Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Sci Total Environ ; 912: 169658, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38159764

ABSTRACT

Extensive use of per- and polyfluoroalkyl substances (PFASs) has resulted in their widespread presence in natural waters. Concern for public health requires reliable measurement methods for determining their distribution and risks. Here, a sampling method based on diffusive gradients in thin films (DGT) was developed for measuring PFASs in drinking water sources. Fluorinated graphite (FG) particles were used to prepare the DGT binding gel for selective enrichment of trace PFASs in an aqueous environment. The FG-DGT method did not show sensitivity to relevant environmental parameters including pH (5.0-9.0), ionic strength (0.001-0.5 M), or DOM concentration (0-30 mg/L). The FG-DGT had enough capacity for deployment of up to four months. Six traditional and emerging PFASs including PFOS, PFOA, PFHpA, PFHxS, PFNA, and 6:2 FTSA at the ng/L level were detected in two major reservoirs serving as public drinking water sources by FG-DGT method coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). PFOA appeared at the highest observed concentrations in the drinking water sources. The research demonstrates that FG-DGT is an effective and efficient tool for monitoring PFASs in drinking water.


Subject(s)
Drinking Water , Fluorocarbons , Graphite , Water Pollutants, Chemical , Drinking Water/chemistry , Graphite/analysis , Environmental Monitoring/methods , Chromatography, Liquid , Water Pollutants, Chemical/analysis , Tandem Mass Spectrometry , Fluorocarbons/analysis
2.
Chemosphere ; 312(Pt 1): 137138, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343732

ABSTRACT

The increasing use of graphene-related materials (GRMs) in everyday-life products raises concerns for their possible release into the environment and consequent impact on organisms. GRMs have widely varying effects on plants and, according to recent evidences, graphene oxide (GO) has the potential to interfere with the sexual reproduction owing to its acidic properties and production residues. Here, stigmas of the model plant Cucurbita pepo (summer squash) were subjected to simulated dry depositions of GO and GO purified from production residues (PGO). Stigmas were then hand-pollinated and GRM deposition was checked by ESEM and confocal microscopy. Analysis of stigma integrity, pH homeostasis and pollen-stigma interactions did not reveal negative effects. Fruit and seed production were not affected, but GO depositions of 22.1 ± 7.2 ng mm-2 affected the normal development of seeds, decreasing seed dimensions, seed germination and germination speed. The elemental analysis revealed that GO has significant quantities of production residues, such as strong acids and oxidants, while PGO has only traces, which justifies the differences observed in the effects caused by the two materials. Our results show that GO depositions of up to 11.1 ± 3.6 ng mm-2, which fall within the variation range of total dry particulate matter depositions reported in the literature, are safe for reproduction of C. pepo. This is the first "safety" limit ever recorded for depositions of "out-of-the-box" GO concerning the reproduction of a seed plant. If confirmed for wind-pollinated species, it might be considered for policymaking of GRMs emissions in the air.


Subject(s)
Graphite , Graphite/analysis , Pollen/chemistry , Reproduction , Seeds , Oxides/analysis
3.
Environ Sci Pollut Res Int ; 30(9): 24553-24561, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36344888

ABSTRACT

Today, drug dealers and sellers add lead compounds to these substances to get more profit. As a result, drug users are heavily exposed to lead, and lead poisoning is clearly seen in most of them. Therefore, it is especially important to check the blood lead levels in these people. In this research, an efficient and eco-friendly pretreatment method was established by deep eutectic solvent for dispersive liquid-liquid microextraction (DES - DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) analysis. The selected hydrophilic deep eutectic solvent consists of l-menthol and (1S)-( +)-camphor-10-sulfonic acid (CSA) at a 5:1 molar ratio as a green solvent instead of traditional toxic organic solvents. Under the optimal extraction conditions, the introduced method exhibited good linearity with coefficient of determination (r2) 0.9975 and an acceptable linear range of 0.3-80 µg L-1. Accordingly, the detection limit was 0.1 µg L-1 (S/N = 3) for lead ions, and the high enrichment factor (240) was obtained. The proposed method was successfully applied to analysis lead ions in real blood samples, which is a promising technique for biological samples. The case samples were classified and analyzed based on age, duration of consumption, and type of substance. The results showed that there was no significant difference between blood lead levels in different age groups and different duration of use, while blood lead levels were higher in opium residue (shireh) users than in opium users.


