Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Arch Pharm Res ; 44(7): 689-701, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34302237

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) infection can cause several HIV-associated neurocognitive disorders a variety of neurological impairments characterized by the loss of cortical and subcortical neurons and decreased cognitive and motor function. HIV-1 gp120, the major envelope glycoprotein on viral particles, acts as a binding protein for viral entry and is known to be an agent of neuronal cell death. To determine the mechanism of HIV-1 gp120-induced memory dysfunction, we performed mouse intracerebroventricular (i.c.v.) infusion with HIV-1 gp120 protein (300 ng per mouse) and investigated memory impairment and amyloidogenesis. Infusion of the HIV-1 gp120 protein induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Infusion of HIV-1 gp120 induced neuroinflammation, such as the release of iNOS and COX-2 and the activation of astrocytes and microglia and increased the mRNA and protein levels of IL-6, ICAM-1, M-CSF, TIM, and IL-2. In particular, we found that the infusion of HIV-1 gp120 induced the accumulation of amyloid plaques and signs of elevated amyloidogenesis, such as increased expression of amyloid precursor protein and BACE1 and increased ß-secretase activity. Therefore, these studies suggest that HIV-1 gp120 may induce memory impairment through Aß accumulation and neuroinflammation.


Subject(s)
Brain/pathology , HIV Envelope Protein gp120/metabolism , HIV Infections/complications , Memory Disorders/virology , Neuroinflammatory Diseases/virology , Amyloidogenic Proteins/metabolism , Animals , Brain/immunology , Brain/virology , HIV Envelope Protein gp120/administration & dosage , HIV Infections/immunology , HIV Infections/virology , HIV-1/metabolism , HIV-1/pathogenicity , Humans , Infusions, Intraventricular , Male , Memory Disorders/immunology , Memory Disorders/pathology , Mice , Mice, Inbred ICR , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology
2.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33115866

ABSTRACT

Induction of the endogenous innate immune system by interferon (IFN) triggers the expression of many proteins that serve like alarm bells in the body, activating an immune response. After a viral infection, one of the genes activated by IFN induction is the IFN-stimulated gene 15 (ISG15), which encodes a ubiquitin-like protein that undergoes a reversible posttranslational modification (ISGylation). ISG15 protein can also act unconjugated, intracellularly and secreted, acting as a cytokine. Although ISG15 has an essential role in host defense responses to microbial infection, its role as an immunomodulator in the vaccine field remains to be defined. In this investigation, we showed that ISG15 exerts an immunomodulatory role in human immunodeficiency virus (HIV) vaccines. In mice, after priming with a DNA-ISG15 vector mixed with a DNA expressing HIV-1 gp120 (DNA-gp120), followed by a booster with a modified vaccinia virus Ankara (MVA) vector expressing HIV-1 antigens, both wild-type ISG15-conjugated (ISG15-wt) and mutant unconjugated (ISG15-mut) proteins act as immune adjuvants by increasing the magnitude and quality of HIV-1-specific CD8 T cells, with ISG15-wt providing better immunostimulatory activity than ISG15-mut. The HIV-1 Env-specific CD8 T cell responses showed a predominant T effector memory (TEM) phenotype in all groups. Moreover, the amount of DNA-gp120 used to immunize mice could be reduced 5-fold after mixing with DNA-ISG15 without affecting the potency and the quality of the HIV-1 Env-specific immune responses. Our study clearly highlights the potential use of the IFN-induced ISG15 protein as immune adjuvant to enhance immune responses to HIV antigens, suggesting that this molecule might be exploitable for prophylactic and therapeutic vaccine approaches against pathogens.IMPORTANCE Our study described the potential role of ISG15 as an immunomodulatory molecule in the optimization of HIV/AIDS vaccine candidates. Using a DNA prime-MVA boost immunization protocol, our results indicated an increase in the potency and the quality of the HIV-1 Env-specific CD8 T cell response. These results highlight the adjuvant potency of ISG15 to elicit improved viral antigen presentation to the immune system, resulting in an enhanced HIV-1 vaccine immune response. The DNA-ISG15 vector could find applicability in the vaccine field in combination with other nucleic acid-based vector vaccines.


Subject(s)
AIDS Vaccines/immunology , Adjuvants, Immunologic , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Immunization/methods , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/genetics , Animals , Cytokines/administration & dosage , Cytokines/genetics , Female , HEK293 Cells , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/genetics , Humans , Immunization, Secondary , Immunologic Memory , Immunomodulation , Mice , Mice, Inbred BALB C , Mutation , Ubiquitins/administration & dosage , Ubiquitins/genetics , Ubiquitins/immunology , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vaccinia virus/genetics
3.
Mol Pain ; 16: 1744806920922100, 2020.
Article in English | MEDLINE | ID: mdl-32354292

