Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Electron. j. biotechnol ; Electron. j. biotechnol;39: 1-7, may. 2019. graf
Article in English | LILACS | ID: biblio-1051553

ABSTRACT

BACKGROUND: Juglone is a naphthoquinone currently obtained by chemical synthesis with biological activities including antitumor activity. Additionally, juglone is present in the green husk of walnut, which suggests evaluating the effect of GH extracts on carcinogenic cell lines. RESULTS: Walnut green husk ethanolic extract was obtained as 169.1 mg juglone/100 g Green Husk and antioxidant activity (ORAC) of 44,920 µmol Trolox Equivalent/100 g DW Green Husk. At 1 µM juglone in HL-60 cell culture, green husk extract showed an antiproliferative effect, but pure juglone did not; under these conditions, normal fibroblast cells were not affected. A dose-dependent effect on mitochondrial membrane potential loss was observed. Apoptosis of HL-60 was detected at 10 µM juglone. Despite high ORAC values, neither purified juglone nor the extract showed protective effects on HL-60 cells under oxidative conditions. CONCLUSIONS: Green husk extract generates an antiproliferative effect in HL-60 cells, which is related to an induction of the early stages of apoptosis and a loss of mitochondrial membrane potential. The normal cells were not affected when juglone is present at concentrations of 1 µM, while at higher concentrations, there is loss of viability of both cancerous and healthy cells.


Subject(s)
Apoptosis , HL-60 Cells/metabolism , Juglans/chemistry , Polyphenols/metabolism , Antioxidants/metabolism , Cell Survival , Chromatography, High Pressure Liquid , Cell Culture Techniques , Membrane Potential, Mitochondrial
2.
Redox Biol ; 16: 179-188, 2018 06.
Article in English | MEDLINE | ID: mdl-29510342

ABSTRACT

Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl-/H2O2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity.


Subject(s)
Neutrophils/metabolism , Peroxides/metabolism , Pseudomonas aeruginosa/drug effects , Uric Acid/analogs & derivatives , Uric Acid/metabolism , Catalysis , Cell Differentiation/genetics , Free Radicals/metabolism , Glutathione/metabolism , HL-60 Cells/metabolism , HL-60 Cells/microbiology , Humans , Hydrogen Peroxide/metabolism , Hypochlorous Acid/chemistry , Neutrophils/microbiology , Oxidants/metabolism , Oxidation-Reduction/drug effects , Peroxides/chemistry , Pseudomonas aeruginosa/pathogenicity , Uric Acid/chemistry
3.
Biochem J ; 381(Pt 2): 495-501, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15018615

ABSTRACT

We studied the expression and function of the IL (interleukin)-3 and IL-5 family of receptors in male germ cells. RT (reverse transcription)-PCR showed expression of mRNAs encoding the alpha and beta subunits of the IL-3 and IL-5 receptors in human testis, and the presence of IL-3 and IL-5 receptors alpha and beta proteins was confirmed by immunoblotting with anti-alpha and anti-beta antibodies. The immunolocalization studies showed expression of these receptors in the germ line in the human testis and in human and bovine ejaculated spermatozoa. Functional studies with bull spermatozoa indicated that IL-3 signalled for increased uptake of hexoses in these cells at picomolar concentrations compatible with expression of functional high-affinity IL-3 receptors in these cells. In contrast, IL-5 failed to induce increased hexose uptake in bull spermatozoa. Experiments using HL-60 eosinophils that express functional IL-3 and IL-5 receptors confirmed that IL-3, but not IL-5, signalled for increased hexose uptake. Our findings suggest that differential signalling for increased hexose uptake by heteromeric high-affinity IL-3 and IL-5 receptors in mammalian spermatozoa is a property that depends on the identity of the alpha-subunit forming part of the alphabeta-complex and is not a property specific to the germ cells.


Subject(s)
Hexoses/metabolism , Interleukin-3/metabolism , Interleukin-5/metabolism , Signal Transduction/genetics , Spermatozoa/metabolism , Animals , Cattle , Cell Line, Tumor , Gene Expression Regulation, Developmental/genetics , Germ Cells/chemistry , Germ Cells/metabolism , HL-60 Cells/chemistry , HL-60 Cells/metabolism , Hematopoietic Stem Cells/chemistry , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Interleukin-3/genetics , Interleukin-3/pharmacology , Interleukin-3/physiology , Interleukin-5/genetics , Interleukin-5/pharmacology , Interleukin-5/physiology , Male , Protein Subunits/genetics , RNA, Messenger/genetics , Receptors, Interleukin/genetics , Receptors, Interleukin-3/genetics , Receptors, Interleukin-5 , Semen/cytology , Spermatozoa/chemistry , Spermatozoa/cytology , Spermatozoa/drug effects , Testis/chemistry , Testis/metabolism
4.
Cell Death Differ ; 10(5): 592-8, 2003 May.
Article in English | MEDLINE | ID: mdl-12728257

ABSTRACT

Bcr-Abl is one of the most potent antiapoptotic molecules and is the tyrosine-kinase implicated in Philadelphia (Ph) chromosome-positive leukemia. It is still obscure how Bcr-Abl provides the leukemic cell a strong resistance to chemotherapeutic drugs. A rational drug development produced a specific inhibitor of the catalytic activity of Bcr-Abl called STI571. This drug was shown to eliminate Bcr-Abl-positive cells both in vitro and in vivo, although resistant cells may appear in culture and relapse occurs in some patients. In the study described here, Bcr-Abl-positive cells treated with tyrosine-kinase inhibitors such as herbimycin A, genistein or STI571 lost their phosphotyrosine-containing proteins, but were still extremely resistant to apoptosis. Therefore, in the absence of tyrosine-kinase activity, Bcr-Abl-positive cells continue to signal biochemically to prevent apoptosis induced by chemotherapeutic drugs. We propose that secondary antiapoptotic signals are entirely responsible for the resistance of Bcr-Abl-positive cells. Precise determination of such signals and rational drug development against them should improve the means to combat Ph chromosome-positive leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Fusion Proteins, bcr-abl/metabolism , Piperazines/pharmacology , Protein-Tyrosine Kinases/metabolism , Pyrimidines/pharmacology , Benzamides , Benzoquinones , Blotting, Western , Caspases/metabolism , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/antagonists & inhibitors , Genistein/pharmacology , HL-60 Cells/drug effects , HL-60 Cells/metabolism , Humans , Imatinib Mesylate , K562 Cells/drug effects , K562 Cells/metabolism , Lactams, Macrocyclic , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinones/pharmacology , Rifabutin/analogs & derivatives , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL