Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Virus Res ; 345: 199390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710287

ABSTRACT

Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.


Subject(s)
Genetic Variation , Genome, Viral , Animals , Phylogeny , China , Granulovirus/genetics , Granulovirus/classification , Granulovirus/isolation & purification , Whole Genome Sequencing , Oryza/virology , Tandem Repeat Sequences/genetics , Plant Diseases/virology , Recombination, Genetic
2.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33625353

ABSTRACT

The baculovirus Cydia pomonella granulovirus (CpGV) is a biocontrol agent used worldwide against the codling moth (CM), Cydia pomonella L., a severe pest in organic and integrated pome fruit production. Its successful application is increasingly challenged by the occurrence of CM populations resistant to commercial CpGV products. Whereas three types (I-III) of CpGV resistance have been identified, type I resistance compromising the efficacy of CpGV-M, the so-called Mexican isolate of CpGV, is assumed to be the most widely distributed resistance type in Central Europe. Despite the wide use of CpGV products as biocontrol agents, little information is available on gene-expression levels in CM larvae. In this study, the in vivo transcriptome of CpGV-M infecting susceptible (CpS) and resistant (CpRR1) CM larvae was analysed at 24, 48, 72, 96 and 120 hours post infection in the midgut and fat body tissue by using a newly developed microarray covering all ORFs of the CpGV genome. According to their transcript abundance, the CpGV genes were grouped into four temporal clusters to which groups of known and unknown function could be assigned. In addition, sets of genes differentially expressed in the midgut and fat body were found in infected susceptible CpS larvae. For the resistant CpRR1 larvae treated with CpGV-M, viral entry in midgut cells could be confirmed from onset but a significantly reduced gene expression, indicating that type I resistance is associated with a block of viral gene transcription and replication.


Subject(s)
Granulovirus/genetics , Granulovirus/isolation & purification , Moths/virology , Transcriptome , Animals , Europe , Granulovirus/classification , Granulovirus/physiology , Larva/immunology , Larva/virology , Moths/growth & development , Moths/immunology , Plant Diseases/parasitology
3.
PLoS One ; 16(1): e0243143, 2021.
Article in English | MEDLINE | ID: mdl-33444318

ABSTRACT

In this study, the genomes of three Plutella xylostella granulovirus (PlxyGV) isolates, PlxyGV-W and PlxyGV-Wn from near Wuhan and PlxyGV-B from near Beijing, China were completely sequenced and comparatively analyzed to investigate genetic stability and diversity of PlxyGV. PlxyGV-W, PlxyGV-B and PlxyGV-Wn consist of 100,941bp, 100,972bp and 100,999bp in length with G + C compositions of 40.71-40.73%, respectively, and share nucleotide sequence identities of 99.5-99.8%. The three individual isolates contain 118 putative protein-encoding ORFs in common. PlxyGV-W, PlxyGV-B and PlxyGV-Wn have ten, nineteen and six nonsynonymous intra isolate nucleotide polymorphisms (NPs) in six, fourteen and five ORFs, respectively, including homologs of five DNA replication/late expression factors and two per os infectivity factors. There are seventeen nonsynonymous inter isolate NPs in seven ORFs between PlxyGV-W and PlxyGV-B, seventy three nonsynonymous NPs in forty seven ORFs between PlxyGV-W and PlxyGV-Wn, seventy seven nonsynonymous NPs in forty six ORFs between PlxyGV-B and PlxyGV-Wn. Alignment of the genome sequences of nine PlxyGV isolates sequenced up to date shows that the sequence homogeneity between the genomes are over 99.4%, with the exception of the genome of PlxyGV-SA from South Africa, which shares a sequence identity of 98.6-98.7% with the other ones. No events of gene gain/loss or translocations were observed. These results suggest that PlxyGV genome is fairly stable in nature. In addition, the transcription start sites and polyadenylation sites of thirteen PlxyGV-specific ORFs, conserved in all PlxyGV isolates, were identified by RACE analysis using mRNAs purified from larvae infected by PlxyGV-Wn, proving the PlxyGV-specific ORFs are all genuine genes.