Subject(s)
Graphite , Liquid Phase Microextraction , Humans , Solvents/chemistry , Lead/analysis , Graphite/analysis , Opium/analysis , Deep Eutectic Solvents , Liquid Phase Microextraction/methods , Spectrophotometry, Atomic/methods , Control Groups , Limit of Detection
4.
Sci Bull (Beijing) ; 67(8): 803-812, 2022 04 30.
Article in English | MEDLINE | ID: mdl-36546233

ABSTRACT

The emulation of biological synapses with learning and memory functions and versatile plasticity is significantly promising for neuromorphic computing systems. Here, a robust and continuously adjustable mechanoplastic semifloating-gate transistor is demonstrated based on an integrated graphene/hexagonal boron nitride/tungsten diselenide van der Waals heterostructure and a triboelectric nanogenerator (TENG). The working states (p-n junction or n+-n junction) can be manipulated and switched under the sophisticated modulation of triboelectric potential derived from mechanical actions, which is attributed to carriers trapping and detrapping in the graphene layer. Furthermore, a reconfigurable artificial synapse is constructed based on such mechanoplastic transistor that can simulate typical synaptic plasticity and implement dynamic control correlations in each response mode by further designing the amplitude and duration. The artificial synapse can work with ultra-low energy consumption at 74.2 fJ per synaptic event and the extended synaptic weights. Under the synergetic effect of the semifloating gate, the synaptic device can enable successive mechanical facilitation/depression, short-/long-term plasticity and learning-experience behavior, exhibiting the mechanical behavior derived synaptic plasticity. Such reconfigurable and mechanoplastic features provide an insight into the applications of energy-efficient and real-time interactive neuromodulation in the future artificial intelligent system beyond von Neumann architecture.


Subject(s)
Graphite , Graphite/analysis , Synapses/chemistry , Artificial Intelligence , Learning
5.
Se Pu ; 40(10): 889-899, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36222252

ABSTRACT

Many solid-phase microextraction (SPME) sorbents have been developed from aerogels because of their low densities, large surface areas, and high porosities. Melamine-formaldehyde (MF) aerogel, made from melamine and formaldehyde by a sol-gel reaction, is one of the typical organic aerogels. MF aerogel has better mechanical strength, chemical stability and extraction performance than inorganic aerogels. The performance of the aerogel is limited in some fields, while composite aerogels can meet different requirements such as good mechanical strength and strong adsorption performance. Graphene oxide (GO) is a two-dimensional nanomaterial composed of a single layer of carbon atoms and provides π-π interaction by a large π-electron. In addition, the oxygen-containing groups at the edge of the lamellar structure improve the hydrophilicity of the material and can interact with various compounds. To improve the extraction performance of MF aerogel for polycyclic aromatic hydrocarbons (PAHs), GO/MF aerogels were prepared by functionalizing MF aerogel with GO. In this study, 1.2612 g of melamine and 80 mg of sodium carbonate were dissolved in 30 mL of water, and the mixture was heated to 80 ℃ under stirring. Then, 2.8 mL formaldehyde solution (37%) was slowly added, and a clear solution was obtained gradually. Next, 50 mg of GO powder was ultrasonically dispersed in 10.0 mL of water and evenly mixed with the above solution. After adjusting the pH to 1.5, the sol-gel process was performed for 48 h, then the gel was aged at room temperature for 24 h. The gel was then soaked in ethanol, acetone, and cyclohexane in turn to replace the solvent. Finally, the GO/MF aerogel was obtained by freeze-drying for 24 h. The GO/MF aerogel was characterized by scanning electron microscopy (SEM) and X-ray photoelectric spectroscopy (XPS), confirming that GO was successfully introduced into MF aerogel, while retaining its three-dimensional network and porous structure. GO/MF aerogel was coated onto the surface of a stainless steel wire to be used as sorbent. Four such wires were placed into a polyetheretherketone (PEEK) tube (0.75 mm i. d., 30 cm length) for in-tube (IT) SPME. The tube was combined with a high-performance liquid chromatography (HPLC) unit to construct an IT-SPME-HPLC online system. When the six-way valve was in the Load state, sample solution achieved online enrichment with analytes while it flowed through the extraction tube. After extraction, the valve was turned to the Inject state, and the analytes were eluted into the chromatographic column by the mobile phase at a flow rate of 1.0 mL/min for separation and detection with the detector. Under the same extraction conditions (sampling volume=30 mL, sampling rate=1.00 mL/min, and concentration of polycyclic aromatic hydrocarbons (PAHs, viz. naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorine (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla) and pyrene (Pyr))=5.00 µg/L), GO/MF aerogel-based tube was compared with that of MF aerogel-based tube. GO enhanced the enrichment efficiency of MF aerogel towards PAHs from 1.1 to 2.5 times, due to the increased number of adsorption sites and enhanced π-π interaction with PAHs. IT-SPME was affected by the sampling volume, sampling rate, concentration of organic solvent in sample, desorption solvent, desorption rate, and desorption time. To obtain accurate results, the main extraction and desorption conditions (sampling volume, sampling rate, organic solvent concentration, desorption time) were investigated carefully. As the sampling volume in the extraction tube was increased, the extraction efficiency was found to increase gradually until saturation. In this study, the extraction efficiency was investigated for sampling volumes ranging from 30 to 80 mL, and 70 mL was selected as a suitable sampling volume to achieve satisfactory extraction efficiency. The sampling rate affects not only the extraction efficiency, but also the extraction time. When the sample flows through the extraction tube at a low rate, it requires a long test time. Although the increase in sampling rate reduces the extraction time, it often decreases extraction efficiency. In addition, large sampling rate leads to high pressure in the tube, which in turn reduces the service life of the tube. Therefore, the effect of sampling rate (1.25-2.50 mL/min) on extraction efficiency was investigated, and good extraction efficiency and short test time were achieved when the sampling rate was 2 mL/min. High hydrophobic PAHs have poor solubility in water. An appropriate amount of organic solvent in the sample solution can improve the solubility of PAHs to obtain accurate analytical results. However, the extraction efficiency was affected by the added organic solvent. Thus, the effect of volume fraction of methanol (0, 0.5%, 1%, 2%, 3%, and 5%, v/v) on the extraction efficiency was investigated. The sample solution without methanol afforded better extraction efficiency and satisfactory repeatability. After online extraction, the desorption directly affects the desorption efficiency. The peak areas of the eight PAHs were investigated with different desorption times (0.2, 0.4, 0.6, 0.8, 1.0, and 2.0 min), and a desorption time of 2.0 min was required to fully desorb all analytes and reduce their residuals. The IT-SPME-HPLC-DAD method was established under the optimized conditions, and the limits of detection (LODs), linear equations, linear ranges, and correlation coefficients were obtained. The LODs of the eight PAHs were in the range of 0.001-0.005 µg/L, the quantitative ranges of the analytes were 0.003-15.0 µg/L for Fla and Pyr, 0.010-20.0 µg/L for Phe and Ant, and 0.017-20.0 µg/L for Nap, Acy, Ace and Flu, the enrichment factors were in the range of 2029-2875, and the analytical precision was satisfactory (intra-day RSD%≤4.8%, and inter-day RSD≤8.6%). Compared with some reported methods, the method reported herein provided higher sensitivity, wider linear range, and shorter test time. This method was applied to the detection of PAHs in common drinking water, including bottled mineral water and water from drinking fountain. The satisfactory recovery (76.3%-132.8%) obtained proves that the method is suitable for the determination of trace PAHs in real water samples, with high sensitivity, rapid testing, online detection, and good accuracy. The extraction tube also exhibited satisfactory durability and chemical stability.


Subject(s)
Drinking Water , Graphite , Mineral Waters , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Acenaphthenes/analysis , Acetone/analysis , Anthracenes/analysis , Cyclohexanes/analysis , Drinking Water/analysis , Ethanol/analysis , Fluorine/analysis , Formaldehyde/analysis , Graphite/analysis , Methanol/analysis , Oxygen/analysis , Phenanthrenes/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Powders , Pyrenes/analysis , Solid Phase Microextraction/methods , Solvents/analysis , Stainless Steel/analysis , Triazines
6.
Mater Horiz ; 9(9): 2335-2344, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35820170

ABSTRACT

Synaptic transistors that accommodate concurrent signal transmission and learning in a neural network are attracting enormous interest for neuromorphic sensory processing. To remove redundant sensory information while keeping important features, artificial synaptic transistors with non-linear conductance are desired to apply filter processing to sensory inputs. Here, we report the realization of non-linear synapses using a two-dimensional van der Waals (vdW) heterostructure (MoS2/h-BN/graphene) based float gate memory device, in which the semiconductor channel is tailored via a surface acceptor (ZnPc) for subthreshold operation. In addition to usual synaptic plasticity, the memory device exhibits highly non-linear conductance (rectification ratio >106), allowing bidirectional yet only negative/inhibitory current to pass through. We demonstrate that in a lateral coupling network, such a float gate memory device resembles the key lateral inhibition function of horizontal cells for the formation of an ON-center/OFF-surround receptive field. When combined with synaptic plasticity, the lateral inhibition weights are further tunable to enable adjustable edge enhancement for early visual processing. Our results here hopefully open a new scheme toward early sensory perception via lateral inhibitory synaptic transistors.