ABSTRACT

HIV-associated neuropathic pain (HNP) is a common complication for AIDS patients. The pathological mechanism governing HNP has not been elucidated, and HNP has no effective analgesic treatment. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family related to the plasticity of the central nervous system. BDNF dysregulation is involved in many neurological diseases, including neuropathic pain. However, to the best of our knowledge, the role and mechanism of BDNF in HNP have not been elucidated. In this study, we explored this condition in an HNP mouse model induced by intrathecal injection of gp120. We found that Wnt3a and ß-catenin expression levels increased in the spinal cord of HNP mice, consequently regulating the expression of BDNF and affecting hypersensitivity. In addition, the blockade of Wing-Int/ß-catenin signaling, BDNF/TrkB or the BDNF/p75NTR pathway alleviated mechanical allodynia. BDNF immunoreactivity was colocalized with spinal microglial cells, which were activated in HNP mice. Inhibition of spinal microglial cell activation by minocycline relieved mechanical allodynia in HNP mice. This study helped to elucidate the role of the Wing-Int/ß-catenin/BDNF signaling axis in HNP and may establish a foundation for further research investigating the Wing-Int/ß-catenin/BDNF signaling axis as a target for HNP treatment.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , HIV Envelope Protein gp120/adverse effects , Microglia/metabolism , Neuralgia/metabolism , Spinal Cord/pathology , Wnt Signaling Pathway , Animals , Behavior, Animal , HIV Envelope Protein gp120/administration & dosage , Hyperalgesia/complications , Hyperalgesia/pathology , Injections, Spinal , Mice, Inbred ICR , Models, Biological , Neuralgia/complications , Nociception , Receptor, trkB/metabolism , Receptors, Nerve Growth Factor/metabolism , Up-Regulation
4.
J Clin Invest ; 129(11): 4769-4785, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31566579

ABSTRACT

BACKGROUNDRV144 is the only preventive HIV vaccine regimen demonstrating efficacy in humans. Attempting to build upon RV144 immune responses, we conducted a phase 1, multicenter, randomized, double-blind trial to assess the safety and immunogenicity of regimens substituting the DNA-HIV-PT123 (DNA) vaccine for ALVAC-HIV in different sequences or combinations with AIDSVAX B/E (protein).METHODSOne hundred and four HIV-uninfected participants were randomized to 4 treatment groups (T1, T2, T3, and T4) and received intramuscular injections at 0, 1, 3, and 6 months (M): T1 received protein at M0 and M1 and DNA at M3 and M6; T2 received DNA at M0 and M1 and protein at M3 and M6; T3 received DNA at M0, M1, M3, and M6 with protein coadministered at M3 and M6; and T4 received protein and DNA coadministered at each vaccination visit.RESULTSAll regimens were well tolerated. Antibodies binding to gp120 and V1V2 scaffold were observed in 95%-100% of participants in T3 and T4, two weeks after final vaccination at high magnitude. While IgG3 responses were highest in T3, a lower IgA/IgG ratio was observed in T4. Binding antibodies persisted at 12 months in 35%-100% of participants. Antibody-dependent cell-mediated cytotoxicity and tier 1 neutralizing-antibody responses had higher response rates for T3 and T4, respectively. CD4+ T cell responses were detectable in all treatment groups (32%-64%) without appreciable CD8+ T cell responses.CONCLUSIONThe DNA/protein combination regimens induced high-magnitude and long-lasting HIV V1V2-binding antibody responses, and early coadministration of the 2 vaccines led to a more rapid induction of these potentially protective responses.TRIAL REGISTRATIONClinicalTrials.gov NCT02207920.FUNDINGNational Institute of Allergy and Infectious Diseases (NIAID) grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069511, UM1 AI069470, UM1 AI069534, P30 AI450008, UM1 AI069439, UM1 AI069481, and UM1 AI069496; the National Center for Advancing Translational Sciences, NIH (grant UL1TR001873); and the Bill & Melinda Gates Foundation (grant OPP52845).


Subject(s)
AIDS Vaccines/administration & dosage , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , Immunization, Secondary , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Vaccines, DNA/administration & dosage , AIDS Vaccines/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Female , HIV Envelope Protein gp120/immunology , Humans , Male , Middle Aged , Vaccines, DNA/immunology
5.
Lancet HIV ; 6(11): e737-e749, 2019 11.
Article in English | MEDLINE | ID: mdl-31601541

ABSTRACT

BACKGROUND: Up to now, immunisation regimens that have been assessed for development of HIV vaccines have included purified envelope (Env) protein among the boosting components of the regimen. We postulated that co-administration of Env protein with either a DNA or NYVAC vector during priming would result in early generation of antibody responses to the Env V1/V2 region, which are important markers for effective protection against infection. We aimed to assess the safety and immunogenicity of a multivalent HIV vaccine including either DNA or NYVAC vectors alone or in combination with Env glycoprotein (gp120) followed by a co-delivered NYVAC and Env protein boost. METHODS: We did a single-centre, double-blind, placebo-controlled phase 1b trial at the Centre Hospitalier Universitaire Vaudois (Lausanne, Switzerland). We included healthy volunteers aged 18-50 years who were at low risk of HIV infection. We randomly allocated participants using computer-generated random numbers to one of four vaccination schedules or placebo (4:1), and within these schedules participants were allocated either active treatment (T1, T2, T3, and T4) or placebo (C1, C2, C3, and C4). T1 consisted of two doses of NYVAC vector followed by two doses of NYVAC vector and gp120 Env protein; T2 comprised four doses of NYVAC vector and gp120 Env protein; T3 was two doses of DNA vector followed by two doses of NYVAC vector and gp120 Env protein; and T4 was two doses of DNA vector and gp120 Env protein followed by two doses of NYVAC vector and gp120 Env protein. Placebo injections were matched to the corresponding active treatment group. Doses were administered by injection at months 0, 1, 3, and 6. Primary outcomes were safety and immunogenicity of the vaccine schedules. Immune response measures included cross-clade and epitope-specific binding antibodies, neutralising antibodies, and antibody-dependent cell-mediated cytotoxicity measured 2 weeks after the month 1, 3, and 6 vaccinations. This trial is registered with ClinicalTrials.gov, NCT01799954. FINDINGS: Between Aug 23, 2012, and April 18, 2013, 148 healthy adult volunteers were screened for the trial, of whom 96 participants were enrolled. 20 individuals were allocated to each active treatment group (groups T1-4; n=80) and four were assigned to each placebo group (groups C1-4; n=16). Vaccines containing the NYVAC vector (groups T1 and T2) were associated with more frequent severe reactogenicity and more adverse events than were vaccines containing the DNA vector (groups T3 and T4). The most frequent adverse events judged related to study product were lymphadenopathy (n=9) and hypoaesthesia (n=2). Two participants, one in the placebo group and one in the DNA-primed T3 group, had serious adverse events that were judged unrelated to study product. One participant in the T3 group died from cranial trauma after a motor vehicle accident. Across the active treatment groups, IgG responses 2 weeks after the 6-month dose of vaccine were 74-95%. Early administration of gp120 Env protein (groups T2 and T4) was associated with a substantially earlier and higher area under the curve for gp120 Env binding, production of anti-V1/V2 and neutralising antibodies, and better antibody-response coverage over a period of 18 months, compared with vaccination regimens that delayed administration of gp120 Env protein until the 3-month vaccination (groups T1 and T3). INTERPRETATION: Co-administration of gp120 Env protein components with DNA or NYVAC vectors during priming led to early and potent induction of Env V1/V2 IgG binding antibody responses. This immunisation approach should be considered for induction of preventive antibodies in future HIV vaccine efficacy trials. FUNDING: National Institutes of Health, National Institute of Allergy and Infectious Diseases, and the Bill & Melinda Gates Foundation.


Subject(s)
AIDS Vaccines/administration & dosage , Antibodies, Neutralizing/metabolism , HIV Antibodies/metabolism , HIV Envelope Protein gp120/administration & dosage , HIV Infections/prevention & control , Vaccines, DNA/administration & dosage , AIDS Vaccines/adverse effects , AIDS Vaccines/immunology , Adult , Area Under Curve , Double-Blind Method , Drug Administration Schedule , Drug Therapy, Combination , Female , HIV Envelope Protein gp120/adverse effects , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , Humans , Male , Middle Aged , Vaccines, DNA/adverse effects , Vaccines, DNA/immunology , Young Adult
6.
Curr Opin HIV AIDS ; 14(4): 309-317, 2019 07.
Article in English | MEDLINE | ID: mdl-30994501

ABSTRACT

PURPOSE OF REVIEW: In humans, only one independent immunologic correlate of reduced risk of HIV infection has been identified: a robust antibody (Ab) response to the V1V2 domain of the gp120 envelope (Env) protein. In recent years, the presence and level of V1V2-specific Abs has also been correlated with protection from SIV and SHIV infections. Here, we review the multitude of studies showing the in-vivo protective effects of V1V2 Abs and review their immunologic characteristics and antiviral functions. RECENT FINDINGS: Structural and immunologic studies have defined four epitope families in the V1V2 domain: one epitope family, V2q, which preferentially presents as a quaternary structure of the Env trimer, and another epitope family (V2qt) which requires the quaternary trimeric Env structure; these two epitope types are recognized by two families of monoclonal Abs (mAbs)-V2q-specific and V2qt-specific mAbs-which display broad and potent neutralizing activity. A third epitope family, V2i, is present as a discontinuous conformational structure that overlays the α4ß7 integrin binding motif, and a fourth epitope family (V2p) exists on V2 peptides. Antibodies specific for V2i and V2p epitopes display only poor neutralizing activity but effectively mediate other antiviral activities and have been correlated with control of and/or protection from HIV, SIV and SHIV. Notably, V2q and V2qt Abs have not been induced by any vaccines, but V2p and V2i Abs have been readily induced with various vaccines in nonhuman primates and humans. SUMMARY: The correlation of vaccine-induced V2p and V2i Abs with protection from HIV, SIV and SHIV suggests that these Ab types are extremely important to induce with prophylactic vaccines.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics
7.
J Neuroimmune Pharmacol ; 14(3): 375-382, 2019 09.
Article in English | MEDLINE | ID: mdl-30905008

