Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687324

ABSTRACT

HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.


Subject(s)
HIV Antigens , HIV Reverse Transcriptase , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , Humans , HIV-1/genetics , HIV Antigens/genetics , HIV Antigens/metabolism , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Mutation , HIV Infections/virology , HIV Infections/genetics , Cell Line
2.
J Virol Methods ; 324: 114858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029970

ABSTRACT

People living with human immunodeficiency virus type 1 (HIV-1), even if successfully treated with a combined antiretroviral therapy, display a persistent inflammation and chronic immune activation, and an increasing risk of developing cardiovascular and thrombotic events, cancers, and neurologic disorders. Accumulating evidence reveals that biologically active HIV-1 proteins may play a role in the development of these HIV-1-associated conditions. The HIV-1 matrix protein p17 (p17) is released and accumulates in different organs and tissue where it may exert multiple biological activities on different target cells. To assess a role of p17 in different HIV-1-related pathological processes, it is central to definitively ascertain and quantitate its expression in a large number of sera obtained from HIV-1-infected (HIV-1+) patients. To this aim, we developed a specific and highly sensitive p17 capture immunoenzymatic assay. Data obtained highlight a heterogeneous expression of p17 in blood of tested patients, with patients who were negative or displayed from low to relatively high p17 blood concentrations (range from 0.05 to 7.29 nM). Moreover, we found that blood p17 concentration was totally independent from the viremic status of the patient. This finding calls for monitoring HIV-1+ patients in order to evaluate a possible correlation between p17 amount in blood and the likelihood of developing HIV-1-related pathological conditions.


Subject(s)
HIV Infections , HIV-1 , Humans , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antigens/metabolism , Viremia
3.
Pathol Res Pract ; 237: 154061, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35939971

ABSTRACT

BACKGROUND: HIV-1 matrix protein p17 was found to be associated with lymphoma development in vitro. This study aimed to elucidate the pathogenetic roles of HIV-1 p17 in AIDS-related lymphoma. METHODS: Expression of HIV-1 proteins p17, p24, nef and tat were evaluated in tumor tissue samples from 60 lymphoma patients and lymph node samples from 23 non-lymphoma patients with HIV-1 infection by immunohistochemistry. Microvascular density (MVD) determined by CD34 were also assessed in tumor tissues. Clinicopathological data of AIDS patients with lymphoma were collected retrospectively. RESULTS: The subtypes of lymphoma among sixty AIDS patients were diffuse large B-cell lymphoma (32 cases), Burkitt lymphoma (23 cases), Hodgkin's lymphoma (4 cases), and plasmablastic lymphoma (1 case). The expression rate of HIV-1 p17 in lymphoma and non-lymphoma group was 63 % (38/60) and 61 % (14/29) respectively, with no significant difference (p = 0.835). The positive expression rate of p17 in both groups was significantly higher than that of p24, nef and tat (p < 0.05). The expression of p17 was associated with a higher MVD in the lymphoma group (p < 0.05). There were no significant differences in the 2-years overall survival between p17 positive and negative group (61 % vs. 50 %, p = 0.525). CONCLUSION: The common expression of HIV-1 matrix protein p17 in both lymphoma and lymph node tissues of AIDS patients and the association between p17 expression and the higher MVD suggest that the accumulation and persistence of p17 in tissues may play a role in lymphoma development.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , HIV-1 , Lymphoma, Non-Hodgkin , Humans , HIV Antigens/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/metabolism , Retrospective Studies , Lymph Nodes/pathology
4.
J Virol ; 96(1): e0120021, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34668776