Subject(s)
Genomic Instability/genetics , Genomics , Geography , Granulovirus/genetics , Granulovirus/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , China , Genome, Viral , Granulovirus/drug effects , Insecticides/toxicity , Larva/drug effects , Mutation/genetics , Open Reading Frames/genetics , Phylogeny , Polymorphism, Genetic , Time Factors , Transcription, Genetic , Viral Proteins/chemistry , Viral Proteins/genetics
4.
Sci Rep ; 11(1): 414, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432025

ABSTRACT

Purified occlusion bodies (OBs) of Mythimna (formerly Pseudaletia) unipuncta (the true armyworm) granulovirus Hawaiian strain (MyunGV-A) were observed, showing typical GV morphological characteristics under scanning and transmission electron microscopy (EM). The genome of MyunGV-A was completely sequenced and analysed. The genome is 176,677 bp in size, with a G+C content of 39.79%. It contains 183 open reading frames (ORFs) encoding 50 or more amino acids with minimal overlap. Comparison of MyunGV-A with TnGV, XcGV, and HearGV genomes revealed extensive sequence similarity and collinearity, and the four genomes contain the same nine homologous regions (hrs) with conserved structures and locations. Three unique genes, 12 baculovirus repeated ORF (bro), 2 helicase, and 3 enhancin genes, were identified. In particular, two repeated genes (ORF39 and 49) are present in the genome, in reverse and complementarily orientations. Twenty-four OB proteins were identified from the putative protein database of MyunGV-A. In addition, MyunGV-A belongs to the Betabaculovirus group and is most closely related to TnGV (99% amino acid identity) according to a phylogenetic tree based on the combined amino acid sequences of 38 core gene contents.


Subject(s)
Granulovirus/genetics , Moths/virology , Animals , Baculoviridae/genetics , Base Sequence , Genes, Viral , Genome, Viral , Granulovirus/isolation & purification , Hawaii , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, DNA
5.
Viruses ; 12(10)2020 09 23.
Article in English | MEDLINE | ID: mdl-32977681

ABSTRACT

Matsumuraeses phaseoli is a Lepidopteran pest that primarily feeds on numerous species of cultivated legumes, such as Glycine and Phaseolus. It is widely distributed in northeast Asia. A novel granulovirus, designated as Matsumuraeses phaseoli granulovirus (MaphGV), was isolated from pathogenic M. phaseoli larvae that dwell in rolled leaves of Astragalus membranaceus, a Chinese medicinal herb. In this study, using next-generation sequencing, we report the complete genome of MaphGV. MaphGV genome comprises a double-stranded DNA of 116,875 bp, with 37.18% GC content. It has 128 hypothetical open reading frames (ORFs). Among them, 38 are baculovirus core genes, 18 are lepidopteran baculovirus conserved genes, and 5 are unique to Baculoviridae. MaphGV has one baculovirus repeat ORF (bro) and three inhibitors of apoptosis proteins (iap), including a newfound iap-6. We found two atypical baculoviral homologous regions (hrs) and four direct repeats (drs) in the MaphGV genome. Based on phylogenetic analysis, MaphGV belongs to Clade b of Betabaculovirus and is closely related to Cydia pomonellagranulovirus (CpGV) and Cryptophlebia leucotretagranulovirus (CrleGV). This novel baculovirus discovery and sequencing are invaluable in understanding the evolution of baculovirus and MaphGV may be a potential biocontrol agent against the bean ravaging pest.


Subject(s)
Genome, Viral , Granulovirus , Lepidoptera/virology , Pest Control, Biological/methods , Phylogeny , Animals , Astragalus propinquus , Base Composition , DNA, Viral/genetics , Granulovirus/genetics , Granulovirus/isolation & purification
6.
Rev. argent. microbiol ; 51(4): 381-385, dic. 2019. graf
Article in English | LILACS | ID: biblio-1057404

ABSTRACT

Abstract The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important maize pest. Due to the environmental impact and emergence of resistance caused by chemical pesticides and transgenic events, the use of baculoviruses becomes a safe and useful alternative for its control in integrated pest management strategies. Here we report the identification of a novel isolate of a granulovirus of S. frugiperda native to the central region of Argentina, named SfGV ARG. We observed that larvae infected with SfGV ARG showed a yellowish coloration, swollen body and, in some cases, severe lesions in the last abdominal segments. We confirmed the identity of the isolate by sequencing fragments of the lef-8, lef-9 and granulin genes and by calculating evolutionary distances using the Kimura-2-Parameter model. SfGV ARG DNA restriction pattern allowed to estimate a genome of at least 135 kb.