ABSTRACT

HIV-1 infection causes chronic neuroinflammation resulting in cognitive decline associated with diminution of survival of neural stem cells (NSC). In part, this is attributable to production of toxic viral proteins (gp120 and tat) by infected cells in the brain that can activate microglia. Here, we evaluated a novel model for HIV-1 neuropathogenesis by direct administration of viral proteins into the hippocampus. Chronic administration of either HIV-1 gp120 or tat over 14 days significantly decreased NSC proliferation, survival and neuroblast formation (by 32-37%) within the hippocampal subgranular zone as detected by doublecortin/BrdU or Ki67-positive cells. Intrahippocampal administration of gp120 or tat induced microglial activation within the hippocampus as determined by increases in microglial number and increases in the volume of the microglia (2.5-3-fold, evaluated by double IBA-1/CD68 staining). We further assessed inflammatory responses within the hippocampus by RNAseq and Ingenuity Pathway Analysis. There was a significant mRNA upregulation of numerous inflammatory mediators including Il1b, Icam1, Il12a, Ccl2, and Ccl4. These data suggest that chronic administration induces a prolonged inflammatory state within the hippocampus that negatively affects NSC survival potentially leading to cognitive dysfunction. Graphical Abstract.


Subject(s)
AIDS Dementia Complex/etiology , Disease Models, Animal , HIV Envelope Protein gp120/toxicity , HIV-1/pathogenicity , Hippocampus/drug effects , Inflammation/chemically induced , Neural Stem Cells/drug effects , tat Gene Products, Human Immunodeficiency Virus/toxicity , Animals , HIV Envelope Protein gp120/administration & dosage , Hippocampus/metabolism , Hippocampus/pathology , Inflammation Mediators/metabolism , Infusions, Parenteral , Mice , Mice, Inbred C57BL , Microglia/physiology , Neural Stem Cells/pathology , Neurogenesis , Random Allocation , Recombinant Proteins/administration & dosage , Recombinant Proteins/toxicity , Sequence Analysis, RNA , tat Gene Products, Human Immunodeficiency Virus/administration & dosage
8.
Virol Sin ; 33(6): 502-514, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30569292

ABSTRACT

The development of a vaccine based on human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) that elicits potent protective antibodies against infection has been challenging. Recently, we compared the antibody production patterns of HIV-1 Env gp120 and hepatitis B virus surface antigen (HBsAg) to provide insights into how we may improve the protective efficacy of Env-based immunogens. Our previous study showed that HIV Env and HBsAg display different mechanisms of antibody elicitation and that T cells facilitate the responses to repeated immunizations. Here, to elucidate the detailed roles of primary immunization in immune memory response formation and antibody production, we immunized C57BL/6 mice with each antigen and evaluated the development of T follicular helper (Tfh) cells, germinal centers, and the memory responses involved in prime and boost immunizations. We found that after prime immunization, compared with HBsAg, gp120 induced higher frequencies of Tfh cells and programmed death (PD)-1+ T cells, greater major histocompatibility complex II expression on B cells, comparable activated B cells, but weaker germinal center (GC) reactions and memory B cell responses in the draining lymph nodes, accompanied by slower antibody recall responses and poor immune memory responses. The above results suggested that more PD-1+ T cells arising in primary immunization may serve as major contributors to the slow antibody recall response elicited by HIV-1 Env.


Subject(s)
Antibodies, Viral/blood , HIV Envelope Protein gp120/immunology , Hepatitis B Surface Antigens/immunology , Immunoglobulin G/blood , Immunologic Memory , Animals , Antibody Formation , B-Lymphocytes/immunology , Female , Germinal Center/immunology , HIV Envelope Protein gp120/administration & dosage , Hepatitis B Surface Antigens/administration & dosage , Immunization , Immunization, Secondary , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Th1 Cells/immunology
9.
J Virol ; 92(20)2018 10 15.
Article in English | MEDLINE | ID: mdl-30089691