Subject(s)
Graphite , Synapses , Graphite/analysis , Neural Networks, Computer , Neuronal Plasticity , Synapses/chemistry , Visual Perception
7.
Anal Chem ; 94(22): 7892-7900, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35609256

ABSTRACT

This work presents a fully disposable microchamber for gas generation of a sample solution. The microchamber consists of a cylindrical well-reactor and a paper-based microfluidic lid (µFluidic lid), which also serves as the reagent loading and dispensing unit. The base of the reactor consists of a hydrophobic membrane covering an in-house graphene electrochemical gas sensor. Fabrication of the gas sensor and the three-layer µFluidic lid is described. The µFluidic lid is designed to provide a steady addition of the acid reagent into the sample solution instead of liquid drops from a disposable syringe. There are three steps in the procedure: (i) acidification of the sample in the reactor to generate SO2 gas by the slow dispensing of the acid reagent from the µFluidic lid, (ii) diffusion of the liberated SO2 gas through the hydrophobic membrane at the base of the reactor, and (iii) in situ detection of SO2 by cathodic reduction at the graphene electrode. The device was demonstrated for quantitation of the sulfite preservative in wine without heating or stirring. The selectivity of the analysis is ensured by the combination of the gas-diffusion membrane and the selectivity of the electrochemical sensor. The linear working range is 2-60 mg L-1 SO2, with a limit of detection (3SD of intercept/slope) of 1.5 mg L-1 SO2. This in situ method has the shortest analysis time (8 min per sample) among all voltammetric methods that detect SO2(g) via membrane gas diffusion.


Subject(s)
Graphite , Wine , Electrodes , Graphite/analysis , Microfluidics , Sulfites/analysis , Wine/analysis
8.
Environ Sci Pollut Res Int ; 29(15): 21826-21838, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34767177

ABSTRACT

An analytical method of simultaneous detection of ten insecticide residues in honey and pollen was established. The samples were purified with QuEChERS approach using new adsorbents and analyzed with UPLC-MS/MS. The results showed that both of graphene and carbon nanotubes were highly efficient adsorbents for the dSPE clean up to eliminate coextractives in the samples, and graphene was superior to carbon nanotubes for the detection of pesticide residues in honey and pollen samples. The proposed method was used to detect pesticide residues in 25 honey samples and 30 pollen samples which were randomly collected from more than ten provinces in China. All honey samples contain 1-27 µg/kg of chlorpyrifos residues. Only 4% of the honey samples were detected containing acetamiprid and imidacloprid, while the other seven pesticides were not detected. Chlorpyrifos residues were found in all pollen samples (5-66 µg/kg), among which twenty percent exceeded the maximum residue limits (MRLs, 50 µg/kg, European Commission Regulation). Most of the pollen samples containing pesticide concentrations higher than MRLs were collected from rape, followed by lotus, camellia, and rose. Besides, 36.7% and 33.3% of the pollen samples had imidacloprid and flupyradifurone higher than 5 µg/kg. A total of 26.7% pollen samples were detected containing bifenthrin, while none of the other six pesticides were detected in pollen samples.


Subject(s)
Graphite , Honey , Insecticides , Nanotubes, Carbon , Pesticide Residues , Adsorption , Chromatography, High Pressure Liquid , Chromatography, Liquid , Graphite/analysis , Honey/analysis , Insecticides/analysis , Nanotubes, Carbon/analysis , Pesticide Residues/analysis , Pollen/chemistry , Tandem Mass Spectrometry
9.
PLoS One ; 16(3): e0247051, 2021.
Article in English | MEDLINE | ID: mdl-33657163

ABSTRACT

An in-depth study on the characteristics of coke in the hearths of blast furnaces is of great significance for explaining the mechanism of coke deterioration in blast furnaces. In the present work, the changes in macromorphology, degree of graphitization, and microstructure of the coke taken from different hearth locations of a 5,800 m3 superlarge blast furnace during its intermediate repair period were systematically studied. Significant differences were found between cokes obtained from the edge ("edge coke") and from the center ("center coke") of the hearth in terms of properties and degradation mechanisms. Edge coke was severely eroded by liquid metal, and only a small amount of slag was detected in the coke porosity, whereas center coke was basically free from erosion by liquid metal, and a large amount of slag was detected in the coke porosity. The degree of graphitization of edge coke was higher than that of center coke. The carburizing effect of liquid metal was the main cause of the degradation of edge coke and made it smaller or even disappear. Center coke was degraded due to the combination of two factors: slag inserted into micropores on the surface of center coke loosened the surface structure; and graphite-like flakes that appeared on the center coke surface lowered the strength and caused cracks in the surface.