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorder (HAND) remains an important neurological manifestation in HIV-1-infected (HIV+) patients. Furthermore, detection of the HIV-1 matrix protein p17 (p17) in the central nervous system (CNS) and its ability to form toxic assemblies in the brain have been recently confirmed. Here, we show for the first time, using both an in vitro blood-brain barrier (BBB) model and in vivo biodistribution studies in healthy mice, that p17 can cross the BBB. There is rapid brain uptake with 0.35% ± 0.19% of injected activity per gram of tissue (IA/g) 2 min after administration, followed by brain accumulation with 0.28% ± 0.09% IA/g after 1 h. The interaction of p17 with chemokine receptor 2 (CXCR2) at the surface of brain endothelial cells triggers transcytosis. The present study supports the hypothesis of a direct role of free p17 in neuronal dysfunction in HAND by demonstrating its intrinsic ability to reach the CNS. IMPORTANCE The percentage of patients affected by HIV-1-associated neurocognitive disorder (HAND) ranges from 30% to 50% of HIV-infected (HIV+) patients. The mechanisms leading to HAND development need to be elucidated, but the roles of secreted viral proteins, chemokines, and proinflammatory molecules appear to be clear. In particular, the blood-brain barrier (BBB) represents a route for entry into the central nervous system (CNS) and thus plays an important role in HAND. Several findings suggest a key role for the HIV-1 matrix protein p17 (p17) as a microenvironmental factor capable of inducing neurocognitive disorders. Here, we show the ability of the p17 to cross the BBB and to reach the CNS, thus playing a crucial role in neuronal dysfunction in HAND.


Subject(s)
Blood-Brain Barrier/metabolism , HIV Antigens/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , gag Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Autophagy , Cell Line , Cells, Cultured , Disease Susceptibility , Endosomes/metabolism , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , Mice , Protein Binding , Protein Transport , Receptors, Interleukin-8B/metabolism
5.
Science ; 373(6555): 700-704, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353956

ABSTRACT

Gag, the primary structural protein of HIV-1, is recruited to the plasma membrane for virus assembly by its matrix (MA) domain. Gag is subsequently cleaved into its component domains, causing structural maturation to repurpose the virion for cell entry. We determined the structure and arrangement of MA within immature and mature HIV-1 through cryo-electron tomography. We found that MA rearranges between two different hexameric lattices upon maturation. In mature HIV-1, a lipid extends out of the membrane to bind with a pocket in MA. Our data suggest that proteolytic maturation of HIV-1 not only assembles the viral capsid surrounding the genome but also repurposes the membrane-bound MA lattice for an entry or postentry function and results in the partial removal of up to 2500 lipids from the viral membrane.


Subject(s)
HIV Antigens/chemistry , HIV Antigens/metabolism , HIV-1/chemistry , HIV-1/physiology , Viral Envelope/metabolism , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism , Capsid/chemistry , Capsid/physiology , Electron Microscope Tomography , HIV-1/ultrastructure , Lipid Bilayers , Membrane Lipids/metabolism , Models, Molecular , Protein Conformation , Protein Domains , Protein Structure, Secondary , Viral Envelope/chemistry , Viral Envelope/ultrastructure , Virion/chemistry , Virion/physiology , Virion/ultrastructure , Virus Assembly , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
6.
Cell Host Microbe ; 29(9): 1421-1436.e7, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34384537

ABSTRACT

The HIV-1 virion structural polyprotein, Gag, is directed to particle assembly sites at the plasma membrane by its N-terminal matrix (MA) domain. MA also binds to host tRNAs. To understand the molecular basis of MA-tRNA interaction and its potential function, we present a co-crystal structure of HIV-1 MA-tRNALys3 complex. The structure reveals a specialized group of MA basic and aromatic residues preconfigured to recognize the distinctive structure of the tRNA elbow. Mutational, cross-linking, fluorescence, and NMR analyses show that the crystallographically defined interface drives MA-tRNA binding in solution and living cells. The structure indicates that MA is unlikely to bind tRNA and membrane simultaneously. Accordingly, single-amino-acid substitutions that abolish MA-tRNA binding caused striking redistribution of Gag to the plasma membrane and reduced HIV-1 replication. Thus, HIV-1 exploits host tRNAs to occlude a membrane localization signal and control the subcellular distribution of its major structural protein.


Subject(s)
HIV Antigens/metabolism , Protein Domains/physiology , RNA, Transfer/metabolism , Virus Assembly/physiology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Binding Sites , Cell Membrane/metabolism , HEK293 Cells , HIV-1/genetics , HeLa Cells , Humans , RNA, Transfer/genetics , RNA-Binding Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372148

ABSTRACT

The HIV-1 matrix protein p17 (p17) is a pleiotropic molecule impacting on different cell types. Its interaction with many cellular proteins underlines the importance of the viral protein as a major determinant of human specific adaptation. We previously showed the proangiogenic capability of p17. Here, by integrating functional analysis and receptor binding, we identify a functional epitope that displays molecular mimicry with human erythropoietin (EPO) and promotes angiogenesis through common beta chain receptor (ßCR) activation. The functional EPO-like epitope was found to be present in the matrix protein of HIV-1 ancestors SIV originated in chimpanzees (SIVcpz) and gorillas (SIVgor) but not in that of HIV-2 and its ancestor SIVsmm from sooty mangabeys. According to biological data, evolution of the EPO-like epitope showed a clear differentiation between HIV-1/SIVcpz-gor and HIV-2/SIVsmm branches, thus highlighting this epitope on p17 as a divergent signature discriminating HIV-1 and HIV-2 ancestors. P17 is known to enhance HIV-1 replication. Similarly to other ßCR ligands, p17 is capable of attracting and activating HIV-1 target cells and promoting a proinflammatory microenvironment. Thus, it is tempting to speculate that acquisition of an epitope on the matrix proteins of HIV-1 ancestors capable of triggering ßCR may have represented a critical step to enhance viral aggressiveness and early human-to-human SIVcpz/gor dissemination. The hypothesis that the p17/ßCR interaction and ßCR abnormal stimulation may also play a role in sustaining chronic activation and inflammation, thus marking the difference between HIV-1 and HIV-2 in term of pathogenicity, needs further investigation.


Subject(s)
Erythropoietin/genetics , HIV Antigens/metabolism , HIV-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Cells, Cultured , Epitopes/immunology , Erythropoietin/metabolism , Evolution, Molecular , HIV Antigens/genetics , HIV Seropositivity , HIV-1/genetics , HIV-2 , Humans , Molecular Mimicry , Simian Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/genetics
8.
J Med Virol ; 93(6): 3607-3620, 2021 06.
Article in English | MEDLINE | ID: mdl-32790080

ABSTRACT

Nutrient starvation is a common phenomenon that occurs during T cell activation. Upon pathogen infection, large amounts of immune cells migrate to infection sites, and antigen-specific T cells are activated; this is followed by rapid proliferation through clonal expansion. The dramatic expansion of cells will commonly lead to nutrient shortage. Cellular autophagy is often upregulated as a way to sustain the body's energy requirements. During infection, human immunodeficiency virus (HIV) co-opts a series of host cell metabolic pathways for replication. Several HIV proteins, such as Env, Nef, and Vpr, have already been reported as being involved in autophagy-related processes. In this report, we identified that the HIV p17 protein acts as a major factor in suppressing the autophagic process in T cells, especially under glucose starvation condition. HIV p17 interacts with Obg-like ATPase 1 (OLA1) and disrupts OLA1-glycogen synthase kinase-3 beta (GSK3ß) complex, leading to GSK3ß hyperactivation. Consequently, a prior proliferation of HIV-infected T cells under glucose starvation will occur. The inhibition of autophagy also aids HIV replication by antagonizing the antiviral effect of autophagy. Our study shows a new cellular pathway that HIV can hijack for viral spreading by a prior proliferation of HIV-loaded T cells and may provide new therapeutic targets for acquired immunodeficiency syndrome intervention.


Subject(s)
Adenosine Triphosphatases/genetics , Autophagy/genetics , Cell Proliferation , GTP-Binding Proteins/genetics , Glycogen Synthase Kinase 3 beta/genetics , HIV Antigens/genetics , HIV Antigens/metabolism , HIV-1/immunology , T-Lymphocytes/physiology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , Adenosine Triphosphatases/metabolism , GTP-Binding Proteins/metabolism , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , HIV Antigens/immunology , HIV-1/pathogenicity , HeLa Cells , Host Microbial Interactions , Humans , Jurkat Cells , Lymphocyte Activation , Starvation , T-Lymphocytes/immunology , T-Lymphocytes/virology , gag Gene Products, Human Immunodeficiency Virus/immunology
9.
mBio ; 11(6)2020 11 03.
Article in English | MEDLINE | ID: mdl-33144375