ABSTRACT

Toward the goal of developing an effective HIV vaccine that can be administered in infancy to protect against postnatal and lifelong sexual HIV transmission risks, the current pilot study was designed to compare the effect of novel adjuvants on the induction of HIV Env-specific antibody responses in infant macaques. Aligning our studies with the adjuvanted proteins evaluated in a prime-boost schedule with ALVAC in the ongoing HVTN (HIV Vaccine Trials Network) 702 efficacy trial, we selected the bivalent clade C Env immunogens gp120 C.1086 and gp120 TV1 in combination with the MF59 adjuvant. However, we hypothesized that the adjuvant system AS01, that is included in the pediatric RTS,S malaria vaccine, would promote Env-specific antibody responses superior to those of the oil-in-water MF59 emulsion adjuvant. In a second study arm, we compared two emulsions, glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) and 3M-052-SE, containing Toll-like receptor 4 (TLR4) and TLR7/TLR8 (TLR7/8) ligand, respectively. The latter adjuvant had been previously demonstrated to be especially effective in activating neonatal antigen-presenting cells. Our results demonstrate that different adjuvants drive quantitatively or qualitatively distinct responses to the bivalent Env vaccine. AS01 induced higher Env-specific plasma IgG antibody levels than the antigen in MF59 and promoted improved antibody function in infants, and 3M-052-SE outperformed GLA-SE by inducing the highest breadth and functionality of antibody responses. Thus, distinct adjuvants are likely to be required for maximizing vaccine-elicited immune responses in infants, particularly when immunization in infancy aims to elicit both perinatal and lifelong immunity against challenging pathogens such as HIV.IMPORTANCE Alum remains the adjuvant of choice for pediatric vaccines. Yet the distinct nature of the developing immune system in infants likely requires novel adjuvants targeted specifically at the pediatric population to reach maximal vaccine efficacy with an acceptable safety profile. The current study supports the idea that additional adjuvants for pediatric vaccines should be, and need to be, tested in infants for their potential to enhance immune responses. Using an infant macaque model, our results suggest that both AS01 and 3M-052-SE can significantly improve and better sustain HIV Env-specific antibody responses than alum. Despite the limited number of animals, the results revealed interesting differences that warrant further testing of promising novel adjuvant candidates in larger preclinical and clinical studies to define the mechanisms leading to adjuvant-improved antibody responses and to identify targets for adjuvant and vaccine optimization.


Subject(s)
AIDS Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Antibody Formation , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , AIDS Vaccines/administration & dosage , Animals , Animals, Newborn , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , HIV Envelope Protein gp120/administration & dosage , Immunoglobulin G/blood , Macaca mulatta
10.
Lancet HIV ; 5(7): e366-e378, 2018 07.
Article in English | MEDLINE | ID: mdl-29898870

ABSTRACT

BACKGROUND: Modest efficacy was reported for the HIV vaccine tested in the RV144 trial, which comprised a canarypox vector (ALVAC) and envelope (env) glycoprotein (gp120). These vaccine components were adapted to express HIV-1 antigens from strains circulating in South Africa, and the adjuvant was changed to increase immunogenicity. Furthermore, 12-month immunisation was added to improve durability. In the HIV Vaccine Trials Network (HVTN) 100 trial, we aimed to assess this new regionally adapted regimen for advancement to efficacy testing. METHODS: HVTN 100 is a phase 1/2, randomised controlled, double-blind trial at six community research sites in South Africa. We randomly allocated adults (aged 18-40 years) without HIV infection and at low risk of HIV infection to either the vaccine regimen (intramuscular injection of ALVAC-HIV vector [vCP2438] at 0, 1, 3, 6, and 12 months plus bivalent subtype C gp120 and MF59 adjuvant at 3, 6, and 12 months) or placebo, in a 5:1 ratio. Randomisation was done by computer-generated list. Participants, investigators, and those assessing outcomes were masked to random assignments. Primary outcomes included safety and immune responses associated with correlates of HIV risk in RV144, 2 weeks after vaccination at 6 months (month 6·5). We compared per-protocol participants (ie, those who completed the first four vaccinations and provided samples at month 6·5) from HVTN 100 with stored RV144 samples assayed contemporaneously. This trial is registered with the South African National Clinical Trials Registry (DOH-27-0215-4796) and ClinicalTrials.gov (NCT02404311). FINDINGS: Between Feb 9, 2015, and May 26, 2015, 252 participants were enrolled, of whom 210 were assigned vaccine and 42 placebo. 222 participants were included in the per-protocol analysis (185 vaccine and 37 placebo). 185 (100%) vaccine recipients developed IgG binding antibodies to all three vaccine-matched gp120 antigens with significantly higher titres (3·6-8·8 fold; all p<0·0001) than the corresponding vaccine-matched responses of RV144. The CD4+ T-cell response to the ZM96.C env protein in HVTN 100 was 56·4% (n=102 responders), compared with a response of 41·4% (n=79 responders) to 92TH023.AE in RV144 (p=0·0050). The IgG response to the 1086.C variable loops 1 and 2 (V1V2) env antigen in HVTN 100 was 70·5% (95% CI 63·5-76·6; n=129 responders), lower than the response to V1V2 in RV144 (99·0%, 95% CI 96·4-99·7; n=199 responders). INTERPRETATION: Although the IgG response to the HVTN 100 vaccine was lower than that reported in RV144, it exceeded the predicted 63% threshold needed for 50% vaccine efficacy using a V1V2 correlate of protection model. Thus, the subtype C HIV vaccine regimen qualified for phase 2b/3 efficacy testing, a critical next step of vaccine development. FUNDING: US National Institute of Allergy and Infectious Diseases (NIAID), and Bill & Melinda Gates Foundation.


