Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786080

ABSTRACT

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Subject(s)
HLA-C Antigens , Hemochromatosis Protein , Lysosomes , Proprotein Convertase 9 , Protein Transport , Receptors, LDL , Humans , Receptors, LDL/metabolism , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Hemochromatosis Protein/metabolism , Hemochromatosis Protein/genetics , HLA-C Antigens/metabolism , Lysosomes/metabolism , HEK293 Cells , Protein Binding
2.
Helicobacter ; 29(2): e13069, 2024.
Article in English | MEDLINE | ID: mdl-38516860

ABSTRACT

Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.


Subject(s)
Adenocarcinoma , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Helicobacter Infections/genetics , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Histocompatibility Antigens Class I/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Receptors, Immunologic/metabolism , Receptors, KIR/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
3.
Cytotherapy ; 25(7): 728-738, 2023 07.
Article in English | MEDLINE | ID: mdl-36890092

ABSTRACT

BACKGROUND AIMS: Recently, immune escape has been considered as a factor leading to relapse of acute myeloid leukemia (AML). In our previous study, heme oxygenase 1 (HO-1) proved to play an essential role in the proliferation and drug resistance of AML cells. In addition, recent studies by our group have shown that HO-1 is involved in immune escape in AML. Nevertheless, the specific mechanism by which HO-1 mediates immune escape in AML remains unclear. METHODS: In this study, we found that patients with AML and an overexpression of HO-1 had a high rate of recurrence. In vitro, overexpression of HO-1 attenuated the toxicity of natural killer (NK) cells to AML cells. Further study indicated that HO-1 overexpression inhibited human leukocyte antigen-C and reduced the cytotoxicity of NK cells to AML cells, leading to AML relapse. Mechanistically, HO-1 inhibited human leukocyte antigen-C expression by activating the JNK/C-Jun signaling pathway. RESULTS: In AML, HO-1 inhibits cytotoxicity of NK cells by inhibiting the expression of HLA-C, thus causing immune escape of AML cells. CONCLUSIONS: NK cell-mediated innate immunity is important for the fight against tumors, especially when acquired immunity is depleted and dysfunctional, and the HO-1/HLA-C axis can induce functional changes in NK cells in AML. Anti-HO-1 treatment can promote the antitumor effect of NK cells and may play an important role in the treatment of AML.


Subject(s)
Heme Oxygenase-1 , Leukemia, Myeloid, Acute , Humans , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , HLA-C Antigens/metabolism , Leukemia, Myeloid, Acute/therapy , Killer Cells, Natural
4.
Int J Clin Pract ; 2023: 2291156, 2023.
Article in English | MEDLINE | ID: mdl-36974156

ABSTRACT

Objective: Endometriosis, which is a common disease affecting approximately 10% of women of reproductive age, usually causes dysmenorrhea and infertility, thus seriously harming the patients' physical and mental health. However, there is a mean delay of 6.7 years between the onset of the symptoms and the surgical diagnosis of endometriosis. There is an increasing amount of evidence that suggests that epigenetic aberrations, including deoxyribonucleic acid (DNA) methylation, play a definite role in the pathogenesis of endometriosis. This study aimed to explore the noninvasive or minimally invasive biomarkers of this disease. Materials and Methods: Six patients with surgically confirmed ovarian endometriosis and six patients who received IUD implantation for contraception without endometriosis were recruited in the East Hospital of Tongji University in 2018. The genome methylation profiling of the eutopic and ectopic endometrium of ovarian endometriosis patients and normal endometrial specimens from healthy women was determined using a methylation microarray test. The test screened methylation-differentiated 5'-C-phosphate-G-3' (CpG) sites and then located the target genes affected by these sites following sequence alignment. Then, an additional 22 patients and 26 healthy controls were enrolled to further verify the difference in the selected genes between endometriosis patients and healthy women. The differential DNA methylation of the selected genes was validated via direct bisulfite sequencing and analysis of their messenger ribonucleic acid (mRNA) levels using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: Fifteen differentially methylated CpG sites were found among the patients and healthy women, and five CpG sites were mapped to the introns of the human leukocyte antigen-C (HLA-C) gene; these were highly polymorphic between different HLA-C alleles and were HLA-C∗07 specific. The results indicated that the HLA-C∗07 carrier patients exhibited significantly higher DNA methylation levels at the intron VII of HLA-C compared to the HLA-C∗07 carrier healthy controls. High HLA-C∗07 mRNA levels were also observed using qRT-PCR with HLA-C∗07-specific primers, which indicated that the hypermethylation of CpG in intron VII might suppress a silencer that regulates HLA-C∗07 expressions. Conclusion: Deoxyribonucleic acid hypermethylation in the intron VII of the HLA-C∗07 gene appears to regulate the expression of HLA-C∗07. The aberrant DNA methylation in this region was positively correlated with the occurrence of endometriosis.


