Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Bone Miner Res ; 38(4): 568-577, 2023 04.
Article in English | MEDLINE | ID: mdl-36744814

ABSTRACT

Multiple synostoses syndromes (SYNS) are a group of rare genetic bone disorders characterized by multiple joint fusions. We previously reported an SYNS4-causing GDF6 c.1330 T > A (p.Tyr444Asn) mutation, which reduced Noggin-induced GDF6 inhibition and enhanced SMAD1/5/8 signaling. However, the mechanisms by which GDF6 gain-of-function mutation alters joint formation and the comprehensive molecular portraits of SYNS4 remain unclear. Herein, we introduce the p.Tyr443Asn (orthologous to the human GDF6 p.Tyr444Asn) mutation into the mouse Gdf6 locus and report the results of extensive phenotype analysis, joint development investigation, and transcriptome profiling of Gdf6 p.Tyr443Asn limb buds. Gdf6 p.Tyr443Asn knock-in mice recapitulated the morphological features of human SYNS4, showing joint fusion in the wrists, ankles, phalanges, and auditory ossicles. Analysis of mouse embryonic forelimbs demonstrated joint interzone formation defects and excess chondrogenesis in Gdf6 p.Tyr443Asn knock-in mice. Further, RNA sequencing of forelimb buds revealed enhanced bone formation and upregulated bone morphogenetic protein (BMP) signaling in mice carrying the Gdf6 p.Tyr443Asn mutation. Because tightly regulated BMP signaling is critical for skeletal development and joint morphogenesis, our study shows that enhancing GDF6 activity has a significant impact on both prenatal joint development and postnatal joint maintenance. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Morphogenetic Proteins , Growth Differentiation Factor 6 , Synostosis , Animals , Humans , Mice , Bone and Bones/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Mutation/genetics , Synostosis/genetics
2.
Genes (Basel) ; 13(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35885978

ABSTRACT

The human capacity to speak is fundamental to our advanced intellectual, technological and social development. Yet so very little is known regarding the evolutionary genetics of speech or its relationship with the broader aspects of evolutionary development in primates. In this study, we describe a large family with evolutionary retrograde development of the larynx and wrist. The family presented with severe speech impairment and incremental retrograde elongations of the pisiform in the wrist that limited wrist rotation from 180° to 90° as in primitive primates. To our surprise, we found that a previously unknown primate-specific gene TOSPEAK had been disrupted in the family. TOSPEAK emerged de novo in an ancestor of extant primates across a 540 kb region of the genome with a pre-existing highly conserved long-range laryngeal enhancer for a neighbouring bone morphogenetic protein gene GDF6. We used transgenic mouse modelling to identify two additional GDF6 long-range enhancers within TOSPEAK that regulate GDF6 expression in the wrist. Disruption of TOSPEAK in the affected family blocked the transcription of TOSPEAK across the 3 GDF6 enhancers in association with a reduction in GDF6 expression and retrograde development of the larynx and wrist. Furthermore, we describe how TOSPEAK developed a human-specific promoter through the expansion of a penta-nucleotide direct repeat that first emerged de novo in the promoter of TOSPEAK in gibbon. This repeat subsequently expanded incrementally in higher hominids to form an overlapping series of Sp1/KLF transcription factor consensus binding sites in human that correlated with incremental increases in the promoter strength of TOSPEAK with human having the strongest promoter. Our research indicates a dual evolutionary role for the incremental increases in TOSPEAK transcriptional interference of GDF6 enhancers in the incremental evolutionary development of the wrist and larynx in hominids and the human capacity to speak and their retrogression with the reduction of TOSPEAK transcription in the affected family.