Subject(s)
AIDS Vaccines/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/prevention & control , HIV-1/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/adverse effects , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Double-Blind Method , Female , Genetic Vectors , HIV Antibodies/blood , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , Humans , Immunoglobulin G/blood , Male , Polysorbates/administration & dosage , South Africa/epidemiology , Squalene/administration & dosage , Vaccination , Young Adult
11.
Virology ; 514: 106-117, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29175625

ABSTRACT

HIV-1 envelope (Env)-based vaccines have so far largely failed to induce antibodies that prevent HIV-1 infection. One factor proposed to limit the immunogenicity of cell-associated Env is its low level of expression on the cell surface, restricting accessibility to antibodies. Using a vaccinia prime/protein boost protocol in mice, we explored the immunologic effects of mutations in the Env cytoplasmic tail (CT) that increased surface expression, including partial truncation and ablation of a tyrosine-dependent endocytosis motif. After vaccinia primes, CT-modified Envs induced up to 7-fold higher gp120-specific IgG, and after gp120 protein boosts, they elicited up to 16-fold greater Tier-1 HIV-1 neutralizing antibody titers, although results were variable between isolates. These data indicate that the immunogenicity of HIV-1 Env in a prime/boost vaccine can be enhanced in a strain-dependent manner by CT mutations that increase Env surface expression, thus highlighting the importance of the prime in this vaccine format.


Subject(s)
HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Vaccinia virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Formation , Female , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/genetics , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , Humans , Immunization, Secondary , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL
12.
J Virol ; 92(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29021402

ABSTRACT

In the RV144 vaccine trial, IgG responses against the HIV envelope variable loops 1 and 2 (V1V2) were associated with decreased HIV acquisition risk. We previously reported that infants immunized with an MF59-adjuvanted rgp120 vaccine developed higher-magnitude anti-V1V2 IgG responses than adult RV144 vaccinees. To determine whether the robust antibody response in infants is due to differences in vaccine regimens or to inherent differences between the adult and infant immune systems, we compared Env-specific IgG responses in adults and infants immunized with the same MF59- and alum-adjuvanted HIV envelope vaccines. At peak immunogenicity, the magnitudes of the gp120- and V1V2-specific IgG responses were comparable between adults and infants immunized with the alum/MNrgp120 vaccine (gp120 median fluorescence intensities [FIs] in infants = 7,118 and in adults = 11,510, P = 0.070; V1V2 median MFIs of 512 [infants] and 804 [adults], P = 0.50), whereas infants immunized with the MF59/SF-2 rgp120 vaccine had higher-magnitude antibody levels than adults (gp120 median FIs of 15,509 [infants] and 2,290 [adults], P < 0.001; V1V2 median FIs of 23,926 [infants] and 1,538 [adults]; P < 0.001). Six months after peak immunogenicity, infants maintained higher levels Env-specific IgG than adults. Anti-V1V2 IgG3 antibodies that were associated with decreased HIV-1 risk in RV144 vaccinees were present in 43% of MF59/rgp120-vaccinated infants but only in 12% of the vaccinated adults (P = 0.0018). Finally, in contrast to the rare vaccine-elicited Env-specific IgA in infants, rgp120 vaccine-elicited Env-specific IgA was frequently detected in adults. Our results suggest that vaccine adjuvants differently modulate gp120-specific antibody responses in adults and infants and that infants can robustly respond to HIV Env immunization.IMPORTANCE More than 150,000 pediatric HIV infections occur yearly, despite the availability of antiretroviral prophylaxis. A pediatric HIV vaccine could reduce the number of these ongoing infant infections and also prime for long-term immunity prior to sexual debut. We previously reported that immunization of infants with an MF59-adjuvanted recombinant gp120 vaccine induced higher-magnitude, potentially protective anti-V1V2 IgG responses than in adult vaccinees receiving the moderately effective RV144 vaccine. In the present study, we demonstrate that the robust response observed in infants is not due to differences in vaccine regimen or vaccine dose between adults and infants. Our results suggest that HIV vaccine adjuvants may differentially modulate immune responses in adults and infants, highlighting the need to conduct vaccine trials in pediatric populations.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , Immunogenicity, Vaccine , Immunoglobulin G/blood , Squalene/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic , Adult , Age Factors , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Infant , Polysorbates/administration & dosage , Squalene/administration & dosage , Vaccination
14.
J Gen Virol ; 98(8): 2143-2155, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28758637

ABSTRACT

The partial success of the RV144 trial underscores the importance of envelope-specific antibody responses for an effective HIV-1 vaccine. Oligomeric HIV-1 envelope proteins delivered with a potent adjuvant are expected to elicit strong antibody responses with broad neutralization specificity. To test this hypothesis, two SIV envelope proteins were formulated with delta inulin-based adjuvant (Advax) and used to immunize nonhuman primates. Oligomeric gp140-gp145 from SIVmac251 and SIVsmE660 was purified to homogeneity. Oligomers showed high-affinity interaction with CD4 and were highly immunogenic in rabbits, inducing Tier 2 SIV-neutralizing antibodies. The immunogenicity of an oligomeric Env DNA prime and protein boost together with Advax was evaluated in Chinese rhesus macaques. DNA administration elicited antibodies to both envelopes, and titres were markedly enhanced following homologous protein boosts via intranasal and intramuscular routes. Strong antibody responses were detected against the V1 and V2 domains of gp120. During peak immune responses, a low to moderate level of neutralizing activity was detected against Tier 1A/1B SIV isolates, with a moderate level noted against a Tier 2 isolate. Increased serum antibody affinity to SIVmac251 gp140 and generation of Env-specific memory B cells were observed in the immunized macaques. Animals were subjected to low-dose intravaginal challenge with SIVmac251 one week after the last protein boost. One out of three immunized animals was protected from infection. Although performed with a small number of macaques, this study demonstrates the utility of oligomeric envelopes formulated with Advax in eliciting broad antibody responses with the potential to provide protection against SIV transmission.


