ABSTRACT
Objective: Obesity, chronic inflammation, and oxidative stress can influence mitochondrial DNA (mtDNA) content. Our objective was to evaluate the oxidation level and content of mtDNA and its relationship with metabolic parameters in metabolically healthy obese (MHO) compared to metabolically unhealthy obese (MUO) and normal weight (NW) controls. Materials and Methods: We studied 94 NW, 95 MHO, and 97 MUO individuals between 18 and 80 years old. Relative mtDNA content and mtDNA oxidation level (8-oxoguanine, 8-OxoG) were determined in peripheral blood leukocytes by the SYBR Green method of real-time PCR. One-way ANOVA and Tukey test were used to compare biochemical, clinical, and anthropometric characteristics, as well as mtDNA content and 8-OxoG. Results: A progressive decrease in mtDNA content was observed between NW, MHO, and MUO with significant differences in MUO vs. NW (p: 0.04). An increase in 8-OxoG was observed in MUO patients compared to the other groups (MUO vs. MHO p: 0.01; MUO vs. NW p: 0.04). mtDNA content was directly correlated with HDL-c (p < 0.01) and inversely with waist circumference (p: 0.01) and LDL-c (p: 0.05). mtDNA content decreased, and the oxidation level increased concomitantly with the presence of obesity, the number of MS components, higher coronary risk, and insulin resistance parameters. Conclusion: MHO presented a similar mtDNA oxidation level to NW and mtDNA content to the MUO, placing the MHO individuals as having an intermediate phenotype. Changes in mtDNA content and oxidation were correlated to the lipid profile related to obesity and/or MS presence, probably associated with oxidative stress and chronic low-grade inflammation.
Subject(s)
DNA, Mitochondrial , Metabolic Syndrome , Obesity , Oxidation-Reduction , Oxidative Stress , Humans , Middle Aged , Male , Female , Adult , Aged , Obesity/complications , Phenotype , Cardiovascular Diseases , Aged, 80 and over , Young Adult , Adolescent , Heart Disease Risk Factors , Guanine/analogs & derivativesABSTRACT
The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.
Subject(s)
Aldehyde-Lyases , Antitubercular Agents , Dose-Response Relationship, Drug , Enzyme Inhibitors , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Structure-Activity Relationship , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Vero Cells , Molecular Structure , Crystallography, X-Ray , Chlorocebus aethiops , Animals , Guanine/pharmacology , Guanine/chemistry , Guanine/analogs & derivatives , Guanine/chemical synthesis , Molecular Docking Simulation , Hep G2 Cells , Models, MolecularABSTRACT
Dynamic mutations in the 5' untranslated region of FMR1 are associated with infertility. Premutation alleles interfere with prenatal development and increase infertility risks. The number of CGG repeats that causes the highest decrease in ovarian reserves remains unclear. We evaluated the effect of FMR1 CGG repeat lengths on ovarian reserves and in vitro fertilization (IVF) treatment outcomes in 272 women with alleles within the normal range. FMR1 CGG repeat length was investigated via PCR and capillary electrophoresis. Alleles were classified as low-normal, normal, and high-normal. Serum levels of follicle-stimulating hormone and anti-Mullerian hormone (AMH) in the follicular phase of the menstrual cycle were measured, and antral follicles (AFC) were counted. IVF outcomes were collected from medical records. Regarding FMR1 CGG repeat length alleles, 63.2% of women presented at least one low-normal allele. Those carrying low-normal alleles had significantly lower AMH levels than women carrying normal or high-normal alleles. Low-normal/low-normal genotype was the most frequent, followed by low-normal/normal and normal/normal. A comparison of ovarian reserve markers and reproductive outcomes of the three most frequent genotypes revealed that AFC in the low-normal/normal genotype was significantly lower than the low-normal/low-normal genotype. The low number of FMR1 CGG repeats affected AMH levels and AFC but not IVF outcomes per cycle of treatment.