ABSTRACT

Protease inhibitors (PIs) are the second- and last-line therapy for the majority of HIV-infected patients worldwide. Only around 20% of individuals who fail PI regimens develop major resistance mutations in protease. We sought to explore the role of mutations in gag-pro genotypic and phenotypic changes in viruses from six Nigerian patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. Target enrichment and next-generation sequencing (NGS) with the Illumina MiSeq system were followed by haplotype reconstruction. Full-length Gag-protease gene regions were amplified from baseline (pre-PI) and virologic failure (VF) samples, sequenced, and used to construct gag-pro-pseudotyped viruses. Phylogenetic analysis was performed using maximum-likelihood methods. Susceptibility to lopinavir (LPV) and darunavir (DRV) was measured using a single-cycle replication assay. Western blotting was used to analyze Gag cleavage. In one of six participants (subtype CRF02_AG), we found 4-fold-lower LPV susceptibility in viral clones during failure of second-line treatment. A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. These four amino acid changes were also able to confer LPV resistance to a subtype B Gag-protease backbone. Western blotting demonstrated significant Gag cleavage differences between sensitive and resistant isolates in the presence of drug. Resistant viruses had around 2-fold-lower infectivity than sensitive clones in the absence of drug. NGS combined with haplotype reconstruction revealed that resistant, less fit clones emerged from a minority population at baseline and thereafter persisted alongside sensitive fitter viruses. We used a multipronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV-1 matrix, revealing the interplay between Gag-associated resistance and fitness.


Subject(s)
Drug Resistance, Viral , HIV Antigens/metabolism , HIV Infections/virology , HIV-1/drug effects , HIV-1/metabolism , Protease Inhibitors/pharmacology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Substitution , Dose-Response Relationship, Drug , Genome, Viral , Genotype , HIV Antigens/genetics , HIV Infections/drug therapy , HIV-1/genetics , Humans , Microbial Sensitivity Tests , Mutation , Phenotype , Phylogeny , Sequence Deletion , Viral Load , gag Gene Products, Human Immunodeficiency Virus/genetics
10.
Viruses ; 12(5)2020 05 16.
Article in English | MEDLINE | ID: mdl-32429351

ABSTRACT

Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.


Subject(s)
Cell Membrane/metabolism , HIV-1/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antigens/chemistry , HIV Antigens/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Binding , Protein Conformation , Virus Assembly , env Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/chemistry
11.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188077

ABSTRACT

Although the advent of combined antiretroviral therapy has substantially improved the survival of HIV-1-infected individuals, non-AIDS-related diseases are becoming increasingly prevalent in HIV-1-infected patients. Persistent abnormalities in coagulation appear to contribute to excess risk for a broad spectrum of non-AIDS defining complications. Alterations in coagulation biology in the context of HIV infection seem to be largely a consequence of a chronically inflammatory microenvironment leading to endothelial cell (EC) dysfunction. A possible direct role of HIV-1 proteins in sustaining EC dysfunction has been postulated but not yet investigated. The HIV-1 matrix protein p17 (p17) is secreted from HIV-1-infected cells and is known to sustain inflammatory processes by activating ECs. The aim of this study was to investigate the possibility that p17-driven stimulation of human ECs is associated with increased production of critical coagulation factors. Here we show the involvement of autophagy in the p17-induced accumulation and secretion of von Willebrand factor (vWF) by ECs. In vivo experiments confirmed the capability of p17 to exert a potent pro-coagulant activity soon after its intravenous administration.


Subject(s)
Antithrombin III/metabolism , Autophagy/physiology , Endothelial Cells/metabolism , HIV Antigens/metabolism , Peptide Hydrolases/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , von Willebrand Factor/metabolism , Animals , Anti-Retroviral Agents/therapeutic use , Female , HIV Infections/complications , HIV-1/physiology , Humans , Mice
12.
Sci Rep ; 9(1): 15768, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673058