Subject(s)
Coke/analysis , Graphite/analysis , China , Metallurgy , Microscopy, Electron, Scanning , Microscopy, Polarization , Particle Size , X-Ray Diffraction
10.
Geobiology ; 19(3): 218-227, 2021 05.
Article in English | MEDLINE | ID: mdl-33624944

ABSTRACT

Metasedimentary rocks from Isua, West Greenland (> 3,700 million years old) contain carbonaceous compounds, compatible with a biogenic origin (Hassenkam, Andersson, Dalby, Mackenzie, & Rosing, 2017; Ohtomo, Kakegawa, Ishida, Nagase, & Rosing, 2014; Rosing, 1999). The metamorphic mineral assemblage with garnet and quartz intergrowths contains layers of carbonaceous inclusions contiguous with carbon-rich sedimentary beds in the host rock. Previous studies (Hassenkam et al., 2017; Ohtomo et al., 2014; Rosing, 1999) on Isua rocks focused on testing the biogenic origin of the carbonaceous material, but here we searched for evidence which could provide new insights into the nature of the life that generated this carbonaceous material. We studied material trapped in inclusions armoured within quartz grains inside garnet porphyroblasts by non-destructive ptychographic X-ray nanotomography (PXCT). The 3D electron density maps generated by PXCT were correlated with maps from X-ray fluorescence tomography and micro-Raman spectroscopy. We found that the material trapped inside inclusions in the quartz grains consist of disordered carbon material encasing domains of iron-rich carbonaceous material. These results corroborate earlier claims (Hassenkam et al., 2017; Ohtomo et al., 2014; Rosing, 1999) for biogenic origins and are compatible with relics of metamorphosed biological material originally containing high iron/carbon ratios, comparable to ratios found in most extant organisms. These iron-rich domains represent the oldest evidence for organic iron complexes in the geologic record and are consistent with Fe-isotopic evidence for metabolic iron fractionation in > 3,700 Ma Isua banded iron formation (Czaja et al., 2013; Whitehouse & Fedo, 2007).


Subject(s)
Graphite , Geologic Sediments , Graphite/analysis , Greenland , Iron , Minerals/analysis
11.
Acta Medica (Hradec Kralove) ; 64(4): 213-217, 2021.
Article in English | MEDLINE | ID: mdl-35285443

ABSTRACT

INTRODUCTION: Analysis of the occurrence of cadmium and chromium in selected samples of fruit spirits intended for own consumption. MATERIAL AND METHODS: In our pilot study, we analysed 89 samples of fruit spirits intended for own consumption. The samples were mineralized with use of microwave decomposition system MULTIWAVE 60 50 Hz and analysed by atomic absorption spectrometry with a graphite furnace (AAS GBC XPLORAA 5000 with GF 5000). RESULTS: Most of the analysed samples originated from plums (39), apples (38) and pears (5). The average ethanol concentration was 53.7%. Cadmium and chromium were detected in all samples. The highest concentration of chromium and cadmium was found in the apple spirit (31.9 ± 6.6 µg/l and 40.1 ± 8.3 µg/l). CONCLUSIONS: The ethanol concentration in the samples was higher than in distribution spirits. Concentrations of chromium in all samples did not exceed the limit given by the Slovak legislation or the limit of the AMPHORA. The permissible cadmium concentration (10 µg/l according to the AMPHORA) was exceeded in 9 samples. This indicates the potential importance of cadmium compared to chromium. Due to the lack of information in this field, the study presents an important starting point for further research.


Subject(s)
Cadmium , Graphite , Cadmium/analysis , Chromium/analysis , Fruit/chemistry , Graphite/analysis , Graphite/chemistry , Pilot Projects , Spectrophotometry, Atomic/methods
12.
J Expo Sci Environ Epidemiol ; 31(4): 736-752, 2021 07.
Article in English | MEDLINE | ID: mdl-32546827

ABSTRACT

Today, engineered nanomaterials are frequently used. Nanosized titanium dioxide (TiO2) has been extensively used for many years and graphene is one type of emerging nanomaterial. Occupational airborne exposures to engineered nanomaterials are important to ensure safe workplaces and to extend the information needed for complete risk assessments. The main aim of this study was to characterize workplace emissions and exposure of graphene nanoplatelets, graphene oxide, TiO2 nanofibers (NFs) and nanoparticles (NPs) during down-stream industrial handling. Surface contaminations were also investigated to assess the potential for secondary inhalation exposures. In addition, a range of different sampling and aerosol monitoring methods were used and evaluated. The results showed that powder handling, regardless of handling graphene nanoplatelets, graphene oxide, TiO2 NFs, or NPs, contributes to the highest particle emissions and exposures. However, the exposure levels were below suggested occupational exposure limits. It was also shown that a range of different methods can be used to selectively detect and quantify nanomaterials both in the air and as surface contaminations. However, to be able to make an accurate determination of which nanomaterial that has been emitted a combination of different methods, both offline and online, must be used.


Subject(s)
Air Pollutants, Occupational , Graphite , Nanofibers , Nanoparticles , Occupational Exposure , Air Pollutants, Occupational/analysis , Environmental Monitoring , Graphite/analysis , Humans , Inhalation Exposure/analysis , Occupational Exposure/analysis , Particle Size , Titanium/analysis
13.
Biotechnol Appl Biochem ; 68(6): 1257-1270, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33016525

ABSTRACT

Nanoparticles are the magic bullets and at the leading edge in the field of nanotechnology, and their unique properties make these materials indispensable and superior in many areas, including the electronic field. Extensive applications of nanomaterials are incontrovertibly entering our living system. The increasing use of nanomaterials into the ecosystem is one of the crucial environmental factors that human being is facing. Nanomaterials raise noticeable toxicological concerns; particularly their accumulation in plants and the resultant toxicity may affect the food chain. Here, we analyzed the characterization of nanomaterials, such as graphene, Al2 O3 , TiO2 , and semi-insulating or conducting nanoparticles. Quantitative evaluation of the nanomaterials was conducted and their commercialization aspects were discussed. Various characterization techniques, scanning electron microscopy, X-ray diffraction, and ultraviolet rays were utilized to identify the morphology, phase, absorbance, and crystallinity. In addition, we analyzed the effects of nanomaterials on plants. The toxicity of nanoparticles has severe effects on loss of morphology of the plants. Potential mechanisms including physical and physiological effects were analyzed. In future studies, it is indispensable to assess widely accepted toxicity evaluation for safe production and use of nanomaterials.


Subject(s)
Aluminum Oxide/analysis , Graphite/analysis , Jasminum/chemistry , Nanoparticles/analysis , Titanium/analysis , Humans , Particle Size
14.
Nanotoxicology ; 14(9): 1280-1300, 2020 11.
Article in English | MEDLINE | ID: mdl-33125304

ABSTRACT

Few-Layers Graphene (FLG) are able to improve the performance of materials, due to their chemical-physical properties. Engineered amorphous silica nanoparticles (SiO2NPs) are among the most widespread nanomaterials (NMs) in the world. Such nanomaterials are two case studies of the research project 'NanoKey' that integrated the exposure assessment through personal measurements and sampling in the workplace, as described in the present work (part I), with the biomonitoring of exposed workers (reported in part II). Measurement campaigns were conducted according to OECD and WHO harmonized approach in two production sites. The set of instruments included real-time devices for high-resolution measurements at the nanoscale and time-integrated samplers for the off-line gravimetric analysis and chemical and morphological (SEM-EDS) characterization of exposure in order to identify the contribution of production compared to the background. Values of particle number concentration (PNC) and lung deposited surface area (LDSA) within the FLG production resulted higher than the background far field (FF), even if they are always similar to the near field (NF) ones: the average diameter (Davg) during the production was higher than the NF background but always lower than the FF values. SEM-EDS analysis highlighted the presence of structures comparable to those produced. During the SiO2NPs production, the PBZ values showed PNC and LDSA levels higher than the background, with a decrease in the Davg probably due to NPs emission. SEM-EDS confirms the presence of rare silica nanoparticles. Since the exposure to airborne NMs cannot be excluded in both production sites, a prevention-through-design approach to mitigate the potential risk for workers has been recommended.


Subject(s)
Air Pollutants, Occupational/analysis , Graphite/analysis , Inhalation Exposure/analysis , Nanoparticles/analysis , Occupational Exposure/analysis , Silicon Dioxide/analysis , Workplace/standards , Biological Monitoring/methods , Filaggrin Proteins , Humans , Italy , Laboratories/standards , Particle Size , Surface Properties
15.
Anal Chem ; 92(20): 13997-14005, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32856458

ABSTRACT

Recent research has revealed the use of graphene oxide (GO) and its derivatives as a potential biomaterial because of their attractive physicochemical characteristics and functional properties. However, if GO and related derivatives are to become useful materials for biomedical applications, it will be necessary to evaluate their biodistribution for health and safety considerations. To obtain a more accurate biodistribution for GO, we (i) developed a postadministration labeling strategy employing DNA-conjugated gold nanoparticles (DNA-AuNPs) to selectively label administered GO in Solvable-treated tissue samples and (ii) constructed an automatic sample pretreatment scheme (using a C18-packed minicolumn) to effectively separate the DNA-AuNP-labeled GO from the unbound DNA-AuNPs and the dissolved tissue matrices, thereby enabling ultrasensitive, interference-free quantification of GO through measurement (inductively coupled plasma mass spectrometry) of the Au signal intensities. The DNA-AuNPs can bind to GO in a concentration- and time-dependent manner. After optimizing the labeling conditions (DNA length, incubation pH, DNA-AuNP concentration, and incubation time) and the separation scheme (sample loading flow rate, rinsing volume, and eluent composition), we found that A20R20-AuNPs (R20: random DNA sequence including A, T, C, and G) had the strongest binding affinity for labeling of the administered GO (dissociation constant: 36.0 fM) and that the method's detection limit reached 9.3 ag L-1 with a calibration curve having a working range from 10-1 to 1010 fg L-1. Moreover, this approach revealed that the intravenously administered GO accumulated predominantly in the liver and spleen at 1 and 12 h post administration, with apparent discrepancies in the concentrations measured using pre- and postadministration labeling strategies.


Subject(s)
DNA/chemistry , Gold/chemistry , Graphite/analysis , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Animals , Graphite/administration & dosage , Graphite/pharmacokinetics , Limit of Detection , Male , Plasma Gases/chemistry , Rats , Rats, Sprague-Dawley , Tissue Distribution
16.
J Am Soc Mass Spectrom ; 31(5): 1025-1036, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32223237

ABSTRACT

Graphene-based nanoparticles are continuously being developed for biomedical applications, and their use raises concerns about their environmental and biological impact. In the literature, some imaging techniques based on fluorescence and radioimaging have been used to explore their fate in vivo. Here, we report on the use of label-free mass spectrometry and mass spectrometry imaging (MSI) for graphene oxide (GO) and reduced graphene oxide (rGO) analyses in rodent tissues. Thereby, we extend previous work by focusing on practical questions to obtain reliable and meaningful images. Specific radical anionic carbon clusters ranging from C2-• to C9-• were observed for both GO and rGO species, with a base peak at m/z 72 under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. Extension to an LDI-MSI method was then performed, thus enabling the efficient detection of GO nanoparticles in lung tissue sections of previously exposed mice. The possibility of quantifying those nanoparticles on tissue sections has also been investigated. Two different ways of building calibration curves (i.e., GO suspensions spotted on tissue sections, or added to lung tissue homogenates) were evaluated and returned similar results, with linear dynamic concentration ranges over at least 2 orders of magnitude. Moreover, intra- and inter-day precision studies have been assessed, with relative standard deviation below 25% for each concentration point of a calibration curve. In conclusion, our study confirms that LDI-MSI is a relevant approach for biodistribution studies of carbon-based nanoparticles, as quantification can be achieved, provided that nanoparticle suspension and manufacturing are carefully controlled.


Subject(s)
Graphite/analysis , Liver/chemistry , Lung/chemistry , Nanoparticles/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Female , Graphite/administration & dosage , Mice , Mice, Inbred BALB C
17.
Chemosphere ; 248: 125973, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32000037

ABSTRACT

Understanding transport behavior of graphitic carbon nitride (g-C3N4) in porous media plays an important role in preventing its possible causing the underground environmental problems. The transport behavior of g-C3N4 in porous media were investigated by packed column experiments at different flow rates, ionic strengths (ISs), pHs and multivalent cations. The experimental results showed that the transport ability of g-C3N4 decreased with the IS increasing, and most of the g-C3N4 was retained in the sand column for the IS greater than 0.0001 M. The flow rate had little effect on the transport behavior of g-C3N4, and the recovery of g-C3N4 increased slightly with increasing flow rate. In addition, the migration ability of g-C3N4 under acidic conditions was drastically reduced compared with neutral alkaline conditions. Moreover, it was found that 1.51%, 30.33%, 34.91%, and 60.54% of g-C3N4 was retained in the column when g-C3N4 was leached through the quartz sand column at Al3+, Ca2+, Mg2+, and K+, which was consistent with the Schulze-Hardy rule. Finally, FTIR spectrum showed that the infrared absorption peak of the g-C3N4 mixed quartz sand were shifted to certain degrees under different conditions, which confirmed that hydrogen bond was formed in the transport of carbon nitride with the quartz sand surface. This study provides a new perspective on the role of hydrogen bond in the transport and fate of nanomaterials.