Subject(s)
Growth Differentiation Factor 6 , Speech , Animals , Biological Evolution , Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Humans , Mice , Primates/genetics , Regulatory Sequences, Nucleic Acid
3.
Genes (Basel) ; 12(9)2021 08 29.
Article in English | MEDLINE | ID: mdl-34573339

ABSTRACT

Multiple synostoses syndrome type 4 (SYNS4; MIM 617898) is an autosomal dominant disorder characterized by carpal-tarsal coalition and otosclerosis-associated hearing loss. SYSN4 has been associated with GDF6 gain-of-function mutations. Here we report a five-generation SYNS4 family with a reduction in GDF6 expression resulting from a chromosomal breakpoint 3' of GDF6. A 30-year medical history of the family indicated bilateral carpal-tarsal coalition in ~50% of affected family members and acquired otosclerosis-associated hearing loss in females only, whereas vertebral fusion was present in all affected family members, most of whom were speech impaired. All vertebral fusions were acquired postnatally in progressive fashion from a very early age. Thinning across the 2nd cervical vertebral interspace (C2-3) in the proband during infancy progressed to block fusion across C2-7 and T3-7 later in life. Carpal-tarsal coalition and pisiform expansion were bilaterally symmetrical within, but varied greatly between, affected family members. This is the first report of SYNS4 in a family with reduced GDF6 expression indicating a prenatal role for GDF6 in regulating development of the joints of the carpals and tarsals, the pisiform, ears, larynx, mouth and face and an overlapping postnatal role in suppression of aberrant ossification and synostosis of the joints of the inner ear (otosclerosis), larynx and vertebrae. RNAseq gene expression analysis indicated >10 fold knockdown of NOMO3, RBMXL1 and NEIL2 in both primary fibroblast cultures and fresh white blood cells. Together these results provide greater insight into the role of GDF6 in skeletal joint development.


Subject(s)
Growth Differentiation Factor 6/genetics , Speech Disorders/genetics , Synostosis/diagnostic imaging , Synostosis/etiology , Adolescent , Adult , Child , Female , Gene Expression , Humans , Male , Pedigree , Speech Disorders/etiology , Syndrome , Synostosis/genetics , Young Adult
4.
Genes (Basel) ; 12(8)2021 08 23.
Article in English | MEDLINE | ID: mdl-34440463

ABSTRACT

Exogenous siRNAs are commonly used to regulate endogenous gene expression levels for gene function analysis, genotype-phenotype association studies and for gene therapy. Exogenous siRNAs can target mRNAs within the cytosol as well as nascent RNA transcripts within the nucleus, thus complicating siRNA targeting specificity. To highlight challenges in achieving siRNA target specificity, we targeted an overlapping gene set that we found associated with a familial form of multiple synostosis syndrome type 4 (SYSN4). In the affected family, we found that a previously unknown non-coding gene TOSPEAK/C8orf37AS1 was disrupted and the adjacent gene GDF6 was downregulated. Moreover, a conserved long-range enhancer for GDF6 was found located within TOSPEAK which in turn overlapped another gene which we named SMALLTALK/C8orf37. In fibroblast cell lines, SMALLTALK is transcribed at much higher levels in the opposite (convergent) direction to TOSPEAK. siRNA targeting of SMALLTALK resulted in post transcriptional gene silencing (PTGS/RNAi) of SMALLTALK that peaked at 72 h together with a rapid early increase in the level of both TOSPEAK and GDF6 that peaked and waned after 24 h. These findings indicated the following sequence of events: Firstly, the siRNA designed to target SMALLTALK mRNA for RNAi in the cytosol had also caused an early and transient transcriptional interference of SMALLTALK in the nucleus; Secondly, the resulting interference of SMALLTALK transcription increased the transcription of TOSPEAK; Thirdly, the increased transcription of TOSPEAK increased the transcription of GDF6. These findings have implications for the design and application of RNA and DNA targeting technologies including siRNA and CRISPR. For example, we used siRNA targeting of SMALLTALK to successfully restore GDF6 levels in the gene therapy of SYNS4 family fibroblasts in culture. To confidently apply gene targeting technologies, it is important to first determine the transcriptional interference effects of the targeting reagent and the targeted gene.