Subject(s)
Antibodies, Viral/immunology , DNA, Viral/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/immunology , DNA, Viral/administration & dosage , DNA, Viral/genetics , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/genetics , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Inulin/administration & dosage , Macaca mulatta , Rabbits , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Immunodeficiency Virus/genetics , Vaccination
15.
Brain Res Bull ; 130: 81-89, 2017 04.
Article in English | MEDLINE | ID: mdl-28065732

ABSTRACT

Glycoprotein 120 (gp120) is an HIV envelope glycoprotein. Gp120 can directly stimulate the primary sensory afferent neurons and cause hyperalgesia. The P2X3 receptor in dorsal root ganglia (DRG) is involved in the transmission of pain. In this study, we aimed to explore the role of the P2X3 receptor in gp120-induced neuropathic pain. Our data showed that mechanical and thermal hyperalgesia in rats treated with gp120 were increased compared to those in the control group. The expression levels of the P2X3 mRNA and protein in rats treated with gp120 were higher than those in the control group. The P2X3 antagonist A317491 decreased mechanical hyperalgesia and thermal hyperalgesia and the up-regulated expression levels of P2X3 mRNA and protein in rats treated with gp120. A317491 decreased ERK1/2 phosphorylation levels in the gp120-treated rat DRG. In addition, P2X3 agonist α,ß-methylene ATP (α,ß-meATP)-activated currents in DRG neurons cultured with gp120 were higher than those in control neurons. The inhibitory effect of A317491 on α,ßme-ATP-induced currents in DRG neurons from the gp120-treated neurons was larger than that for control neurons. Molecular docking data showed that A317491 may be acted in the gp120 protein to inhibit the gp120 initiated the P2X3 activation, decrease the sensitizing DRG primary afferents and reduce the signal transmission of neuropathic pain in gp120-treated rats. Therefore, the inhibition of the P2X3 receptor in rat DRG neurons relieved gp120-induced mechanical hyperalgesia.


Subject(s)
Ganglia, Spinal/metabolism , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Phenols/administration & dosage , Polycyclic Compounds/administration & dosage , Purinergic P2X Receptor Antagonists/administration & dosage , Receptors, Purinergic P2X3/metabolism , Adenosine Triphosphate/administration & dosage , Adenosine Triphosphate/analogs & derivatives , Animals , Ganglia, Spinal/drug effects , Hyperalgesia/chemically induced , MAP Kinase Signaling System , Male , Molecular Docking Simulation , Neuralgia/chemically induced , Neurons/drug effects , Neurons/physiology , Pain Threshold , Purinergic P2X Receptor Agonists/administration & dosage , RNA, Messenger/metabolism , Rats, Sprague-Dawley
16.
JCI Insight ; 1(20): e88522, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27942585

ABSTRACT

The ALVAC prime/ALVAC + AIDSVAX B/E boost RV144 vaccine trial induced an estimated 31% efficacy in a low-risk cohort where HIV­1 exposures were likely at mucosal surfaces. An immune correlates study demonstrated that antibodies targeting the V2 region and in a secondary analysis antibody-dependent cellular cytotoxicity (ADCC), in the presence of low envelope-specific (Env-specific) IgA, correlated with decreased risk of infection. Thus, understanding the B cell repertoires induced by this vaccine in systemic and mucosal compartments are key to understanding the potential protective mechanisms of this vaccine regimen. We immunized rhesus macaques with the ALVAC/AIDSVAX B/E gp120 vaccine regimen given in RV144, and then gave a boost 6 months later, after which the animals were necropsied. We isolated systemic and intestinal vaccine Env-specific memory B cells. Whereas Env-specific B cell clonal lineages were shared between spleen, draining inguinal, anterior pelvic, posterior pelvic, and periaortic lymph nodes, members of Env­specific B cell clonal lineages were absent in the terminal ileum. Env­specific antibodies were detectable in rectal fluids, suggesting that IgG antibodies present at mucosal sites were likely systemically produced and transported to intestinal mucosal sites.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/classification , HIV Envelope Protein gp120/immunology , HIV Infections/prevention & control , Immunity, Mucosal , Animals , HIV Antibodies/analysis , HIV Envelope Protein gp120/administration & dosage , Immunization, Secondary , Immunoglobulin G/analysis , Macaca mulatta
17.
Proc Natl Acad Sci U S A ; 113(43): E6639-E6648, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27702895