Subject(s)
DNA Methylation , Endometriosis , Humans , Female , DNA Methylation/genetics , Endometriosis/genetics , Endometriosis/metabolism , Introns/genetics , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA/metabolism
5.
Fertil Steril ; 120(1): 101-110, 2023 07.
Article in English | MEDLINE | ID: mdl-36828055

ABSTRACT

OBJECTIVE: To study the distribution and gene expression of endometrial immune cell populations, especially natural killer (NK) subsets, between assisted reproductive technology patients and healthy donors and explore a possible relationship of these results with patients' killer cell immunoglobulin-like receptor (KIR) genotypes and KIR-human antigen leukocyte-C (HLA-C) binding. DESIGN: Prospective observational cohort study. SETTING: Clinic and university laboratories. PATIENT(S): Participants included 39 women with recurrent miscarriages who had undergone in vitro fertilization cycles with donated oocytes and 21 healthy oocyte donors with proven fertility. INTERVENTION(S): Endometrial biopsy samples were collected from both patients and donors, and the KIR genotypes of the assisted reproductive technology patients were analyzed. MAIN OUTCOME MEASURE(S): Endometrial gene expression (cluster of differentiation [CD] antigens and anti-inflammatory and proinflammatory interleukins) and the number and percentage of regulatory T and NK cell populations in patients and donors were determined. Subsequently, the results obtained were categorized in the group of patients by KIR genotype. Killer cell immunoglobulin-like receptor-HLA-C binding was also examined in patients, considering their KIRs. RESULT(S): A higher percentage of CD56dimCD16+ NK cells were observed in patients than those in healthy donors. Nevertheless, when categorizing patients by KIR genotype and comparing the KIR AA (35.9%), AB (43.6%), and BB (20.5%) groups, no statistically significant difference was observed in either endometrial gene expression or any of the immune cell populations analyzed. Finally, no differences in binding between KIR and HLA-C molecules were registered among these 3 sets of patients. CONCLUSION(S): The reported increase in the number of NK cells with a cytotoxic profile in the endometrium of women with a history of recurrent miscarriages cannot alone explain these events because no relationship is observed between such cellular increase and the KIR genotypes, which individually, and in combination with the different HLA-C alleles, have also been associated, by previous studies, with negative reproductive outcomes. CLINICAL TRIAL REGISTRATION NUMBER: 1405-MAD-025-JG.


Subject(s)
Abortion, Habitual , Endometrium , Killer Cells, Natural , Female , Humans , Abortion, Habitual/etiology , Abortion, Habitual/immunology , Endometrium/pathology , Genotype , HLA-C Antigens/metabolism , Killer Cells, Natural/pathology , Prospective Studies , Receptors, KIR/genetics , Pregnancy
6.
Hum Immunol ; 84(2): 75-79, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36456304

ABSTRACT

Human cytomegalovirus (HCMV) is carried lifelong by ∼80 % of adults worldwide, generating distinct disease syndromes in transplant recipients, people with HIV (PWH) and neonates. Amino acids 15-23 encoded by the HCMV gene UL40 match positions 3-11 of HLA-A and HLA-C, and constitute a "signal peptide" able to stabilise cell surface HLA-E as a restriction element and a ligand of NKG2A and NKG2C. We present next generation sequencing of UL40 amplified from 15 Australian renal transplant recipients (RTR), six healthy adults and four neonates, and 21 Indonesian PWH. We found no groupwise associations between the presence of multiple sequences and HCMV burden (highest in PWH) or HCMV-associated symptoms in neonates. Homology between UL40 and corresponding HLA-C and HLA-A peptides in 11 RTR revealed perfect matches with HLA-C in three individuals, all carrying HCMV encoding only VMAPRTLIL - a peptide previously associated with viremia. However indices of the burden of HCMV did not segregate in our cohort.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Adult , Infant, Newborn , Humans , HLA-C Antigens/metabolism , Ligands , Killer Cells, Natural , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Australia , Peptides/metabolism , HLA-A Antigens/genetics , HLA-E Antigens
7.
Front Immunol ; 13: 1026076, 2022.
Article in English | MEDLINE | ID: mdl-36311731