Subject(s)
Enhancer Elements, Genetic/genetics , Growth Differentiation Factor 6/genetics , Proteins/genetics , RNA, Antisense/genetics , Synostosis/genetics , Gene Expression Regulation/genetics , Gene Silencing , Gene Targeting , Humans , Phenotype , RNA Interference , RNA, Double-Stranded/therapeutic use , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Synostosis/pathology , Synostosis/therapy , Transcription, Genetic/genetics
5.
Adv Sci (Weinh) ; 8(18): e2004629, 2021 09.
Article in English | MEDLINE | ID: mdl-34319658

ABSTRACT

Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.


Subject(s)
Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Neovascularization, Pathologic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Adult , Female , Gene Expression/genetics , Humans , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Signal Transduction/genetics
6.
Arterioscler Thromb Vasc Biol ; 41(2): 698-710, 2021 02.
Article in English | MEDLINE | ID: mdl-33054395

ABSTRACT

OBJECTIVE: The superoxide-generating Nox2 (NADPH oxidase-2) is expressed in multiple cell types. Previous studies demonstrated distinct roles for cardiomyocyte, endothelial cell, and leukocyte cell Nox2 in ANG II (angiotensin II)-induced cardiovascular remodeling. However, the in vivo role of fibroblast Nox2 remains unclear. Approach and Results: We developed a novel mouse model with inducible fibroblast-specific deficiency of Nox2 (fibroblast-specific Nox2 knockout or Fibro-Nox2KO mice) and investigated the responses to chronic ANG II stimulation. Fibro-Nox2KO mice showed no differences in basal blood pressure or vessel wall morphology, but the hypertensive response to ANG II infusion (1.1 mg/[kg·day] for 14 days) was substantially reduced as compared to control Nox2-Flox littermates. This was accompanied by a significant attenuation of aortic and resistance vessel remodeling. The conditioned medium of ANG II-stimulated primary fibroblasts induced a significant increase in vascular smooth muscle cell growth, which was inhibited by the short hairpin RNA (shRNA)-mediated knockdown of fibroblast Nox2. Mass spectrometric analysis of the secretome of ANG II-treated primary fibroblasts identified GDF6 (growth differentiation factor 6) as a potential growth factor that may be involved in these effects. Recombinant GDF6 induced a concentration-dependent increase in vascular smooth muscle cell growth while chronic ANG II infusion in vivo significantly increased aortic GDF6 protein levels in control mice but not Fibro-Nox2KO animals. Finally, silencing GDF6 in fibroblasts prevented the induction of vascular smooth muscle cell growth by fibroblast-conditioned media in vitro. CONCLUSIONS: These results indicate that fibroblast Nox2 plays a crucial role in the development of ANG II-induced vascular remodeling and hypertension in vivo. Mechanistically, fibroblast Nox2 may regulate paracrine signaling to medial vascular smooth muscle cells via factors, such as GDF6.


Subject(s)
Fibroblasts/enzymology , Hypertension/enzymology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , NADPH Oxidase 2/metabolism , Paracrine Communication , Vascular Remodeling , Angiotensin II , Animals , Aorta/metabolism , Aorta/pathology , Aorta/physiopathology , Blood Pressure , Cells, Cultured , Disease Models, Animal , Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Hypertension/chemically induced , Hypertension/genetics , Hypertension/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , NADPH Oxidase 2/genetics , Signal Transduction
7.
Eur J Hum Genet ; 28(12): 1681-1693, 2020 12.
Article in English | MEDLINE | ID: mdl-32737436

ABSTRACT

Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.


Subject(s)
Growth Differentiation Factor 6/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Adolescent , Adult , Animals , Cell Line , Child , Child, Preschool , Female , Growth Differentiation Factor 6/metabolism , Heterozygote , Humans , Infant , Kidney Tubules/abnormalities , Kidney Tubules/metabolism , Male , Mice , Mutation , Urogenital Abnormalities/pathology , Vesico-Ureteral Reflux/pathology , Xenopus
8.
J Clin Invest ; 130(8): 4213-4217, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32369452