ABSTRACT

p17 matrix protein released by HIV+ cells interacts with leukocytes heparan sulfate proteoglycans (HSPGs), CXCR1 and CXCR2 exerting different cytokine-like activities that contribute to AIDS pathogenesis. Since the bioactive form of several cytokines is represented by dimers/oligomers and oligomerization is promoted by binding to heparin or HSPGs, here we evaluated if heparin/HSPGs also promote p17 oligomerization. Heparin favours p17 dimer, trimer and tetramer assembly, in a time- and biphasic dose-dependent way. Heparin-induced p17 oligomerization is of electrostatic nature, being it prevented by NaCl, by removing negative sulfated groups of heparin and by neutralizing positive lysine residues in the p17 N-terminus. A new computational protocol has been implemented to study heparin chains up to 24-mer accommodating a p17 dimer. Molecular dynamics show that, in the presence of heparin, two p17 molecules undergo conformational modifications creating a continuous "electropositive channel" in which heparin sulfated groups interact with p17 basic amino acids, promoting its dimerization. At the cell surface, HSPGs induce p17 oligomerization, as demonstrated by using B-lymphoblastoid Namalwa cells overexpressing the HSPG Syndecan-1. Also, HSPGs on the surface of BJAB and Raji human B-lymphoblastoid cells are required to p17 to induce ERK1/2 activation, suggesting that HS-induced oligomerization plays a role in p17-induced lymphoid dysregulation during AIDS.


Subject(s)
Acquired Immunodeficiency Syndrome/metabolism , HIV Antigens , HIV-1 , MAP Kinase Signaling System , Protein Multimerization , Syndecan-1 , gag Gene Products, Human Immunodeficiency Virus , Cell Line, Tumor , HIV Antigens/chemistry , HIV Antigens/metabolism , HIV-1/chemistry , HIV-1/metabolism , Heparin/chemistry , Heparin/metabolism , Humans , Syndecan-1/chemistry , Syndecan-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism
13.
Hematol Oncol ; 37(2): 176-184, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30261551

ABSTRACT

Despite antiretroviral therapy, HIV+ individuals still have increased risk to develop lymphomas, including marginal zone lymphomas, suggesting that factors other than HIV-related immunosuppression are probably acting as lymphomagenic factors in the HIV setting. The possible pathogenic involvement of HIV p17 protein variants was investigated in a particularly informative case of HIV-related splenic marginal zone lymphoma, which was negative for oncogenic virus infections, thus allowing us to assess the possible direct contribution of these HIV-encoded proteins to lymphomagenesis. The presence of p17 protein was analyzed by immunohistochemistry in lymphoma tissue. Recombinant p17 protein derived from the dominant sequence detected in plasma and lymphoma biopsy was characterized for B-cell proliferation, clonogenicity in soft agar, in vitro tube formation and wound healing. Intracellular signaling was investigated by immunoblotting. HIV p17 protein was detected in reactive lymphoid follicles but not within lymphoma cells. An identical dominant variant p17 sequence, p17-Lyrm, carrying a 117 to 118 Ala-Ala insertion was detected in both plasma and lymphoma tissue. Recombinant p17-Lyrm enhanced B-cell proliferation and clonogenicity promoted the formation of capillary-like structures and enhanced endothelial cell migration. Unlike reference p17, the p17-Lyrm variant enhanced the activation of Akt and ERK, critical kinases in lymphomagenesis. p17-Lyrm clonogenic activity was dependent on the activation of Akt but not of ERK1/2. These results indicated that HIV p17 variants with distinct molecular signatures and functional properties may accumulate in lymphoid tissues of HIV-infected individuals where they may act as a local stimulus promoting the development of lymphomas.


Subject(s)
Cell Transformation, Viral , HIV Antigens , HIV Infections , HIV-1 , Lymphoma, B-Cell, Marginal Zone , Mutagenesis, Insertional , Splenic Neoplasms , gag Gene Products, Human Immunodeficiency Virus , Female , HIV Antigens/genetics , HIV Antigens/metabolism , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/pathology , HIV-1/genetics , HIV-1/metabolism , Humans , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/metabolism , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, B-Cell, Marginal Zone/virology , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Splenic Neoplasms/genetics , Splenic Neoplasms/metabolism , Splenic Neoplasms/pathology , Splenic Neoplasms/virology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
14.
J Innate Immun ; 11(2): 181-190, 2019.
Article in English | MEDLINE | ID: mdl-30557875