Subject(s)
Anti-Mullerian Hormone , Fertilization in Vitro , Fragile X Mental Retardation Protein , Ovarian Reserve , Humans , Fragile X Mental Retardation Protein/genetics , Female , Fertilization in Vitro/methods , Ovarian Reserve/genetics , Adult , Cross-Sectional Studies , Anti-Mullerian Hormone/genetics , Anti-Mullerian Hormone/blood , Fertility/genetics , Infertility, Female/genetics , Infertility, Female/therapy , Alleles , Trinucleotide Repeats/genetics , Trinucleotide Repeat Expansion/genetics , Guanine , PregnancyABSTRACT
INTRODUCTION AND OBJECTIVES: Treatment of chronic hepatitis B (CHB) with nucelos(t)ide analogues (NA) can improve outcomes, but NA treatment is expensive for insurance plans. MATERIALS AND METHODS: The Centers for Medicare & Medicaid Services database was assessed from 2012 to 2021 to assess the use of NA for CHB in patients on Medicaid. Data extracted included the number of claims, units, and costs of each agent stratified by originator and generic. RESULTS: Over the study period, 1.9 billion USD was spent on NA, with spending peaking in 2016 at $289 million US, which has subsequently decreased. Lower expenditures since 2016 have been associated with increased use of generics. The use of generic tenofovir or entecavir led to savings of $669 million US over the study period. CONCLUSIONS: Increased generic use has significantly reduced expenditures for NA drugs; policy shifts towards generic drug use may help with sustainability.
Subject(s)
Antiviral Agents , Drug Costs , Drugs, Generic , Health Expenditures , Hepatitis B, Chronic , Medicaid , Humans , United States , Medicaid/economics , Antiviral Agents/therapeutic use , Antiviral Agents/economics , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/economics , Drugs, Generic/economics , Drugs, Generic/therapeutic use , Nucleosides/therapeutic use , Nucleosides/economics , Tenofovir/therapeutic use , Tenofovir/economics , Guanine/analogs & derivatives , Guanine/therapeutic use , Guanine/economicsABSTRACT
BACKGROUND: This study evaluated the presence of Epstein-Barr virus type 1 (EBV-1) DNA in patients living with HIV, before and after three different topical therapy protocols for oral hairy leukoplakia (OHL). METHODS: The sample consisted of five patients treated with topical solution of 25% podophyllin resin; six with 25% podophyllin resin plus 5% acyclovir cream; and four with 25% podophyllin resin plus 1% penciclovir cream. DNA was extracted from OHL scrapings and amplified by the PCR using specific primers for EBV-1 (EBNA-1). RESULTS: Clinical healing of OHL lesions was observed across all treatment groups over time. At baseline, EBNA-1 was detected in all OHL lesions. After treatment, OHL samples from three patients treated with 25% podophyllin resin plus 5% acyclovir cream and from one patient treated with 25% podophyllin resin plus 1% penciclovir cream exhibited negative EBNA-1 viral gene encoding. Despite the clinical resolution of OHL, 11 patients (73.3%) showed EBNA-1 positivity immediately after the lesion disappeared. Three patients (20%) treated with podophyllin resin displayed both EBNA-1 positivity and a recurrence of OHL, in contrast to no recurrence in the other two groups. CONCLUSIONS: These findings suggest potential associations between treatment formulations, EBNA-1 persistence, and the recurrence of OHL lesions.
Subject(s)
Acyclovir , Administration, Topical , Antiviral Agents , DNA, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Leukoplakia, Hairy , Humans , Female , Male , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Leukoplakia, Hairy/drug therapy , Leukoplakia, Hairy/virology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Acyclovir/therapeutic use , Acyclovir/administration & dosage , Middle Aged , DNA, Viral/analysis , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/virology , Adult , Podophyllin/therapeutic use , Podophyllin/administration & dosage , Treatment Outcome , HIV Infections/drug therapy , HIV Infections/virology , Polymerase Chain Reaction , Guanine/analogs & derivatives , Guanine/therapeutic use , Guanine/administration & dosageABSTRACT
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65 +) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latino population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Subject(s)
Alzheimer Disease , DNA Damage , DNA, Mitochondrial , Mitochondria , Oxidative Stress , Aged , Humans , Alzheimer Disease/genetics , DNA, Mitochondrial/genetics , Guanine , Mexican Americans/genetics , Mitochondria/genetics , Oxidative Stress/genetics , DNA Damage/genetics , White/geneticsABSTRACT
8-oxo-Guanine is a mutagenic lesion produced by reactions involving reactive oxygen species and guanine in DNA. Its production induces mispairing between the canonical nucleobases during DNA replication such that various types of cancers are associated with the DNA lesion. Since radiation therapy is used in some cases, the interaction of low-energy electrons with 8-oxo-guanine can in turn produce other reactive species, which in principle could have either a detrimental or protective effect on the organism. Motivated by these facts, we report a comparative experimental study of electron-induced fragmentation of guanine and 8-oxo-guanine, along with a theoretical study of the π* shape resonances and bound anion states, which may trigger those dissociation reactions. The electron-induced fragmentation of 8-oxo-guanine is remarkably distinct from the native form. More complex reactions were observed for the oxidized species, which may produce several anion fragments at very low energies (â¼0 eV). The dehydrogenated parent anion, which is already a minor fragment in guanine, was completely suppressed in 8-oxo-guanine. The calculated thermodynamical thresholds also suggest that NH2 elimination in guanine, at sub-excitation energies, proceeds via a complex reaction involving rearrangement steps.
Subject(s)
DNA , Electrons , Guanine , Mutagenesis , Reactive Oxygen SpeciesABSTRACT
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Subject(s)
Cardiovascular System , Guanine , Rats , Mice , Animals , Rats, Inbred Dahl , Guanine/metabolism , Guanine/pharmacology , Natriuresis , Cardiovascular System/metabolism , Potassium , Inosine/pharmacologyABSTRACT
UV-VIS photoinduced events of tz A and tz G embedded into DNA and RNA are described by combining the Extended Multi-State Second-Order Perturbation Theory (XMS-CASPT2) and electrostatic embedding molecular mechanics methods (QM/MM). Our results point out that the S1 1 (ππ* La ) state is the bright state in both environments. After the photoexcitation to the S1 1 (ππ* La ) state, the electronic population evolves barrierless towards its minimum, from where the excess of energy can be dissipated by fluorescence. As the minimum energy crossing point structure between the ground and first bright states lies in a high-energy region, the direct internal conversion to the ground state is an unviable mechanism. Other spectroscopic properties (for instance, absorption and Stokes shifts) and comparisons with photochemical properties of canonical nucleobases are also provided.
Subject(s)
Adenine , Guanine , Adenine/chemistry , Guanine/chemistry , RNA , Molecular Dynamics Simulation , Coloring Agents , DNA/chemistryABSTRACT
Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 µmol L-1 (r = 0.999), detection limit of 0.27 µmol L-1 for 7-mGua; from 3.00 to 25.00 µmol L-1 (r = 0.998), with a detection limit of 1.69 µmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.
Subject(s)
5-Methylcytosine , Boron , Humans , Oxidation-Reduction , Electrodes , GuanineABSTRACT
BACKGROUND: Guanine crystals are organic biogenic crystals found in many organisms. Due to their exceptionally high refractive index, they contribute to structural color and are responsible for the reflective effect in the skin and visual organs in animals such as fish, reptiles, and spiders. Occurrence of these crystals in animals has been known for many years, and they have also been observed in eukaryotic microorganisms, but not in prokaryotes. RESULTS: In this work, we report the discovery of extracellular crystals formed by bacteria and reveal that they are composed of guanine monohydrate. This composition differs from that of biogenic guanine crystals found in other organisms, mostly composed of ß anhydrous guanine. We demonstrate the formation of these crystals by Aeromonas and other bacteria and investigate the metabolic traits related to their synthesis. In all cases studied, the presence of the bacterial guanine crystals correlates with the absence of guanine deaminase, which could lead to guanine accumulation providing the substrate for crystal formation. CONCLUSIONS: Our finding of the hitherto unknown guanine crystal occurrence in prokaryotes extends the range of organisms that produce these crystals to a new domain of life. Bacteria constitute a novel and more accessible model to study the process of guanine crystal formation and assembly. This discovery opens countless chemical and biological questions, including those about the functional and adaptive significance of their production in these microorganisms. It also paves the road for the development of simple and convenient processes to obtain biogenic guanine crystals for diverse applications.