ABSTRACT

Background: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults with a poor prognosis. B7 family is an important modulator of the immune response. However, its dysregulation and underlying molecular mechanism in UVM still remains unclear. Methods: Data were derived from TCGA and GEO databases. The prognosis was analyzed by Kaplan-Meier curve. The ESTIMATE algorithm, CIBERSORT algorithm, and TIMER database were used to demonstrate the correlation between B7 family and tumor immune microenvironment in UVM. Single-cell RNA sequencing was used to detect the expression levels of the B7 family in different cell types of UVM. UVM was classified into different types by consistent clustering. Enrichment analysis revealed downstream signaling pathways of the B7 family. The interaction between different cell types was visualized by cell chat. Results: The expression level of B7 family in UVM was significantly dysregulated and negatively correlated with methylation level. The expression of B7 family was associated with prognosis and immune infiltration, and B7 family plays an important role in the tumor microenvironment (TME). B7 family members were highly expressed in monocytes/macrophages of UVM compared with other cell types. Immune response and visual perception were the main functions affected by B7 family. The result of cell chat showed that the interaction between photoreceptor cells and immune-related cells was mainly generated by HLA-C-CD8A. CABP4, KCNJ10 and RORB had the strongest correlation with HLA-C-CD8A, and their high expression was significantly correlated with poor prognosis. CABP4 and RORB were specifically expressed in photoreceptor cells. Conclusions: Dysregulation of the B7 family in UVM is associated with poor prognosis and affects the tumor immune microenvironment. CABP4 and RORB can serve as potential therapeutic targets for UVM, which can be regulated by the B7 family to affect the visual perception and immune response function of the eye, thus influencing the prognosis of UVM.


Subject(s)
Tumor Microenvironment , Uveal Neoplasms , Humans , HLA-C Antigens/metabolism , Biomarkers, Tumor/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Calcium-Binding Proteins
8.
Front Immunol ; 13: 922252, 2022.
Article in English | MEDLINE | ID: mdl-35911762

ABSTRACT

NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.


Subject(s)
HIV Infections , HIV-1 , Genotype , HLA-C Antigens/metabolism , Histocompatibility Antigens Class I/genetics , Human Immunodeficiency Virus Proteins/genetics , Humans , Killer Cells, Natural , Ligands , Receptors, KIR/metabolism , Receptors, Natural Killer Cell/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins
9.
Nat Commun ; 13(1): 4398, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906236

ABSTRACT

Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.


Subject(s)
Fetal Growth Retardation , Trophoblasts , Animals , Cell Communication/genetics , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fetus/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Mice , Pregnancy , Trophoblasts/metabolism
10.
Int J Biol Sci ; 18(10): 4043-4052, 2022.
Article in English | MEDLINE | ID: mdl-35844794

ABSTRACT

Trophoblasts differentiate and form the placenta during pregnancy in a complex and finely orchestrated process, which is dependent on the establishment of maternal-fetal immune tolerance and the proper function of trophoblasts. Trophoblasts express HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G). Numerous studies have shown that the unique expression pattern of the HLA molecules is closely linked to the successful acceptance of allogeneic fetus by the mother during pregnancy. However, some controversies still exist concerning the exact expression and recognition patterns of HLA molecules in different trophoblast subpopulations and cell lines. Thus, we summarize three types of trophoblast subpopulations as well as the common trophoblast lineages. Then, the classification and structural characteristics of HLA molecules were elucidated. Finally, the presence of HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G) in various trophoblasts and cell lines, as well as their potential role in establishing and maintaining normal pregnancy were also discussed. Together, this review will help people comprehensively understand the complex immune interactions between maternal and fetal crosstalk during pregnancy and ultimately better understand the physiological and pathological etiologies of pregnancy.