Subject(s)
Graphite/chemistry , Models, Chemical , Nitrogen Compounds/chemistry , Graphite/analysis , Hydrodynamics , Nitriles , Nitrogen Compounds/analysis , Osmolar Concentration , Porosity , Quartz , Solutions
18.
Chemosphere ; 238: 124558, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31442772

ABSTRACT

Graphene-based nanomaterials (GNMs) have been touted as miracle materials due to their extraordinary properties that can benefit many industries, including in agriculture and for environmental remediation. While improvement in nutrient delivery and the ability to adsorb environmental contaminants have been demonstrated, what happens to GNMs in soil is a question that has not been addressed. The main aim of this study was to investigate their degradation in soil to have a better understanding of their environmental fate. Using radioisotope techniques, this study assessed the potential mineralisation and release of graphene oxide (GO), one of the most commonly used forms of graphene. Results revealed that the conversion of GO to carbon dioxide was negligible (<2%) in microbially-active soils. GO remaining in soil was also not readily released by water extractions. The lack of mineralisation and release is indicative of GO's high (bio)degradation stability which is likely due to its limited availability resulting from its rapid homo/hetero-aggregation. Over-all, the results provide new and important information on the environmental fate of graphene nanomaterials applied to soils.


Subject(s)
Carbon Dioxide/metabolism , Carbon Radioisotopes/analysis , Environmental Restoration and Remediation , Graphite/analysis , Minerals/metabolism , Nanostructures/administration & dosage , Soil/chemistry , Adsorption , Agriculture , Graphite/chemistry
19.
Anal Chem ; 92(2): 1948-1955, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31876141

ABSTRACT

Detection and quantification of carbon nanomaterials are extremely challenging, especially under the background interference of carbon. Here, we propose a new label-free method to quantify, track, and in situ image graphene and graphene oxide (GO) in plants based on their inherent metallic impurities as fingerprints. We show the ubiquity and high stability of inherent metallic fingerprints of graphene and GO obtained from different exposure routes under the natural environments, which enables the materials to be easily quantified and in situ imaged by high-sensitivity (laser ablation) inductively coupled plasma mass spectrometry. The method was applied to investigate the uptake and spatial distribution of graphene and GO in soybean plants. The plants were cultivated in graphene or GO solutions for 7 days, and the indicative elements (Ni or Mn) in different parts of plants were monitored and imaged. We found that graphene and GO showed different distribution patterns in plants (the highest uptake percentages in root up to 14.4% for graphene and 47.8% for GO), and high concentration of material exposure might cause excessive accumulation of materials in roots which blocked their further transport to the other parts of plants. The present method is more straightforward, accessible, and economical than normally used isotopic or metal-labeling methods. It also avoids the uncertainties or alterations of properties caused by the labeling process and thus has great promise in analysis and risk assessment of carbon nanomaterials.


Subject(s)
Glycine max/chemistry , Graphite/analysis , Mass Spectrometry/methods , Gold/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry
20.
Chemosphere ; 241: 125084, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31627111

ABSTRACT

In this study, high quality Magnéli phase Ti4O7 bulks with electrical conductivity up to 961.5 S cm-1 were successfully prepared by spark plasma sintering (SPS) and then served as electrode materials for electrochemical oxidation of azo dye methyl orange (MO). The influences of current density and initial dye concentration on the removal rates of MO and chemical oxygen demand (COD) were studied. Removal of MO and COD exhibited an increase with increasing current density and decreasing initial concentration of MO. Complete removal of MO was realized within a short time under all experimental conditions. The removal rate of COD reached 91.7% when current density was 10 mA cm-2 and initial dye concentration was 100 mg L-1. In addition, the electrochemical oxidation rate could be described through a pseudo-first-order kinetic constant k, and the obtained experimental results could be well fitted with a proposed kinetic model in all the examined conditions. Possible degradation mechanisms for electrochemical oxidation of MO by Ti4O7 electrode were proposed on the basis of intermediate products analysis. Tests were also conducted with other commercial electrodes for comparison, including commercial graphite, stainless-steel and dimension stable anode (DSA) electrodes. The results showed that Ti4O7 anode exhibited the fastest electrochemical oxidation rates than those of the other electrodes. This study provides a feasible method for realizing high efficiency of electrochemical oxidation degradation by Ti4O7 electrode.


Subject(s)
Azo Compounds/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Electrodes , Graphite/analysis , Kinetics , Oxidation-Reduction , Titanium/analysis , Titanium/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...