Subject(s)
Fishes , Guanine , Animals , Guanine/chemistry , Skin , BacteriaABSTRACT
Guanine (Gua), among purines, is a preferred oxidation/nitration target because of its low one-electron redox potential. The reactive oxygen/nitrogen species peroxynitrite (ONOO-), produced in vivo by the reaction between nitric oxide (â¢NO) and superoxide radical (O2â¢â), is responsible for several oxidative modifications in biomolecules, including nitration, nitrosation, oxidation, and peroxidation. In particular, the nitration of Gua, although detected, as well as its reaction kinetics have been seldom investigated. Thus, we studied the concentration- and temperature-dependent formation of 8-nitroguanine (8-NitroGua) in phosphate buffer (pH 7.40) using stopped-flow spectrophotometry. Traces showed a biexponential behavior, with best-fit rate constants: kfast = 4.4 s-1 and kslow = 0.41 s-1 (30 °C, 400 µM both Gua and ONOO-). kfast increased linearly with the concentration of both reactants whereas kslow was concentration-independent. Linear regression analysis of kfast as a function of Gua and ONOO- concentration yielded values of 2.5-6.3 × 103 M-1s-1 and 1.5-3.5 s-1 for the second-order (slope) and first-order (ordinate) rate constants, respectively (30 °C). Since ONOO- is a short-lived species, its decay kinetics was also taken into account for this analysis. The 8-NitroGua product was stable for at least 4 h, so no spontaneous denitration was observed. Stopped-flow assays using antioxidants and free-radical scavengers suggested a mixed direct/indirect reaction mechanism for 8-NitroGua formation. Gua nitration by ONOO- was also observed in the presence of physiologically relevant CO2 concentrations. The reaction product identity, its yield (â¼4.2%, with 400 µM ONOO- and 200 µM Gua), and the reaction mechanism were unequivocally determined by HPLC-MS/MS experiments. In conclusion, 8-NitroGua production at physiologic pH reached significant levels in a few hundred milliseconds, suggesting that the process might be kinetically relevant in vivo and can likely cause permanent nitrative damage to DNA bases.
Subject(s)
Peroxynitrous Acid , Tandem Mass Spectrometry , Nitrates/chemistry , Guanine/chemistry , Nitric Oxide/chemistryABSTRACT
Stacking effects are among the most important effects in DNA. We have recently studied their influence in fragments of DNA through the analysis of NMR magnetic shieldings, firstly in vacuo. As a continuation of this line of research we show here the influence of solvent effects on the shieldings through the application of both explicit and implicit models. We found that the explicit solvent model is more appropriate for consideration due to the results matching better in general with experiments, as well as providing clear knowledge of the electronic origin of the value of the shieldings. Our study is grounded on a recently developed theoretical model of our own, by which we are able to learn about the magnetic effects of given fragments of DNA molecules on selected base pairs. We use the shieldings of the atoms of a central base pair (guanine-cytosine) of a selected fragment of DNA molecules as descriptors of physical effects, like π-stacking and solvent effects. They can be taken separately and altogether. The effect of π-stacking is introduced through the addition of some pairs above and below of the central base pair, and now, the solvent effect is considered including a network of water molecules that consist of two solvation layers, which were fixed in the calculations performed in all fragments. We show that the solvent effects enhance the stacking effects on the magnetic shieldings of atoms that belong to the external N-H bonds. The net effect is of deshielding on both atoms. There is also a deshielding effect on the carbon atoms that belong to CîO bonds, for which the oxygen atom has an explicit hydrogen bond (HB) with a solvent water molecule. Solvent effects are found to be no higher than a few percent of the total value of the shieldings (between 1% and 5%) for most atoms, although there are few for which such an effect can be higher. There is one nitrogen atom, the acceptor of the HB between guanine and cytosine, that is more highly shielded (around 15 ppm or 10%) when the explicit solvent is considered. In a similar manner, the most external nitrogen atom of cytosine and the hydrogen atom that is bonded to it are highly deshielded (around 10 ppm for nitrogen and around 3 ppm for hydrogen).