ABSTRACT

Molecular mechanisms governing the development of the mammalian cochlea, the hearing organ, remain largely unknown. Through genome sequencing in 3 subjects from 2 families with nonsyndromic cochlear aplasia, we identified homozygous 221-kb and 338-kb deletions in a noncoding region on chromosome 8 with an approximately 200-kb overlapping section. Genomic location of the overlapping deleted region started from approximately 350 kb downstream of GDF6, which codes for growth and differentiation factor 6. Otic lineage cells differentiated from induced pluripotent stem cells derived from an affected individual showed reduced expression of GDF6 compared with control cells. Knockout of Gdf6 in a mouse model resulted in cochlear aplasia, closely resembling the human phenotype. We conclude that GDF6 plays a necessary role in early cochlear development controlled by cis-regulatory elements located within an approximately 500-kb region of the genome in humans and that its disruption leads to deafness due to cochlear aplasia.


Subject(s)
Chromosomes, Human, Pair 8 , Cochlea , Cochlear Diseases , Growth Differentiation Factor 6 , Response Elements , Animals , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Cochlea/embryology , Cochlea/pathology , Cochlear Diseases/embryology , Cochlear Diseases/genetics , Cochlear Diseases/pathology , Female , Growth Differentiation Factor 6/biosynthesis , Growth Differentiation Factor 6/genetics , Humans , Male , Mice , Mice, Transgenic
9.
Invest Ophthalmol Vis Sci ; 61(4): 9, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32293666

ABSTRACT

Purpose: Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods: Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results: Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions: GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.


Subject(s)
Growth Differentiation Factor 6/genetics , Morphogenesis/genetics , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Zebrafish Proteins/genetics , Zebrafish/abnormalities , Animals , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental/genetics , In Situ Hybridization , Larva , Microscopy, Confocal , Microscopy, Electron, Transmission , Mutation/genetics , Paraffin Embedding , Real-Time Polymerase Chain Reaction , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Rod Photoreceptor Cells/ultrastructure , Zebrafish/genetics
10.
Reproduction ; 159(5): 525-537, 2020 05.
Article in English | MEDLINE | ID: mdl-32045359

ABSTRACT

Missed abortion (MA) is a common disease in obstetrics and gynecology. More and more studies have focused on the relationship between miRNAs and pregnancy maintenance and its related diseases. The aim of this article is to explore the relationship between miRNA and MA. The expression of miR-98 were detected by in situ hybridization and real-time PCR. Cell proliferation, activity and migration were measured via Edu, MTT, and transwell assays. The target genes of miR-98 are identified by dual-luciferase activity assay. And the expression levels of target genes were determined by Western blot, real-time PCR and immunohistochemistry. miR-98 was significantly up-regulated in placental villi from over 35 years old MA patients compared with the age-matched normal pregnant women. Up-regulation of miR-98 suppressed the proliferation, activity and migration of the human trophoblast HTR-8/SVneo cell in vitro. miR-98 could bind to GDF6 and FAPP2 mRNA 3'-UTR and negatively regulate their expression. The downregulation of miR-98 promoted cell proliferation, then knockdown of GDF6 or FAPP2 inhibited miR-98-mediated cell proliferation. GDF6 and FAPP2 expression in the placental villi from MA patients were decreased compared to normal placental tissues. The expression of miR-98 in MA had an opposite relationship with the expression of GDF6 and FAPP2. Overexpression of miR-98 is associated with the occurrence of MA. miR-98 prevents proliferation, viability and migration of trophoblast cells partially through targeting GDF6 and FAPP2.


Subject(s)
Abortion, Missed/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Growth Differentiation Factor 6/metabolism , MicroRNAs/metabolism , Trophoblasts/metabolism , Abortion, Missed/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Cell Line , Female , Growth Differentiation Factor 6/genetics , Humans , MicroRNAs/genetics , Placenta/metabolism , Pregnancy , Up-Regulation
11.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868592

ABSTRACT

Preventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.