Subject(s)
HLA-G Antigens , Trophoblasts , Female , Fetus , HLA Antigens/genetics , HLA Antigens/metabolism , HLA-C Antigens/metabolism , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , Humans , Placenta , Pregnancy , Trophoblasts/metabolism
11.
Am J Obstet Gynecol ; 227(4): 641.e1-641.e13, 2022 10.
Article in English | MEDLINE | ID: mdl-35863458

ABSTRACT

BACKGROUND: The extravillous trophoblast expresses each of the nonclassical major histocompatibility complex class I antigens-human leukocyte antigens E, F, and G-and a single classical class I antigen, human leukocyte antigen C. We recently demonstrated dynamic expression patterns of human leukocyte antigens C, G, and F during early extravillous trophoblast invasion and placentation. OBJECTIVE: This study aimed to investigate the hypothesis that the immune inflammatory mediated complications of pregnancy such as early preeclampsia and preterm labor may show altered expression profiles of nonclassical human leukocyte antigens. STUDY DESIGN: Real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry were performed on placental villous tissues and basal plate sections from term nonlaboring deliveries, preterm deliveries, and severe early-onset preeclampsia, both with and without small-for-gestational-age neonates. RESULTS: Human leukocyte antigen G is strongly and exclusively expressed by the extravillous trophoblast within the placental basal plate, and its levels increase in pregnancies complicated by severe early-onset preeclampsia with small-for-gestational-age neonates relative to those of healthy term controls. Human leukocyte antigen C shows a similar profile in the extravillous trophoblast of preeclamptic pregnancies, but significantly decreases in the villous placenta. Human leukocyte antigen F protein levels are decreased in both extravillous trophoblast and villous placenta of severe early-onset preeclamptic pregnancies, both with and without small-for-gestational-age neonates, compared with those found in term and preterm birth deliveries. Human leukocyte antigen E decreases in blood vessels in placentas from preeclamptic pregnancies relative to its levels in term and preterm birth deliveries. Placental levels of human leukocyte antigens F and C are increased in cases of preterm birth with chorioamnionitis relative to those of cases of idiopathic preterm birth. CONCLUSION: Dysregulation of placental human leukocyte antigen expression at the maternal-fetal interface may contribute to compromised maternal tolerance in preterm birth with chorioamnionitis and excessive maternal systemic inflammation associated with severe early-onset preeclampsia.


Subject(s)
Chorioamnionitis , Pre-Eclampsia , Premature Birth , Chorioamnionitis/metabolism , Female , Fetal Growth Retardation/metabolism , HLA-C Antigens/metabolism , HLA-G Antigens/metabolism , Histocompatibility Antigens Class I , Humans , Infant, Newborn , Placenta/metabolism , Placentation , Pre-Eclampsia/metabolism , Pregnancy , Premature Birth/metabolism , Trophoblasts/metabolism , HLA-E Antigens
12.
Immunol Rev ; 308(1): 55-76, 2022 07.
Article in English | MEDLINE | ID: mdl-35610960

ABSTRACT

Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.


Subject(s)
HLA-C Antigens , Trophoblasts , Female , Fetus/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Humans , Killer Cells, Natural , Placenta , Pregnancy , Receptors, KIR/genetics , Receptors, KIR/metabolism , Trophoblasts/metabolism
13.
Exp Clin Transplant ; 20(9): 854-862, 2022 09.
Article in English | MEDLINE | ID: mdl-30995898

ABSTRACT

OBJECTIVES: Tissue-specific immunogenicity can be characterized by the determination of human leukocyte antigens (HLA). Parathyroid hyperplasia tissue cells are presumed to have the ability to lose HLA class I expression profile during cultivation, whereas healthy parathyroid cells are presumed to already express HLA class I molecules at low levels. However, there are conflicting results about the expression of HLA class I antigens. In this study, our aim was to evaluate different patterns of HLA class I expression in different parathyroid tissue cells. MATERIALS AND METHODS: Parathyroid tissue cells were isolated enzymatically and cultured in vitro. Expression of HLA class I (HLA-A, HLA-B, HLA-C) mRNA and protein levels were studied in 7 parathyroid adenomas and 9 parathyroid hyperplasia tissue samples by reverse transcriptase-polymerase chain reaction and Western blot analyses. RESULTS: HLA-A protein expression remained stable in parathyroid adenoma and hyperplasia tissue, but HLA-A mRNA expression decreased in adenoma tissue. In parathyroid hyperplasia tissue, HLA-B protein expression remained stable, although mRNA expres-sion levels decreased during cultivation. HLA-C mRNA expression was steady in parathyroid adenoma yet significantly decreased in hyperplasia tissue samples. HLA-C protein expression levels were below 30 pg for both types of parathyroid tissue during cultivation. CONCLUSIONS: HLA class I expression levels of para-thyroid hyperplasia and adenoma tissue were not found to be similar. Parathyroid hyperplasia tissue is the donor tissue for the treatment of permanent hypoparathyroidism. Therefore, expression patterns of HLA class I are directly relevant to the transplant process. In particular, the HLA region is highly polymorphic, and, as a consequence of this, heterogeneous correlations among HLA-A, HLA-B, and HLA-C expression patterns of parathyroid tissue should be evaluated in detail before transplant for future studies.