Resumen La oruga militar tardía, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), es una plaga importante del maíz. Debido al impacto ambiental y a la aparición de resistencia causados por los pesticidas químicos y los eventos transgénicos, el uso de baculovirus resulta una alternativa útil y saludable para su control en estrategias de manejo integrado de plagas. En este trabajo reportamos la identificación de un nuevo aislamiento del granulovirus de la S. frugiperda nativo de la región central de Argentina, SfGV ARG. Se observó que larvas infectadas con SfGV ARG mostraron coloración amarillenta, hinchazón y, en algunos casos, lesiones graves en los últimos segmentos abdominales. Se confirmó la identidad del aislamiento por secuenciación de fragmentos de los genes lef-8, lef-9y granulina, y por cálculo de distancias evolutivas usando el parámetro de Kimura-2. El patrón de restricción generado con el ADN genómico de SfGV ARG permitió estimar un tamaño de genoma de al menos 135 kb.


Subject(s)
Pest Control, Biological/methods , Spodoptera/parasitology , Granulovirus/isolation & purification , Pesticides , Argentina , Baculoviridae/isolation & purification , Agricultural Pests
7.
Viruses ; 11(4)2019 04 09.
Article in English | MEDLINE | ID: mdl-30970670

ABSTRACT

Virus infections of insects can easily stay undetected, neither showing typical signs of a disease, nor being lethal. Such a stable and most of the time covert infection with Phthorimaea operculella granulovirus (PhopGV) was detected in a Phthorimaea operculella laboratory colony, which originated from Italy (Phop-IT). This covert virus (named PhopGV-R) was isolated, purified and characterized at the genetic level by full genome sequencing. Furthermore, the insect colony Phop-IT was used to study the crowding effect, double infection with other PhopGV isolates (CR3 and GR1), and co-infection exclusion. An infection with a second homologous virus (PhopGV-CR3) activated the covert virus, while a co-infection with another virus isolate (PhopGV-GR1) led to its suppression. This study shows that stable virus infections can be common for insect populations and have an impact on population dynamics because they can suppress or enable co-infection with another virus isolate of the same species.


Subject(s)
Animals, Laboratory/virology , Granulovirus/growth & development , Granulovirus/isolation & purification , Lepidoptera/virology , Animals , Animals, Laboratory/growth & development , Behavior, Animal , Granulovirus/classification , Granulovirus/genetics , Italy , Lepidoptera/growth & development , Population Dynamics , Whole Genome Sequencing
8.
Rev Argent Microbiol ; 51(4): 381-385, 2019.
Article in English | MEDLINE | ID: mdl-30795935

ABSTRACT

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important maize pest. Due to the environmental impact and emergence of resistance caused by chemical pesticides and transgenic events, the use of baculoviruses becomes a safe and useful alternative for its control in integrated pest management strategies. Here we report the identification of a novel isolate of a granulovirus of S. frugiperda native to the central region of Argentina, named SfGV ARG. We observed that larvae infected with SfGV ARG showed a yellowish coloration, swollen body and, in some cases, severe lesions in the last abdominal segments. We confirmed the identity of the isolate by sequencing fragments of the lef-8, lef-9 and granulin genes and by calculating evolutionary distances using the Kimura-2-Parameter model. SfGV ARG DNA restriction pattern allowed to estimate a genome of at least 135 kb.


Subject(s)
Granulovirus/classification , Granulovirus/isolation & purification , Spodoptera/virology , Animals , Argentina
9.
Viruses ; 9(9)2017 09 04.
Article in English | MEDLINE | ID: mdl-28869567