Subject(s)
Cytosine , DNA , Base Pairing , Cytosine/chemistry , DNA/chemistry , Guanine/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Models, Molecular , Nitrogen/chemistry , Solvents , Water/chemistryABSTRACT
The Guanine-nucleotide binding protein 2 (GNB2) encodes for ß2 subunit (Gß2) of the G-protein complex. Keeping in view the increased demand of reliable biomarkers in cancer, the current study was planned to extensively explored GNB2 expression variation and its roles in different cancers using online available databases and diverse methodology. In view of our results, the GNB2 was notably up-regulated relative to corresponding controls in twenty three cancer types. As well, the elevated expression of GNB2 was found to be associated with the reduced overall survival (OS) of the Liver Hepatocellular Carcinoma (LIHC) and Rectum Adenocarcinoma (READ) only out of all analyzed cancer types. This implies GNB2 plays vital role in the tumorigenesis of LIHC and READ. Several additional analysis also explored six critical pathways and few important correlations related to GNB2 expression and different other parameters such as promoter methylation, tumor purity, CD8+ T immune cells infiltration, and genetic alteration, and chemotherapeutic drugs. In conclusion, GNB2 gene has been identified in this study as a shared potential biomarker (diagnostic and prognostic) of LIHC and READ.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , GTP-Binding Proteins/genetics , Guanine , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MutationABSTRACT
Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical properties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Due to this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dosing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the physicochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spectrophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sensitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different matrices.
Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/drug therapy , Cell Line, Tumor , Glioblastoma/drug therapy , Guanine/therapeutic use , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic useABSTRACT
The collision-induced dissociation of the protonated cytosine-guanine pair was studied using tandem mass spectrometry (MS3) coupled to infrared multiple photon dissociation spectroscopy with the free electron laser at Orsay (CLIO) to determine the structure of the CH+ and GH+ ionic fragments. The results were rationalized with the help of electronic structure calculations at the density functional theory level with the B3LYP/6-311++G(3df,2p) method. Several tautomers of each fragment were identified for the first time, some of which were previously predicted by other authors. In addition, two unexpected and minor tautomers were also found: cytosine keto-imino [CKI(1,2,3,4)H+] and guanine keto-amino [GKA(1,3,7)H+]. These results highlight the importance of the DNA base tautomerization assisted by inter- and intramolecular proton or hydrogen transfer within the protonated pairs.
Subject(s)
Cytosine , Guanine , Base Pairing , Cytosine/chemistry , Guanine/chemistry , Protons , Spectrophotometry, Infrared/methodsABSTRACT
The effect of vicinal molecular groups on the intrinsic acidity of a central guanine residue in short single-stranded DNA models and the potentials exerted by the backbone and the nucleobases on the leaving proton were determined by the fragment molecular orbital (FMO) method, in terms of quantum descriptors (QDs) and pair interaction interfragment decomposition analysis (PIEDA). The acidity of the central guanine moiety decreased with increasing oligonucleotide length, in response to changes by less than 1 eV in the ionization potential, global softness, electrophilicity index, and electronegativity descriptors. The differences in these descriptors were majorly interpreted in terms of the electrostatic influence of the negative charges residing on the backbone of the molecule. Additionally, this electric-field effect was determined explicitly for the displacement of the test hydronium ion to a distance of 250 Å from its original position, resulting in good agreement with calculations of the variation in Gibbs free energies, obtained from physical experiments conducted on the identical oligonucleotide sequences. The reported results are useful for biophysical applications of deoxyriboligonucleotides containing guanine residues in order to induce local negative charges at specific positions in the DNA chain.