Subject(s)
Bone Morphogenetic Proteins/genetics , Growth Differentiation Factor 6/genetics , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Zebrafish Proteins/genetics , Animals , Bone Morphogenetic Proteins/antagonists & inhibitors , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Ligands , Melanocytes/pathology , Neoplasms/genetics , Neoplasms/pathology , Neural Crest/growth & development , Neural Crest/metabolism , Pigmentation/genetics , Signal Transduction/genetics , Zebrafish/genetics , Zebrafish/growth & development
12.
PLoS Genet ; 14(3): e1007246, 2018 03.
Article in English | MEDLINE | ID: mdl-29522511

ABSTRACT

The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/genetics , Coloboma/embryology , Coloboma/genetics , Cytochrome P-450 CYP1B1/genetics , Eye/embryology , Adult , Animals , Animals, Genetically Modified , Bone Morphogenetic Protein Receptors, Type I/metabolism , Chick Embryo , Embryo, Nonmammalian , Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Humans , Infant , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
13.
J Clin Invest ; 128(1): 294-308, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29202482

ABSTRACT

Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Growth Differentiation Factor 6/metabolism , Melanoma/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Animals , Bone Morphogenetic Proteins/genetics , Cell Line, Tumor , Female , Growth Differentiation Factor 6/genetics , HEK293 Cells , Humans , Ligands , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Neoplasm Proteins/genetics
14.
Am J Med Genet A ; 176(1): 225-229, 2018 01.
Article in English | MEDLINE | ID: mdl-29130651

ABSTRACT

A mutation in GDF6 was recently found to underlie a multiple synostoses syndrome. In this report, we describe the second family with GDF6-related multiple synostoses syndrome (SYNS4), caused by a novel c.1287C>A/p.Ser429Arg mutation in GDF6. In addition to synostoses of carpal and/or tarsal bones, at least 6 of 10 affected patients in this family have been diagnosed with mild to moderate hearing loss. In four of them otosclerosis was said to be present, one patient had hearing loss due to severe stapes fixation at the age of 6 years, providing evidence that hearing loss in the GDF6-related multiple synostoses syndrome can be present in childhood. Two others had surgery for stapes fixation at adult age. We hypothesize that, identical to the recently published GDF6-related multiple synostoses family, the p.Ser429Arg mutation also leads to a gain of function. The previously reported c.1330T>A/pTyr444Asn mutation was located in a predicted Noggin and receptor I interacting domain and the gain of function was partly due to resistance of the mutant GDF6 to the BMP-inhibitor Noggin. The results in our family show that mutations predicting to affect the type II receptor interface can lead to a similar phenotype and that otosclerosis presenting in childhood can be part of the GDF6-related multiple synostoses syndrome.


Subject(s)
Abnormalities, Multiple , Growth Differentiation Factor 6/genetics , Mutation , Phenotype , Synostosis/diagnosis , Synostosis/genetics , Aged , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Male , Pedigree , Radiography
15.
Arterioscler Thromb Vasc Biol ; 38(2): 353-362, 2018 02.
Article in English | MEDLINE | ID: mdl-29284606

ABSTRACT

OBJECTIVE: The assembly of a functional vascular system requires a coordinated and dynamic transition from activation to maturation. High vascular endothelial growth factor activity promotes activation, including junction destabilization and cell motility. Maturation involves junctional stabilization and formation of a functional endothelial barrier. The identity and mechanism of action of prostabilization signals are still mostly unknown. Bone morphogenetic protein receptors and their ligands have important functions during embryonic vessel assembly and maturation. Previous work has suggested a role for growth differentiation factor 6 (GDF6; bone morphogenetic protein 13) in vascular integrity although GDF6's mechanism of action was not clear. Therefore, we sought to further explore the requirement for GDF6 in vascular stabilization. APPROACH AND RESULTS: We investigated the role of GDF6 in promoting endothelial vascular integrity in vivo in zebrafish and in cultured human umbilical vein endothelial cells in vitro. We report that GDF6 promotes vascular integrity by counteracting vascular endothelial growth factor activity. GDF6-deficient endothelium has increased vascular endothelial growth factor signaling, increased vascular endothelial-cadherin Y658 phosphorylation, vascular endothelial-cadherin delocalization from cell-cell interfaces, and weakened endothelial cell adherence junctions that become prone to vascular leak. CONCLUSIONS: Our results suggest that GDF6 promotes vascular stabilization by restraining vascular endothelial growth factor signaling. Understanding how GDF6 affects vascular integrity may help to provide insights into hemorrhage and associated vascular pathologies in humans.