ABSTRACT

Natural infections expose the immune system to escalating antigen and inflammation over days to weeks, whereas nonlive vaccines are single bolus events. We explored whether the immune system responds optimally to antigen kinetics most similar to replicating infections, rather than a bolus dose. Using HIV antigens, we found that administering a given total dose of antigen and adjuvant over 1-2 wk through repeated injections or osmotic pumps enhanced humoral responses, with exponentially increasing (exp-inc) dosing profiles eliciting >10-fold increases in antibody production relative to bolus vaccination post prime. Computational modeling of the germinal center response suggested that antigen availability as higher-affinity antibodies evolve enhances antigen capture in lymph nodes. Consistent with these predictions, we found that exp-inc dosing led to prolonged antigen retention in lymph nodes and increased Tfh cell and germinal center B-cell numbers. Thus, regulating the antigen and adjuvant kinetics may enable increased vaccine potency.


Subject(s)
AIDS Vaccines/administration & dosage , Antibodies, Viral/biosynthesis , B-Lymphocytes/drug effects , Germinal Center/drug effects , HIV Envelope Protein gp120/administration & dosage , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Animals , Antibody Affinity , B-Lymphocytes/cytology , B-Lymphocytes/immunology , CHO Cells , Cricetulus , Drug Administration Schedule , Female , Germinal Center/cytology , Germinal Center/immunology , HEK293 Cells , HIV Envelope Protein gp120/biosynthesis , Humans , Immunogenicity, Vaccine , Infusion Pumps, Implantable , Lipid A/administration & dosage , Lipid A/analogs & derivatives , Mice , Mice, Inbred C57BL , Osmotic Pressure , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/biosynthesis , Vaccination/instrumentation
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 32(7): 891-5, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-27363267

ABSTRACT

Objective To explore the protective effect of naringin on cognitive disorders induced by HIV-1-enveloped glycoprotein 120 (gp120) mediated by the P2X7 receptor in rats. Methods The Morris water maze (MWM) test was used to evaluate the effect of naringin on cognitive dysfunction induced by gp120 intraventricular perfusion in the rat models of dementia. The expression levels of P2X7 receptor mRNA and protein in hippocampus tissues were detected by reverse transcription PCR (RT-PCR) and Western blotting, respectively. Results The MWM test showed that compared with the gp120 model group, the naringin treatment group showed significantly faster escape latencies and reduced searching target errors. RT-PCR and Western blotting showed that the expressions of P2X7 receptor mRNA and protein were reduced in the hippocampus of rats in the naringin treatment group compared with the gp120 model group. Conclusion Naringin may againsts learning and memory dysfunction induced by gp120, which may counter the up-regulated expression of the P2X7 receptor in the hippocampus of rats.


Subject(s)
Flavanones/pharmacology , HIV Envelope Protein gp120/toxicity , Learning Disabilities/prevention & control , Memory Disorders/prevention & control , Animals , Avoidance Learning/drug effects , Blotting, Western , Dementia/chemically induced , Dementia/physiopathology , Dementia/prevention & control , Disease Models, Animal , Female , Gene Expression/drug effects , HIV Envelope Protein gp120/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Injections, Intraventricular , Learning Disabilities/chemically induced , Learning Disabilities/physiopathology , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Perfusion , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
Mol Biol (Mosk) ; 50(3): 406-15, 2016.
Article in Russian | MEDLINE | ID: mdl-27414779

ABSTRACT

An ideal protective HIV-1 vaccine can elicit broadly neutralizing antibodies, capable of preventing HIV transmission. The strategies of designing vaccines include generation of soluble recombinant proteins which mimic the native Env complex and are able to enhance the immunogenicity of gp120. Recent data indicate that the cytoplasmic tail (CT) of the Env protein has multiple functions, which can affect the early steps of infection, as well as viral assembly and antigenic properties. Modifications in the CT can be used to induce conformational changes in functional regions of gp120 and to stabilize the trimeric structure, avoiding immune misdirection and induction of non-neutralizing antibody responses. Env-trimers with modified CTs in virus-like particles (VLPs) are able to induce antibodies with broad spectrum neutralizing activity and high avidity and have the potential for developing an effective vaccine against HIV.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/biosynthesis , HIV Envelope Protein gp120/immunology , HIV Infections/prevention & control , Protein Processing, Post-Translational , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Amino Acid Motifs , Antibodies, Neutralizing/biosynthesis , Glycosylation , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Humans , Immunity, Humoral/drug effects , Immunogenicity, Vaccine , Protein Domains , Protein Multimerization , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines, Virus-Like Particle
20.
J Virol ; 90(10): 4951-4965, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26937027

ABSTRACT

UNLABELLED: Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE: Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , HIV Antibodies/analysis , HIV-1/immunology , Immunoglobulin A/analysis , Lactation , Milk/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , Female , HIV Antibodies/blood , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/immunology , Humans , Immunity, Maternally-Acquired , Immunity, Mucosal , Immunization, Secondary , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Macaca mulatta , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...