Subject(s)
Adenoma , Parathyroid Neoplasms , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , HLA Antigens/genetics , HLA-C Antigens/metabolism , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Parathyroid Glands , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/metabolism , Parathyroid Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Directed DNA Polymerase/metabolism , Treatment Outcome
14.
J Reprod Immunol ; 148: 103425, 2021 11.
Article in English | MEDLINE | ID: mdl-34607283

ABSTRACT

Some maternal killer-cell immunoglobulin-like receptor (KIR) and fetal KIR ligand genotypes are associated with obstetric complications, such as recurrent miscarriage, fetal growth restriction, preeclampsia, and preterm birth. However, how KIR/KIR ligand genotypes affect these placenta-related obstetric complications has not been fully understood. We aimed to demonstrate the association of maternal KIR-fetal KIR ligand genotype combinations with immunological/metabolic risk factor associated placenta-related obstetric complications. This study consisted of three groups of pregnant women: 1) Miscarriage group (n = 30), 2) Complicated Pregnancy (CP) group (n = 30), and 3) Control group (n = 30). The observed maternal genotype frequencies of all inhibitory and activating KIRs were similar in all groups (p > 0.05). However, inhibitory 2DL3 was quite frequent in the miscarriage group (p = 0.052). There was no difference between groups in terms of centromeric and telomeric maternal haplotypes (p > 0.05). The fetal group 1 HLA-C genotype was frequently detected in the miscarriage and CP groups with rates of 83.3 % and 93.3 % respectively, while the observed frequency was 70 % in the control group. The fetal group 2 HLA-C genotype was the same in all groups. The results demonstrated significantly less fetal group 2 HLA-C homozygosity in the CP groups when compared to the control group (p = 0.020). The fetal HLA-Bw4 genotype was detected more frequently in the miscarriage and CP groups (p = 0.028 and p = 0.001, respectively). The inhibitory KIR/KIR ligand genotype combinations of 2DL3-C1 and 3DL1-Bw4 were more frequent in the miscarriage and CP groups (p = 0.045 and p = 0.002, respectively). Enhanced NK cell inhibition may be one of the mechanisms underlying placenta-related obstetric complications.


Subject(s)
Abortion, Habitual/immunology , Fetus/metabolism , Genotype , HLA-C Antigens/metabolism , Killer Cells, Natural/immunology , Placenta/metabolism , Pre-Eclampsia/immunology , Premature Birth/immunology , Receptors, KIR2DL3/metabolism , Adult , Delivery, Obstetric , Female , HLA-C Antigens/genetics , Humans , Placenta/pathology , Pregnancy , Receptors, KIR2DL3/genetics
15.
J Immunol ; 207(9): 2235-2244, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34580106

ABSTRACT

Autoimmune diseases develop when autoantigens activate previously quiescent self-reactive lymphocytes. Gene-gene interaction between certain HLA class I risk alleles and variants of the endoplasmic reticulum aminopeptidase ERAP1 controls the risk for common immune-mediated diseases, including psoriasis, ankylosing spondylitis, and Behçet disease. The functional mechanisms underlying this statistical association are unknown. In psoriasis, HLA-C*06:02 mediates an autoimmune response against melanocytes by autoantigen presentation. Using various genetically modified cell lines together with an autoreactive psoriatic TCR in a TCR activation assay, we demonstrate in this study that in psoriasis, ERAP1 generates the causative melanocyte autoantigen through trimming N-terminal elongated peptide precursors to the appropriate length for presentation by HLA-C*06:02. An ERAP1 risk haplotype for psoriasis produced the autoantigen much more efficiently and increased HLA-C expression and stimulation of the psoriatic TCR by melanocytes significantly more than a protective haplotype. Compared with the overall HLA class I molecules, cell surface expression of HLA-C decreased significantly more upon ERAP1 knockout. The combined upregulation of ERAP1 and HLA-C on melanocytes in psoriasis lesions emphasizes the pathogenic relevance of their interaction in patients. We conclude that in psoriasis pathogenesis, the increased generation of an ERAP1-dependent autoantigen by an ERAP1 risk haplotype enhances the likelihood that autoantigen presentation by HLA-C*06:02 will exceed the threshold for activation of potentially autoreactive T cells, thereby triggering CD8+ T cell-mediated autoimmune disease. These data identify ERAP1 function as a central checkpoint and promising therapeutic target in psoriasis and possibly other HLA class I-associated diseases with a similar genetic predisposition.