Subject(s)
Guanine/chemistry , Models, Chemical , Models, Molecular , Oligodeoxyribonucleotides/chemistry , Protons , Algorithms , Molecular Conformation , Molecular Structure , Oligonucleotides/chemistry , Static ElectricityABSTRACT
Pterin (Ptr) is a model photosensitizer that acts mainly through type I mechanism and is able to photoinduce the one-electron oxidation of purine and pyrimidine nucleobases. However, under anaerobic conditions Ptr reacts with thymine (T) to form photoadducts (Ptr-T) but does not lead to the photodegradation of guanine (G), which is the nucleobase with the lowest ionization potential. Accordingly, G is thermodynamically able to reduce the radicals of the other nucleobases and has been described in this sense as the "hole sink" of the DNA double helix. Here we analyze by steady-state and time-resolved studies the effect of G in the anaerobic photosensitization of T by Ptr, using nucleotides and oligonucleotides of different sequences. We demonstrated that G is able to reduce T radicals but does not prevent the formation of Ptr-T adducts. Our results suggest that after the encounter between the excited Ptr and T, and completion of the electron transfer step, part of the radicals escape from the solvent cage, to further react with other species. However, a proportion of radicals do not escape and evolve to photoadducts before separation. We provide new evidence that contributes to understand the photosensitizing properties of Ptr in the absence of O2, the mechanism of formation of photoadducts in the DNA and the protective role of G towards the photodamage in other nucleobases.
Subject(s)
Pterins , Thymine , Anaerobiosis , Guanine , Oxidation-ReductionABSTRACT
In this paper, we present the IRMPD spectra of three ionic complexes between guanine (G) and silver (Ag+): [GAg-H2O]+, [GAgG]+ produced in the electrospray ionization source of the mass spectrometer, and [GAg]+ produced by collision induced dissociation of the [GAgG]+ complex. On the basis of the comparison of theoretically calculated IR spectra, we show that there are two isomers of each complex containing two different keto-amino (KA) tautomers of G (GKA(1,9) and GKA(1,7)). The observed isomers are the most stable structures in aqueous solution, and their experimentally estimated relative populations are in better agreement with the calculated relative populations in solution than in the gas phase, both at 298 K. We concluded that these observations suggest that GKA(1,9) and GKA(1,7) coexist in solution according to previous theoretical reports (Colominas, C.; et al. J. Am. Chem. Soc. 1996, 118, 6811). We were unable to find any evidence of the presence of the GEA(9), GKA(3,7), GKA(3,9), or GKA(7,9), whose relative stabilities in solution are strongly dependent on the theoretical method used to account for the solvent effect (Hanus, M.; et al. J. Am. Chem. Soc. 2003, 125, 7678).
Subject(s)
Guanine , Silver , Gases , Mass Spectrometry , Spectrophotometry, InfraredABSTRACT
Nucleoside/nucleotide analogs such as tenofovir, have been used as long-term therapy for the treatment of hepatitis B and side effects such as the reduction in bone mineral density have been associated with their use. To determine the relationships between bone, hormonal, biochemical, and mineral parameters in patients with hepatitis B treated with nucleoside/nucleotide antiviral. A cross-sectional study was conducted with 81 adult patients with chronic hepatitis B infection. Dual-energy X-ray absorptiometry (DXA) was performed to assess bone mineral density. Biochemical analyses were performed for osteocalcin, deoxypyridinoline, parathyroid hormone, vitamin D, IGF-1, TSH, testosterone, estradiol, FSH, transaminases, urea, creatinine, calcium, serum and urinary phosphorus, magnesium, and FGF-23, body composition was performed by DXA. Participants, both gender, were divided according to the use of antiretrovirals: Group1: 27 inactive virus carriers without medication; Group2: 27 patients using tenofovir; and Group3: 27 patients using lamivudine or entecavir. DXA readings diagnosed osteopenia in the lumbar spine for 7.4% of individuals in Group1, 15% in Group2, and 3.7% in Group3. For all groups, we observed normal values in bone formation markers, osteocalcin levels as well as parathyroid hormone, insulin growth factor 1, and FGF-23. In all groups, we found increased levels of urinary deoxypyridinoline, a bone resorption marker. Increased levels in the bone resorption markers indicated a high resorptive activity of bone tissue. These data suggested high resorption activity of bone tissue in hepatitis B virus-infected patients independent of the use of antiretrovirals.