Subject(s)
Capillary Permeability , Embryo, Nonmammalian/blood supply , Endothelial Cells/metabolism , Growth Differentiation Factor 6/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Gene Expression Regulation, Developmental , Growth Differentiation Factor 6/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 3/metabolism , Neovascularization, Physiologic , Phosphorylation , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
16.
Nat Commun ; 8(1): 118, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28740134

ABSTRACT

Precise genetic modifications in model animals are essential for biomedical research. Here, we report a programmable "base editing" system to induce precise base conversion with high efficiency in zebrafish. Using cytidine deaminase fused to Cas9 nickase, up to 28% of site-specific single-base mutations are achieved in multiple gene loci. In addition, an engineered Cas9-VQR variant with 5'-NGA PAM specificities is used to induce base conversion in zebrafish. This shows that Cas9 variants can be used to expand the utility of this technology. Collectively, the targeted base editing system represents a strategy for precise and effective genome editing in zebrafish.The use of base editing enables precise genetic modifications in model animals. Here the authors show high efficient single-base editing in zebrafish using modified Cas9 and its VQR variant with an altered PAM specificity.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Mutagenesis, Site-Directed/methods , Zebrafish/genetics , Amino Acid Sequence , Animals , Base Sequence , Fetal Proteins/genetics , Genetic Engineering/methods , Growth Differentiation Factor 6/genetics , Point Mutation , Reproducibility of Results , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , T-Box Domain Proteins/genetics , Zebrafish Proteins/genetics
17.
Development ; 143(17): 3182-94, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27578181

ABSTRACT

The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates ß-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factor 6/metabolism , Neural Plate/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Xenopus laevis/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Growth Differentiation Factor 6/genetics , Neural Crest/cytology , Neural Crest/embryology , Neural Crest/metabolism , Neural Plate/cytology , Neural Plate/embryology , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Xenopus laevis/embryology
18.
Development ; 143(7): 1087-98, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26893342

ABSTRACT

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Subject(s)
Growth Differentiation Factor 6/genetics , Neurogenesis/genetics , Retina/embryology , Tretinoin/metabolism , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Bone Morphogenetic Proteins/metabolism , Cell Cycle/genetics , Cell Proliferation , Embryo, Nonmammalian/embryology , Neurogenesis/physiology , Signal Transduction/genetics , Stem Cells/cytology
19.
Cell ; 164(1-2): 9-10, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26771479

ABSTRACT

The morphology of the vertebrate skeleton exhibits tremendous plasticity in evolution, allowing adaptation to a wide variety of ecological niches and lifestyles. Indjeian et al. now uncover how the cis regulation of a gene controls skeletal variation in fish and might have contributed to the evolution of bipedalism in humans.


Subject(s)
Biological Evolution , Evolution, Molecular , Growth Differentiation Factor 6/genetics , Skeleton/physiology , Vertebrates/genetics , Animals , Humans
20.
Cell ; 164(1-2): 45-56, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26774823

ABSTRACT

Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.


Subject(s)
Biological Evolution , Evolution, Molecular , Growth Differentiation Factor 6/genetics , Skeleton/physiology , Vertebrates/genetics , Adaptation, Physiological , Animals , Enhancer Elements, Genetic , Fish Proteins/genetics , Fish Proteins/metabolism , Fresh Water , Growth Differentiation Factor 6/metabolism , Humans , Quantitative Trait Loci , Seawater , Skeleton/anatomy & histology , Smegmamorpha/genetics , Smegmamorpha/physiology , Species Specificity , Vertebrates/classification , Vertebrates/growth & development , Vertebrates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...