, radiological, and genetic characteristics of patients with CGD. Methods: This is a retrospective study that was conducted at Tawam Hospital in the UAE on patients with confirmed CGD between 2017 and 2022. Results: A total of 14 patients were diagnosed with CGD, of whom 13 patients had autosomal recessive (AR) CGD due to NCF1 deficiency. Consanguinity was noted in all patients with AR CGD, whereas positive family history was identified in 50% of cases. The median age of onset of symptoms was 24 months, while the median age at diagnosis was 72 months. Lymphadenitis was the most common clinical feature identified in 71% of patients. Other common infectious manifestations included abscess formation (57%), pneumonia (50%), invasive aspergillosis (21%), oral thrush (14%), and sepsis (14%). Disseminated trichosporonosis was reported in one patient. Autoimmune and inflammatory manifestations included celiac disease in two patients, diabetes mellitus and asymptomatic colitis in one patient each. Genetic analysis was performed in all patients; NCF1 deficiency was diagnosed in 13 (93%) patients, with c.579G>A being the most prevalent pathogenic variant identified. The treatment modalities, as well as treatment of acute infections, treatment modalities included antimicrobial prophylaxis in 12 (86%) patients and hematopoietic stem cell transplant in six patients (42%). Conclusion: This is the first report from the UAE describing the clinical and molecular characteristics of patients with CGD. The homozygous variant c.579G>A causing NCF1 deficiency can be considered as a founder mutation for AR CGD in the UAE.


Subject(s)
Granulomatous Disease, Chronic , Humans , Child, Preschool , Child , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/epidemiology , Granulomatous Disease, Chronic/genetics , United Arab Emirates/epidemiology , Retrospective Studies , NADPH Oxidases/genetics
11.
Genes (Basel) ; 14(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003028

ABSTRACT

The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Male , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Unrelated Donors , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , Translocation, Genetic
13.
Mol Ther ; 31(12): 3424-3440, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37705244

ABSTRACT

Stem cell gene therapy using the MFGS-gp91phox retroviral vector was performed on a 27-year-old patient with X-linked chronic granulomatous disease (X-CGD) in 2014. The patient's refractory infections were resolved, whereas the oxidase-positive neutrophils disappeared within 6 months. Thirty-two months after gene therapy, the patient developed myelodysplastic syndrome (MDS), and vector integration into the MECOM locus was identified in blast cells. The vector integration into MECOM was detectable in most myeloid cells at 12 months after gene therapy. However, the patient exhibited normal hematopoiesis until the onset of MDS, suggesting that MECOM transactivation contributed to clonal hematopoiesis, and the blast transformation likely arose after the acquisition of additional genetic lesions. In whole-genome sequencing, the biallelic loss of the WT1 tumor suppressor gene, which occurred immediately before tumorigenesis, was identified as a potential candidate genetic alteration. The provirus CYBB cDNA in the blasts contained 108 G-to-A mutations exclusively in the coding strand, suggesting the occurrence of APOBEC3-mediated hypermutations during the transduction of CD34-positive cells. A hypermutation-mediated loss of oxidase activity may have facilitated the survival and proliferation of the clone with MECOM transactivation. Our data provide valuable insights into the complex mechanisms underlying the development of leukemia in X-CGD gene therapy.


Subject(s)
Granulomatous Disease, Chronic , Myelodysplastic Syndromes , Humans , Adult , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , NADPH Oxidases/genetics , Clonal Hematopoiesis , Genetic Therapy , Retroviridae/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , NADPH Oxidase 2/genetics
14.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37659505

ABSTRACT

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Subject(s)
Gastrointestinal Microbiome , Granulomatous Disease, Chronic , Inflammatory Bowel Diseases , Humans , Granulomatous Disease, Chronic/genetics , NADPH Oxidases , Cross-Sectional Studies
15.
Clin Immunol ; 255: 109761, 2023 10.
Article in English | MEDLINE | ID: mdl-37673227

ABSTRACT

Chronic Granulomatous Disease (CGD) is an inborn error of immunity characterised by opportunistic infection and sterile granulomatous inflammation. CGD is caused by a failure of reactive oxygen species (ROS) production by the phagocyte NADPH oxidase. Mutations in the genes encoding phagocyte NADPH oxidase subunits cause CGD. We and others have described a novel form of CGD (CGD5) secondary to lack of EROS (CYBC1), a highly selective chaperone for gp91phox. EROS-deficient cells express minimal levels of gp91phox and its binding partner p22phox, but EROS also controls the expression of other proteins such as P2X7. The full nature of CGD5 is currently unknown. We describe a homozygous frameshift mutation in CYBC1 leading to CGD. Individuals who are heterozygous for this mutation are found in South Asian populations (allele frequency = 0.00006545), thus it is not a private mutation. Therefore, it is likely to be the underlying cause of other cases of CGD.