ABSTRACT

The use of Cydia pomonella granulovirus (CpGV) isolates as biological control agents of codling moth (CM) larvae is important in organic and integrated pome fruit production worldwide. The commercially available isolates CpGV-0006, CpGV-R5, and CpGV-V15 have been selected for the control of CpGV resistant CM populations in Europe. In infection experiments, CpGV-0006 and CpGV-R5 were able to break type I resistance and to a lower extent also type III resistance, whereas CpGV-V15 overcame type I and the rarely occurring type II and type III resistance. The genetic background of the three isolates was investigated with next generation sequencing (NGS) tools by comparing their nucleotide compositions to whole genome alignments of five CpGV isolates representing the known genetic diversity of the CpGV genome groups A to E. Based on the distribution of single nucleotide polymorphisms (SNPs) in Illumina sequencing reads, we found that the two isolates CpGV-0006 and CpGV-R5 have highly similar genome group compositions, consisting of about two thirds of the CpGV genome group E and one third of genome group A. In contrast, CpGV-V15 is composed of equal parts of CpGV genome group B and E. According to the identified genetic composition of these isolates, their efficacy towards different resistance types can be explained and predictions on the success of resistance management strategies in resistant CM populations can be made.


Subject(s)
Genome, Viral , Granulovirus/genetics , Granulovirus/physiology , High-Throughput Nucleotide Sequencing/methods , Moths/virology , Animals , Europe , Genetic Variation , Granulovirus/isolation & purification , Granulovirus/pathogenicity , Larva/virology , Pest Control, Biological , Polymorphism, Single Nucleotide
10.
Viruses ; 9(8)2017 08 18.
Article in English | MEDLINE | ID: mdl-28820456

ABSTRACT

Six complete genome sequences of Cydia pomonella granulovirus (CpGV) isolates from Mexico (CpGV-M and CpGV-M1), England (CpGV-E2), Iran (CpGV-I07 and CpGV-I12), and Canada (CpGV-S) were aligned and analyzed for genetic diversity and evolutionary processes. The selected CpGV isolates represented recently identified phylogenetic lineages of CpGV, namely, the genome groups A to E. The genomes ranged from 120,816 bp to 124,269 bp. Several common differences between CpGV-M, -E2, -I07, -I12 and -S to CpGV-M1, the first sequenced and published CpGV isolate, were highlighted. Phylogenetic analysis based on the aligned genome sequences grouped CpGV-M and CpGV-I12 as the most derived lineages, followed by CpGV-E2, CpGV-S and CpGV-I07, which represent the most basal lineages. All of the genomes shared a high degree of co-linearity, with a common setup of 137 (CpGV-I07) to 142 (CpGV-M and -I12) open reading frames with no translocations. An overall trend of increasing genome size and a decrease in GC content was observed, from the most basal lineage (CpGV-I07) to the most derived (CpGV-I12). A total number of 788 positions of single nucleotide polymorphisms (SNPs) were determined and used to create a genome-wide SNP map of CpGV. Of the total amount of SNPs, 534 positions were specific for exactly one of either isolate CpGV-M, -E2, -I07, -I12 or -S, which allowed the SNP-based detection and identification of all known CpGV isolates.


Subject(s)
Evolution, Molecular , Granulovirus/genetics , Moths/virology , Polymorphism, Single Nucleotide , Animals , Base Sequence , Canada , Genome, Viral , Granulovirus/classification , Granulovirus/isolation & purification , Iran , Mexico , Phylogeny , Viral Proteins/chemistry , Viral Proteins/genetics
11.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28667116