Subject(s)
Aminopeptidases/metabolism , CD8-Positive T-Lymphocytes/immunology , HLA-C Antigens/metabolism , Melanocytes/immunology , Minor Histocompatibility Antigens/metabolism , Psoriasis/immunology , Aminopeptidases/genetics , Antigen Presentation , Autoantigens/immunology , Autoimmunity , Gene Knockdown Techniques , Genetic Predisposition to Disease , HEK293 Cells , HLA-C Antigens/genetics , Humans , Minor Histocompatibility Antigens/genetics , Molecular Targeted Therapy , Psoriasis/genetics , Receptors, Antigen, T-Cell/metabolism , Risk
16.
J Immunol Res ; 2021: 9921620, 2021.
Article in English | MEDLINE | ID: mdl-34471644

ABSTRACT

INTRODUCTION: Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. MATERIALS AND METHODS: A total of 38 sequences of Cryptococcus neoformans var. grubii's heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population's coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C∗12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.


Subject(s)
Cryptococcus neoformans/immunology , Fungal Proteins/immunology , Fungal Vaccines/immunology , HSP70 Heat-Shock Proteins/immunology , Computational Biology , Computer-Aided Design , Cryptococcosis/immunology , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Epitope Mapping , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Fungal Proteins/genetics , Fungal Vaccines/administration & dosage , Fungal Vaccines/genetics , HLA-C Antigens/immunology , HLA-C Antigens/metabolism , HSP70 Heat-Shock Proteins/genetics , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Vaccine Development/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
17.
Nat Commun ; 12(1): 2173, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846289

ABSTRACT

The closely related inhibitory killer-cell immunoglobulin-like receptors (KIR), KIR2DL2 and KIR2DL3, regulate the activation of natural killer cells (NK) by interacting with the human leukocyte antigen-C1 (HLA-C1) group of molecules. KIR2DL2, KIR2DL3 and HLA-C1 are highly polymorphic, with this variation being associated with differences in the onset and progression of some human diseases. However, the molecular bases underlying these associations remain unresolved. Here, we determined the crystal structures of KIR2DL2 and KIR2DL3 in complex with HLA-C*07:02 presenting a self-epitope. KIR2DL2 differed from KIR2DL3 in docking modality over HLA-C*07:02 that correlates with variabilty of recognition of HLA-C1 allotypes. Mutagenesis assays indicated differences in the mechanism of HLA-C1 allotype recognition by KIR2DL2 and KIR2DL3. Similarly, HLA-C1 allotypes differed markedly in their capacity to inhibit activation of primary NK cells. These functional differences derive, in part, from KIR2DS2 suggesting KIR2DL2 and KIR2DL3 binding geometries combine with other factors to distinguish HLA-C1 functional recognition.


Subject(s)
HLA-C Antigens/metabolism , Molecular Docking Simulation , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/metabolism , Receptors, KIR2DL3/chemistry , Receptors, KIR2DL3/metabolism , HEK293 Cells , Humans , Killer Cells, Natural/immunology , Ligands , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptides/chemistry , Protein Binding , Protein Interaction Mapping
18.
Sci Rep ; 11(1): 7932, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846431

ABSTRACT

Human leukocyte antigen (HLA) class I-specific killer-cell immunoglobulin-like receptors (KIR) regulate natural killer (NK) cell function in eliminating malignancy. Breast cancer (BC) patients exhibit reduced NK-cytotoxicity in peripheral blood. To test the hypothesis that certain KIR-HLA combinations impairing NK-cytotoxicity predispose to BC risk, we analyzed KIR and HLA polymorphisms in 162 women with BC and 278 controls. KIR-Bx genotypes increased significantly in BC than controls (83.3% vs. 71.9%, OR 1.95), and the increase was more pronounced in advanced-cancer (OR 5.3). No difference was observed with inhibitory KIR (iKIR) and HLA-ligand combinations. The activating KIR (aKIR) and HLA-ligand combinations, 2DS1 + C2 (OR 2.98) and 3DS1 + Bw4 (OR 2.6), were significantly increased in advanced-BC. All patients with advanced-cancer carrying 2DS1 + C2 or 3DS1 + Bw4 also have their iKIR counterparts 2DL1 and 3DL1, respectively. Contrarily, the 2DL1 + C2 and 3DL1 + Bw4 pairs without their aKIR counterparts are significantly higher in controls. These data suggest that NK cells expressing iKIR to the cognate HLA-ligands in the absence of putative aKIR counterpart are instrumental in antitumor response. These data provide a new framework for improving the utility of genetic risk scores for individualized surveillance.