ABSTRACT

The only clinical HIV vaccine trial to demonstrate efficacy, RV144, correlated protection with the antibodies (Abs) mediating function via the "constant" immunoglobulin region, the crystallizable fragment (Fc). These data have supported a focus on the induction of Abs by vaccines that trigger antiviral activities by relevant leukocytes via Fc receptors (FcRs). Neutrophils are phagocytes that comprise > 50% of leukocytes and display unique FcRs. We sought to compare the Ab-dependent cellular phagocytosis (ADCP) activity of human neutrophils to the commonly assayed THP-1 cell line. HIV-specific Abs were employed to elicit ADCP of beads coated with HIV envelope protein. Overall, trends were noted among neutrophil donors and the ADCP profile was different from that of THP-1 cells. mAb ELISA titers correlated with ADCP by THP-1 cells but not neutrophils. Monoclonal (m)Abs were also tested with primary monocytes. Donor-to-donor variation was high, and hindered the analysis of this dataset, but it was, in itself, an important finding. This study illustrates the concept that the assessment of FcR-mediated Ab activity with a frequently used cell line such as THP-1 is not necessarily indicative of relevant Ab functionality in vivo, and this calls for in-depth study of the properties of the HIV antibodies best-suited to eliciting antiviral activities by primary cells.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/immunology , HIV-1/physiology , Neutrophils/immunology , Receptors, Fc/metabolism , HIV Antibodies/metabolism , HIV Antigens/metabolism , Humans , Immunoglobulin Fc Fragments/metabolism , Microspheres , Phagocytosis , Primary Cell Culture , THP-1 Cells , Viral Envelope Proteins/metabolism
15.
JCI Insight ; 3(20)2018 10 18.
Article in English | MEDLINE | ID: mdl-30333308

ABSTRACT

HIV eradication studies have focused on developing latency-reversing agents (LRAs). However, it is not understood how the rate of latent reservoir reduction is affected by different steps in the process of latency reversal. Furthermore, as current LRAs are host-directed, LRA treatment is likely to be intermittent to avoid host toxicities. Few careful studies of the serial effects of pulsatile LRA treatment have yet been done. This lack of clarity makes it difficult to evaluate the efficacy of candidate LRAs or predict long-term treatment outcomes. We constructed a mathematical model that describes the dynamics of latently infected cells under LRA treatment. Model analysis showed that, in addition to increasing the immune recognition and clearance of infected cells, the duration of HIV antigen expression (i.e., the period of vulnerability) plays an important role in determining the efficacy of LRAs, especially if effective clearance is achieved. Patients may benefit from pulsatile LRA exposures compared with continuous LRA exposures if the period of vulnerability is long and the clearance rate is high, both in the presence and absence of an LRA. Overall, the model framework serves as a useful tool to evaluate the efficacy and the rational design of LRAs and combination strategies.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/physiology , Models, Biological , Virus Latency/drug effects , Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Drug Design , Drug Therapy, Combination/methods , HIV Antigens/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Pulse Therapy, Drug , Treatment Outcome
16.
PLoS One ; 13(4): e0194266, 2018.
Article in English | MEDLINE | ID: mdl-29698406

ABSTRACT

The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2-20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.


Subject(s)
Adjuvants, Immunologic , HIV Antigens/immunology , HIV Envelope Protein gp120/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antigen-Antibody Reactions , CHO Cells , Cricetinae , Cricetulus , Epitopes/immunology , Female , Glycosylation , Guinea Pigs , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Antibodies/metabolism , HIV Antigens/genetics , HIV Antigens/metabolism , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV Infections/prevention & control , HIV-1/immunology , HIV-1/metabolism , Humans , Polysorbates , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Squalene/immunology
17.
Microbiol Immunol ; 62(5): 317-326, 2018 May.
Article in English | MEDLINE | ID: mdl-29577368

ABSTRACT

Mechanisms involved in survival of productively-infected memory CD4+cells after initial antigenic stimulation and their subsequent reversion to the resting state are critical for the development of a predominant replication-competent HIV reservoir. These mechanisms may also counter their elimination after HIV reactivation through latency-reversing agents (LRA). Thus, their evaluation is critical when using an appropriate HIV latency model that recapitulates the predominant replication-competent HIV reservoir to develop strategies for HIV eradication. The model for evaluating the possible survival mechanisms after T cell receptor (TCR) stimulation was developed by infecting memory CD4+cells with an HIV-1C primary isolate and cytokine secretion and gene expression patterns determined. Infected cells showed compromised functionality as evident from 6.8-fold lower secretion of IL-2 than from uninfected control cells. After TCR stimulation, the infected cells showed significantly higher fold increases in CD27 and CCR5 and smaller increases in CD5 mRNA over baseline values. Because CD27 expression may influence telomerase activity through AKT phosphorylation, CD27, human telomerase reverse transcriptase (hTERT) and pAKT expression in productively-infected cells from HIV-infected patients was evaluated by flow cytometry. HIV harbored in memory CD4+ cells was reactivated by HIV-1 envelope peptides, which have been shown to act as effective LRA. P24+CD4+cell showed significantly higher expression of CD27, hTERT and pAKT than P24-CD4+cells. These findings indicate compromised functionality of HIV-infected cells after TCR stimulation, which may interfere with their elimination by the immune system. They also indicate that pAKT and hTERT induction are possible survival mechanisms of productively-infected CD4+cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV-1/pathogenicity , Telomerase/biosynthesis , CD5 Antigens/metabolism , Cytokines , DNA Viruses/genetics , Flow Cytometry , Gene Expression , Gene Expression Profiling , HIV Antigens/metabolism , Humans , RNA, Messenger/biosynthesis , Receptors, Antigen, T-Cell , Receptors, CCR5/metabolism , Telomerase/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Viral Envelope Proteins/metabolism , Virus Activation , Virus Latency , Virus Replication
18.
Proteomics ; 18(12): e1700253, 2018 06.
Article in English | MEDLINE | ID: mdl-29437277

ABSTRACT

The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.


Subject(s)
B-Lymphocytes/immunology , Epitopes/immunology , Gene Products, env/immunology , HIV Antigens/immunology , HIV-1/immunology , HLA-B Antigens/immunology , Protein Processing, Post-Translational , B-Lymphocytes/virology , Cells, Cultured , Epitopes/metabolism , Gene Products, env/metabolism , HIV Antigens/metabolism , HIV Infections/immunology , HIV Infections/virology , HLA-B Antigens/chemistry , HLA-B Antigens/metabolism , Humans
19.
J Immunol Methods ; 454: 48-58, 2018 03.
Article in English | MEDLINE | ID: mdl-29277486

ABSTRACT

The monitoring and assessment of a broadly neutralizing antibody (bnAb) based HIV-1 vaccine require detailed measurements of HIV-1 binding antibody responses to support the detection of correlates of protection. Here we describe the development of a flexible, high-throughput microsphere based multiplex assay system that allows monitoring complex binding antibody signatures. Studying a panel of 13 HIV-1 antigens in a parallel assessment of different IgG subclasses (IgG1, IgG2 and IgG3) we demonstrate the potential of our strategy. The technical advances we describe include means to improve antigen reactivity using directed neutravidin-biotin immobilization of antigens and biotin saturation to reduce background. A particular emphasis of our study was to provide tools for the assessment of reproducibility and stability of the assay system and strategies to control for variations allowing the application in high-throughput assays, where reliability of single measurements needs to be guaranteed.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/immunology , HIV-1/physiology , Microspheres , Antibodies, Neutralizing/metabolism , Avidin/metabolism , HIV Antibodies/metabolism , HIV Antigens/metabolism , High-Throughput Screening Assays , Humans , Immunoglobulin G/metabolism , Protein Binding , Reproducibility of Results
20.
J Immunol ; 199(10): 3679-3690, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29021373

ABSTRACT

In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.


Subject(s)
Epitopes, T-Lymphocyte/metabolism , HIV Infections/immunology , HIV/physiology , Histocompatibility Antigens Class I/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigen Presentation , Cell Line , Epitopes, T-Lymphocyte/genetics , Genetic Predisposition to Disease , HIV Antigens/metabolism , HIV Infections/genetics , HLA-B27 Antigen/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunity, Cellular , Macaca , Peptides/metabolism , Protein Binding , Simian Acquired Immunodeficiency Syndrome/genetics , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...