ABSTRACT

Different isolates of Cydia pomonella granulovirus (CpGV) are used worldwide to control codling moth larvae (Cydia pomonella) in pome fruit production. Two types of dominantly inherited field resistance of C. pomonella to CpGV have been recently identified: Z-chromosomal type I resistance and autosomal type II resistance. In the present study, a CpGV-resistant C. pomonella field population (termed SA-GO) from northeastern Germany was investigated. SA-GO individuals showed cross-resistance to CpGV isolates of genome group A (CpGV-M) and genome group E (CpGV-S), whereas genome group B (CpGV-E2) was still infective. Crossing experiments between individuals of SA-GO and the susceptible C. pomonella strain CpS indicated the presence of a dominant autosomal inheritance factor. By single-pair inbreeding of SA-GO individuals for two generations, the genetically more homogenous strain CpRGO was generated. Resistance testing of CpRGO neonates with different CpGV isolates revealed that isolate CpGV-E2 and isolates CpGV-I07 and -I12 were resistance breaking. When progeny of hybrid crosses and backcrosses between individuals of resistant strain CpRGO and susceptible strain CpS were infected with CpGV-M and CpGV-S, resistance to CpGV-S appeared to be autosomal and dominant for larval survivorship but recessive when success of pupation of the hybrids was considered. Inheritance of resistance to CpGV-M, however, is proposed to be both autosomal and Z linked, since Z linkage of resistance was needed for pupation. Hence, we propose a further type III resistance to CpGV in C. pomonella, which differs from type I and type II resistance in its mode of inheritance and response to CpGV isolates from different genome groups.IMPORTANCE The baculovirus Cydia pomonella granulovirus (CpGV) is registered and applied as a biocontrol agent in nearly all pome fruit-growing countries worldwide to control codling moth caterpillars in an environmentally friendly manner. It is therefore the most widely used commercial baculovirus biocontrol agent. Since 2005, field resistance of codling moth to CpGV products has been observed in more than 40 field plantations in Europe, threatening organic and integrated apple production. Knowledge of the inheritance and mechanism(s) of resistance is indispensable for the understanding of host response to baculovirus infection on the population level and the coevolutionary arms race between virus and host, as well as for the development of appropriate resistance management strategies. Here, we report a codling moth field population with a new type of resistance, which appears to follow a highly complex inheritance in regard to different CpGV isolates.


Subject(s)
Granulovirus/genetics , Granulovirus/isolation & purification , Moths/virology , Animals , Europe , Genetic Linkage , Granulovirus/classification , Granulovirus/physiology , Inheritance Patterns , Larva/immunology , Larva/virology , Malus/parasitology , Moths/growth & development , Moths/immunology , Plant Diseases/parasitology
12.
J Invertebr Pathol ; 146: 58-68, 2017 06.
Article in English | MEDLINE | ID: mdl-28442399

ABSTRACT

The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses.


Subject(s)
Genome, Viral , Granulovirus/genetics , Animals , Granulovirus/isolation & purification , Granulovirus/pathogenicity , Larva/virology , Moths/virology , Whole Genome Sequencing
13.
PLoS One ; 12(1): e0170510, 2017.
Article in English | MEDLINE | ID: mdl-28103323

ABSTRACT

The betabaculovirus originally called Pseudaletia (Mythimna) sp. granulovirus #8 (MyspGV#8) was examined by electron microscopy, host barcoding PCR, and determination of the nucleotide sequence of its genome. Scanning and transmission electron microscopy revealed that the occlusion bodies of MyspGV#8 possessed the characteristic size range and morphology of betabaculovirus granules. Barcoding PCR using cytochrome oxidase I primers with DNA from the MyspGV#8 collection sample confirmed that it had been isolated from the true armyworm, Mythimna unipuncta (Lepidoptera: Noctuidae) and therefore was renamed MyunGV#8. The MyunGV#8 genome was found to be 144,673 bp in size with a nucleotide distribution of 49.9% G+C, which was significantly smaller and more GC-rich than the genome of Pseudaletia unipuncta granulovirus H (PsunGV-H), another M. unipuncta betabaculovirus. A phylogeny based on concatenated baculovirus core gene amino acid sequence alignments placed MyunGV#8 in clade a of genus Betabaculovirus. Kimura-2-parameter nucleotide distances suggested that MyunGV#8 represents a virus species different and distinct from other species of Betabaculovirus. Among the 153 ORFs annotated in the MyunGV#8 genome, four ORFs appeared to have been obtained from or donated to the alphabaculovirus lineage represented by Leucania separata nucleopolyhedrovirus AH1 (LeseNPV-AH1) during co-infection of Mythimna sp. larvae. A set of 33 ORFs was identified that appears only in other clade a betabaculovirus isolates. This clade a-specific set includes an ORF that encodes a polypeptide sequence containing a CIDE_N domain, which is found in caspase-activated DNAse/DNA fragmentation factor (CAD/DFF) proteins. CAD/DFF proteins are involved in digesting DNA during apoptosis.