Subject(s)
Granulomatous Disease, Chronic , Humans , Granulomatous Disease, Chronic/genetics , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Phagocytes , Reactive Oxygen Species/metabolism , Mutation/genetics
16.
J Clin Immunol ; 43(8): 1964-1973, 2023 11.
Article in English | MEDLINE | ID: mdl-37620741

ABSTRACT

X-linked chronic granulomatous disease (XL-CGD) is an inherited disorder of superoxide production, causing failure to generate the oxidative burst in phagocytes. It is characterized by invasive bacterial and fungal infections, inflammation, and chronic autoimmune disease. While XL-CGD carriers were previously assumed to be healthy, a range of clinical manifestations with significant morbidity have recently been described in a subgroup of carriers with impaired neutrophil oxidative burst due to skewed lyonization. Allogeneic hematopoietic stem cell transplantation (HSCT) is the standard curative treatment for CGD but has rarely been reported in individual symptomatic carriers to date. We undertook a retrospective international survey of outcome of HSCT for symptomatic XL-CGD carriers. Seven symptomatic female XL-CGD carriers aged 1-56 years underwent HSCT in four centers, indicated for severe and recurrent infection, colitis, and autoimmunity. Two patients died from transplant-related complications, following donor engraftment and restoration of oxidative burst. All surviving patients demonstrated resolution of their neutrophil oxidative burst defect with concordant reduction in infection and inflammatory symptoms and freedom from further immunosuppressive therapy. In conclusion, allogeneic HSCT may cure the phagocyte defect in symptomatic XL-CGD carriers and improve their recurrent and disabling infective and inflammatory symptoms but risks transplant-related complications.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Humans , Female , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Retrospective Studies , Respiratory Burst , Neutrophils
17.
Ital J Pediatr ; 49(1): 95, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37533075

ABSTRACT

BACKGROUND: Chronic Granulomatous Disease (CGD) is a primary immunodeficiency that causes susceptibility to recurrent fungal and bacterial infections. The CYBB gene encodes gp91phox component of the Phagocytic Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and specifically, X-linked CGD is caused by mutations in the CYBB gene, located on the X chromosome. The aim of the study was to characterize functional and genetic mutations in X-linked CGD. METHODS: Functional analysis was conducted on the whole blood of seventeen male individuals who were suspected to have X-linked chronic granulomatous disease (CGD). Flow cytometry was employed to assess the capacity of NADPH oxidase, measuring both H2O2 production and gp91phox protein expression in neutrophils. Additionally, DNA Sanger sequencing was performed for genetic analysis. The pathogenicity of novel mutations was assessed by pathogenicity prediction tools. RESULT: Among the seventeen patients evaluated, five patients (P1, P2, P3, P4, and P5) displayed impaired H2O2 production by their neutrophils upon stimulation with Phorbol myristate acetate (PMA), accompanied by abnormal gp91phox expression. DNA sequencing of the CYBB gene identified specific mutations in each patient. In P1 and P2 (previously reported cases), a hemizygous missense mutation, c.925G > A/p.E309K was identified. In P3 and P4 (novel cases), hemizygous nonsense mutations, c.216T > A/p.C72X were found. Lastly, in P5 (also a novel case), a hemizygous missense mutation, c.732T > G/p.C244W was detected. These mutations reside in exons 9,3 and 7 of the CYBB gene, respectively. CONCLUSIONS: The current study contributes to the understanding of the clinical and genetic spectrum associated with X-linked chronic granulomatous disease (CGD). It highlights the significance of early diagnosis in CGD and emphasizes the importance of lifelong prophylaxis to prevent severe infections.


Subject(s)
Granulomatous Disease, Chronic , Humans , Male , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/complications , Hydrogen Peroxide , Pakistan , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Mutation , NADPH Oxidase 2/genetics
18.
J Clin Immunol ; 43(8): 1953-1963, 2023 11.
Article in English | MEDLINE | ID: mdl-37597073

ABSTRACT

Chronic granulomatous disease (CGD) is a prototypical inborn error of immunity affecting phagocytes, in which these cells are unable to produce reactive oxygen species. CGD is caused by defects in genes encoding subunits of the NADPH oxidase enzyme complex (CYBA, CYBB, CYBC1, NCF1, NCF2, NCF4); inflammatory responses are dysregulated, and patients are highly susceptible to recurrent severe bacterial and fungal infections. X-linked CGD (XL-CGD), caused by mutations in the CYBB gene, is the most common and severe form of CGD. In this study, we describe the analytical processes undertaken in 3 families affected with XL-CGD to illustrate several molecular challenges in the genetic diagnosis of this condition: in family 1, a girl with a heterozygous deletion of CYBB exon 13 and skewed X-chromosome inactivation (XCI); in family 2, a boy with a hemizygous deletion of CYBB exon 7, defining its consequences at the mRNA level; and in family 3, 2 boys with the same novel intronic variant in CYBB (c.1151 + 6 T > A). The variant affected the splicing process, although a small fraction of wild-type mRNA was produced. Their mother was a heterozygous carrier, while their maternal grandmother was a carrier in form of gonosomal mosaicism. In summary, using a variety of techniques, including an NGS-based targeted gene panel and deep amplicon sequencing, copy number variation calling strategies, microarray-based comparative genomic hybridization, and cDNA analysis to define splicing defects and skewed XCI, we show how to face and solve some uncommon genetic mechanisms in the diagnosis of XL-CGD.


Subject(s)
Granulomatous Disease, Chronic , Mosaicism , Male , Female , Humans , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Mutation/genetics , RNA, Messenger , Chromosomes
19.
Blood ; 142(24): 2105-2118, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37562003

ABSTRACT

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening infections and inflammatory conditions. Hematopoietic cell transplantation (HCT) is the definitive treatment for CGD, but questions remain regarding patient selection and impact of active disease on transplant outcomes. We performed a multi-institutional retrospective and prospective study of 391 patients with CGD treated either conventionally (non-HCT) enrolled from 2004 to 2018 or with HCT from 1996 to 2018. Median follow-up after HCT was 3.7 years with a 3-year overall survival of 82% and event-free survival of 69%. In a multivariate analysis, a Lansky/Karnofsky score <90 and use of HLA-mismatched donors negatively affected survival. Age, genotype, and oxidase status did not affect outcomes. Before HCT, patients had higher infection density, higher frequency of noninfectious lung and liver diseases, and more steroid use than conventionally treated patients; however, these issues did not adversely affect HCT survival. Presence of pre-HCT inflammatory conditions was associated with chronic graft-versus-host disease. Graft failure or receipt of a second HCT occurred in 17.6% of the patients and was associated with melphalan-based conditioning and/or early mixed chimerism. At 3 to 5 years after HCT, patients had improved growth and nutrition, resolved infections and inflammatory disease, and lower rates of antimicrobial prophylaxis or corticosteroid use compared with both their baseline and those of conventionally treated patients. HCT leads to durable resolution of CGD symptoms and lowers the burden of the disease. Patients with active infection or inflammation are candidates for transplants; HCT should be considered before the development of comorbidities that could affect performance status. This trial was registered at www.clinicaltrials.gov as #NCT02082353.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Retrospective Studies , Prospective Studies , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/adverse effects , Genotype , Transplantation Conditioning/adverse effects , Graft vs Host Disease/prevention & control
20.
Arch. argent. pediatr ; 121(4): e202202804, ago. 2023. ilus
Article in English, Spanish | LILACS, BINACIS | ID: biblio-1442954

ABSTRACT

La enfermedad granulomatosa crónica es una inmunodeficiencia primaria poco frecuente, que secaracteriza por defectos en alguna de las subunidades del complejo enzimático nicotinamida adeninadinucleótido fosfato oxidasa, que ocasiona un déficit en la generación de anión superóxido por losfagocitos. Dentro de este grupo, la forma ligada al X es la más frecuente. Se reporta el caso de una paciente de sexo femenino de 2 años con enfermedad granulomatosa crónica autosómica recesiva, con mutación en gen CYBA, quien presentó manifestación inicial de la enfermedad con abscesos cerebrales ocasionados por un germen oportunista (Dermacoccus nishinomiyaensis). Esta infección permitió la sospecha diagnóstica temprana, por lo que recibió el tratamiento y la profilaxis en forma oportuna. Actualmente, se encuentra libre de infecciones, a la espera del trasplante de células progenitoras hematopoyéticas.


Chronic granulomatous disease is a rare primary immunodeficiency characterized by defects in one of the subunits of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex, which causes a deficiency in the capacity of phagocytes to generate superoxide anion. Within this group, the X-linked form is the most frequent. Here we report the case of a 2-year-old female patient with autosomal recessive chronic granulomatous disease, with a mutation in the CYBA gene, whose initial manifestation was brain abscesses caused by an opportunistic microorganism (Dermacoccus nishinomiyaensis). The infection led to an early diagnostic suspicion, so treatment and prophylaxis were administered in a timely manner. Currently, she is infectionfree, awaiting hematopoietic progenitor cell transplantation.


Subject(s)
Humans , Female , Child, Preschool , Granulomatous Disease, Chronic/complications , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Actinobacteria , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...