Subject(s)
Genome, Viral , Granulovirus/genetics , Granulovirus/isolation & purification , Lepidoptera/virology , Animals , Base Sequence , DNA Barcoding, Taxonomic , DNA, Viral/genetics , Granulovirus/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Open Reading Frames , Phylogeny , Viral Proteins/genetics
14.
PLoS One ; 11(2): e0147882, 2016.
Article in English | MEDLINE | ID: mdl-26848752

ABSTRACT

Cnaphalocrocis medinalis is a major pest of rice in South and South-East Asia. Insecticides are the major means farmers use for management. A naturally occurring baculovirus, C. medinalis granulovirus (CnmeGV), has been isolated from the larvae and this has the potential for use as microbial agent. Here, we described the complete genome sequence of CnmeGV and compared it to other baculovirus genomes. The genome of CnmeGV is 112,060 base pairs in length, has a G+C content of 35.2%. It contains 133 putative open reading frames (ORFs) of at least 150 nucleotides. A hundred and one (101) of these ORFs are homologous to other baculovirus genes including 37 baculovirus core genes. Thirty-two (32) ORFs are unique to CnmeGV with no homologues detected in the GeneBank and 53 tandem repeats (TRs) with sequence length from 25 to 551 nt intersperse throughout the genome of CnmeGV. Six (6) homologous regions (hrs) were identified interspersed throughout the genome. Hr2 contains 11 imperfect palindromes and a high content of AT sequence (about 73%). The unique ORF28 contains a coiled-coil region and a zinc finger-like domain of 4-50 residues specialized by two C2C2 zinc finger motifs that putatively bound two atoms of zinc. ORF21 encoding a chit-1 protein suggesting a horizontal gene transfer from alphabaculovirus. The putative protein presents two carbohydrate-binding module family 14 (CBM_14) domains rather than other homologues detected from betabaculovirus that only contains one chit-binding region. Gene synteny maps showed the colinearity of sequenced betabaculovirus. Phylogenetic analysis indicated that CnmeGV grouped in the betabaculovirus, with a close relation to AdorGV. The cladogram obtained in this work grouped the 17 complete GV genomes in one monophyletic clade. CnmeGV represents a new crambidae host-isolated virus species from the genus Betabaculovirus and is most closely relative of AdorGV. The analyses and information derived from this study will provide a better understanding of the pathological symptoms caused by this virus and its potential use as a microbial pesticide.


Subject(s)
Genome, Viral , Granulovirus/genetics , Moths/virology , Amino Acid Sequence , Animals , Baculoviridae/classification , Baculoviridae/genetics , Base Sequence , Conserved Sequence , Gene Order , Genes, Viral , Genomics/methods , Granulovirus/classification , Granulovirus/isolation & purification , Molecular Sequence Data , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Sequence Alignment , Tandem Repeat Sequences , Transcription, Genetic
15.
Virol Sin ; 30(6): 417-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26712716

ABSTRACT

The complete genome of Cnaphalocrocis medinalis granulovirus (CnmeGV) from a serious migratory rice pest, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), was sequenced using the Roche 454 Genome Sequencer FLX system (GS FLX) with shotgun strategy and assembled by Roche GS De Novo assembler software. Its circular double-stranded genome is 111,246 bp in size with a high A+T content of 64.8% and codes for 118 putative open reading frames (ORFs). It contains 37 conserved baculovirus core ORFs, 13 unique ORFs, 26 ORFs that were found in all Lepidoptera baculoviruses and 42 common ORFs. The analysis of nucleotide sequence repeats revealed that the CnmeGV genome differs from the rest of sequenced GVs by a 23 kb and a 17kb gene block inversions, and does not contain any typical homologous region (hr) except for a region of non-hr-like sequence. Chitinase and cathepsin genes, which are reported to have major roles in the liquefaction of the hosts, were not found in the CnmeGV genome, which explains why CnmeGV infected insects do not show the phenotype of typical liquefaction. Phylogenetic analysis, based on the 37 core baculovirus genes, indicates that CnmeGV is closely related to Adoxophyes orana granulovirus. The genome analysis would contribute to the functional research of CnmeGV, and would benefit to the utilization of CnmeGV as pest control reagent for rice production.


Subject(s)
Genome, Viral , Granulovirus/genetics , Granulovirus/isolation & purification , Lepidoptera/virology , Amino Acid Sequence , Animals , Base Composition , Base Sequence , DNA Replication/genetics , Genes, Viral , Molecular Sequence Data , Open Reading Frames , Oryza , Sequence Alignment , Sequence Analysis, DNA , Viral Proteins/genetics
16.
J Gen Virol ; 96(Pt 4): 904-914, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25524166

ABSTRACT

A granulovirus (GV) producing occlusion bodies (OBs) with an unusual appearance was isolated from Adoxophyes spp. larvae in the field. Ultrastructural observations revealed that its OBs were significantly larger and cuboidal in shape, rather than the standard ovo-cylindrical shape typical of GVs. N-terminal amino acid sequence analysis of the OB matrix protein from this virus suggested that this new isolate was a variant of Adoxophyes orana granulovirus (AdorGV). Bioassays of this GV (termed AdorGV-M) and an English isolate of AdorGV (termed AdorGV-E) indicated that the two isolates were equally pathogenic against larvae of Adoxophyes honmai. However, AdorGV-M retained more infectivity towards larvae after irradiation with UV light than did AdorGV-E. Sequencing and analysis of the AdorGV-M genome revealed little sequence divergence between this isolate and AdorGV-E. Comparison of selected genes among the two AdorGV isolates and other Japanese AdorGV isolates revealed differences that may account for the unusual OB morphology of AdorGV-M.


Subject(s)
Granulovirus/isolation & purification , Granulovirus/physiology , Amino Acid Sequence , Animals , Base Sequence , Genome, Viral , Granulovirus/genetics , Larva/virology , Lepidoptera/virology , Molecular Sequence Data , Mutation , Phylogeny
17.
Proc Natl Acad Sci U S A ; 111(44): 15711-6, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331863

ABSTRACT

The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only. Deletion of pe38 from CpGV-M totally abolished virus infection in codling moth cells and larvae, demonstrating that it is an essential gene. When the CpGV-M deletion mutant was repaired with pe38 from isolate CpGV-S, which originated from the commercial product Virosoft and is infectious for the resistant codling moth strain CpRR1, the repaired CpGV-M mutant was found to be fully infectious for CpRR1. Repair using pe38 from CpGV-M restored infectivity for the virus in sensitive codling moth strains, but not in CpRR1. Therefore, we conclude that CpGV resistance of codling moth is directed to CpGV-M but not to other virus isolates. The viral gene pe38 is not only essential for the infectivity of CpGV but it is also the key factor in overcoming CpGV resistance in codling moth.


Subject(s)
Granulovirus , Immediate-Early Proteins , Moths/virology , Mutation , Viral Proteins , Animals , Base Sequence , Cell Line , Granulovirus/genetics , Granulovirus/isolation & purification , Granulovirus/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Larva/virology , Molecular Sequence Data , Viral Proteins/genetics , Viral Proteins/metabolism
18.
BMC Genomics ; 15: 856, 2014 Oct 04.
Article in English | MEDLINE | ID: mdl-25280947

ABSTRACT

BACKGROUND: Cassava (Manihot esculenta) is the basic source for dietary energy of 500 million people in the world. In Brazil, Erinnyis ello ello (Lepidoptera: Sphingidae) is a major pest of cassava crops and a bottleneck for its production. In the 1980s, a naturally occurring baculovirus was isolated from E. ello larva and successfully applied as a bio-pesticide in the field. Here, we described the structure, the complete genome sequence, and the phylogenetic relationships of the first sphingid-infecting betabaculovirus. RESULTS: The baculovirus isolated from the cassava hornworm cadavers is a betabaculovirus designated Erinnyis ello granulovirus (ErelGV). The 102,759 bp long genome has a G + C content of 38.7%. We found 130 putative ORFs coding for polypeptides of at least 50 amino acid residues. Only eight genes were found to be unique. ErelGV is closely related to ChocGV and PiraGV isolates. We did not find typical homologous regions and cathepsin and chitinase homologous genes are lacked. The presence of he65 and p43 homologous genes suggests horizontal gene transfer from Alphabaculovirus. Moreover, we found a nucleotide metabolism-related gene and two genes that could be acquired probably from Densovirus. CONCLUSIONS: The ErelGV represents a new virus species from the genus Betabaculovirus and is the closest relative of ChocGV. It contains a dUTPase-like, a he65-like, p43-like genes, which are also found in several other alpha- and betabaculovirus genomes, and two Densovirus-related genes. Importantly, recombination events between insect viruses from unrelated families and genera might drive baculovirus genomic evolution.


Subject(s)
Genome, Viral , Granulovirus/genetics , Lepidoptera/virology , Animals , Databases, Genetic , Granulovirus/classification , Granulovirus/isolation & purification , Larva/virology , Lepidoptera/growth & development , Manihot/parasitology , Open Reading Frames/genetics , Phylogeny , Pyrophosphatases/genetics , Sequence Analysis, DNA , Viral Proteins/classification , Viral Proteins/genetics
19.
Arch Virol ; 159(7): 1869-72, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24519461

ABSTRACT

The complete nucleotide sequence of Agrotis segetum granulovirus Shanghai strain (AgseGV-L1) was determined and compared with that of AgseGV Xinjiang strain (AgseGV-XJ). The circular genome of AgseGV-L1 is 131,442 bp and has a G+C content of 37.27 %. It includes 149 ORFs, 24 of which are unique to AgseGV (AgseGV-L1 and AgseGV-XJ [GenBank accession no. NC_005839]). The average level of amino acid sequence identity between AgseGV-L1 and other granulovirus (GV) homologues (except AgseGV-XJ) ranged from 44.3 % (Adoxophyes orana granulovirus [AdorGV]) to 49 % (Cydia pomonella granulovirus [CpGV]). The AgseGV-L1 genome is 99 % identical to that of AgseGV-XJ. They have 196 differences, including 172 substitutions, 21 deletions and 3 insertions. Two homologous regions (hrs) were detected in two intergenic spaces, which share low identity and both lack a palindromic core. A p6.9 gene was found in this genome, which shared 38 %-59 % amino acid identity with those of other baculoviruses. No differences were found in the hr and p6.9 sequences of AgseGV-L1 and AgseGV-XJ. Ie-1 is a known immediate-early gene, but AgseGV-L1 ie-1 has no recognizable promoter element. By BLASTP analysis, one bro gene homologue of NPVs was detected (Agse148). Phylogenetic analysis based on the 29 core baculovirus genes indicated that AgseGV-L1 is closely related to AgseGV-XJ, Helicoverpa armigera granulovirus (HearGV), Helicoverpa armigera granulovirus (XecnGV), Pseudaletia unipuncta granulovirus (PsunGV), Spodoptera litura granulovirus (SpliGV) and Plutella xylostella granulovirus (PlxyGV).


Subject(s)
Genome, Viral , Granulovirus/genetics , Granulovirus/isolation & purification , Moths/virology , Amino Acid Sequence , Animals , Base Sequence , China , Gene Expression Regulation, Viral , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
20.
J Invertebr Pathol ; 112(3): 219-28, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23277142

ABSTRACT

False codling moth, Thaumatotibia leucotreta (Meyrick) is a serious pest of economic importance to the South African fruit industry. As part of sustainable efforts to control this pest, biological control options that involve the application of baculovirus-based biopesticides such as Cryptogran and Cryptex (both formulated with a South African isolate of Cryptophlebia leucotreta granulovirus, CrleGV-SA) are popularly used by farmers. In order to safeguard the integrity of these biopesticides as well as protect against any future development of resistance in the host, we conducted a study to bioprospect for additional CrleGV isolates as alternatives to existing ones. Using overcrowding as an induction method for latent infection, we recovered five new CrleGV isolates (CrleGV-SA Ado, CrleGV-SA Mbl, CrleGV-SA Cit, CrleGV-SA MixC and CrleGV-SA Nels). Single restriction endonuclease (REN) analysis of viral genomic DNA extracted from purified occlusion bodies showed that isolates differed in their DNA profiles. Partial sequencing of granulin and egt genes from the different isolates and multiple alignments of nucleotide sequences revealed the presence of single nucleotide polymorphisms (SNPs), some of which resulted in amino acid substitutions in the protein sequence. Based on these findings as well as comparisons with other documented CrleGV isolates, we propose two phylogenetic groups for CrleGV-SA isolates recovered in this study.


Subject(s)
Granulovirus/physiology , Moths/virology , Animals , DNA, Viral/chemistry , Disease Resistance , Granulovirus/genetics , Granulovirus/isolation & purification , Moths/physiology , Pest Control, Biological , Phylogeny , Population Density , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...