Subject(s)
Breast Neoplasms/immunology , HLA-B Antigens/metabolism , HLA-C Antigens/metabolism , Receptors, KIR/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Case-Control Studies , Female , Haplotypes/genetics , Heterozygote , Humans , Ligands , Neoplasm Staging , Risk Factors
19.
Front Immunol ; 12: 650028, 2021.
Article in English | MEDLINE | ID: mdl-33815410

ABSTRACT

Variation within the HLA locus been shown to play an important role in the susceptibility to and outcomes of numerous infections, but its influence on immunity to P. falciparum malaria is unclear. Increasing evidence indicates that acquired immunity to P. falciparum is mediated in part by the cellular immune response, including NK cells, CD4 and CD8 T cells, and semi-invariant γδ T cells. HLA molecules expressed by these lymphocytes influence the epitopes recognized by P. falciparum-specific T cells, and class I HLA molecules also serve as ligands for inhibitory receptors including KIR. Here we assessed the relationship of HLA class I and II alleles to the risk of P. falciparum infection and symptomatic malaria in a cohort of 892 Ugandan children and adults followed prospectively via both active and passive surveillance. We identified two HLA class I alleles, HLA-B*53:01 and HLA-C*06:02, that were associated with a higher prevalence of P. falciparum infection. Notably, no class I or II HLA alleles were found to be associated with protection from P. falciparum parasitemia or symptomatic malaria. These findings suggest that class I HLA plays a role in the ability to restrict parasitemia, supporting an essential role for the cellular immune response in P. falciparum immunity. Our findings underscore the need for better tools to enable mechanistic studies of the T cell response to P. falciparum at the epitope level and suggest that further study of the role of HLA in regulating pre-erythrocytic stages of the P. falciparum life cycle is warranted.


Subject(s)
HLA Antigens/genetics , HLA-C Antigens/genetics , Malaria, Falciparum/epidemiology , Parasitemia/epidemiology , Plasmodium falciparum/immunology , Adult , Alleles , Antigens, Protozoan/immunology , Child , Child, Preschool , Epitopes, T-Lymphocyte/immunology , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotyping Techniques , HLA Antigens/metabolism , HLA-C Antigens/metabolism , Humans , Incidence , Infant , Malaria, Falciparum/blood , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Parasitemia/blood , Parasitemia/genetics , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification , Prospective Studies , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Uganda/epidemiology
20.
Sci China Life Sci ; 64(12): 2144-2152, 2021 12.
Article in English | MEDLINE | ID: mdl-33740187

ABSTRACT

Cytotoxic T cells targeting cancer neoantigens harboring driver mutations can lead to durable tumor regression in an HLAI-dependent manner. However, it is difficult to extend the population of patients who are eligible for neoantigen-based immunotherapy, as immunogenic neoantigen-HLA pairs are rarely shared across different patients. Thus, a way to find other human leukocyte antigen (HLA) alleles that can also present a clinically effective neoantigen is needed. Recently, neoantigen-based immunotherapy targeting the KRAS G12D mutation in patients with HLA-C*08:02 has shown effectiveness. In a proof-of-concept study, we proposed a combinatorial strategy (the combination of phylogenetic and structural analyses) to find potential HLA alleles that could also present KRAS G12D neoantigen. Compared to in silico binding prediction, this strategy avoids the uneven accuracy across different HLA alleles. Our findings extend the population of patients who are potentially eligible for immunotherapy targeting the KRAS G12D mutation. Additionally, we provide an alternative way to predict neoantigen-HLA pairs, which maximizes the clinical usage of shared neoantigens.


Subject(s)
Antigens, Neoplasm/genetics , HLA-C Antigens/genetics , Mutation , Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Antigens, Neoplasm/immunology , Epitopes , HLA-C Antigens/metabolism , HLA-C Antigens/ultrastructure , Humans , Immunotherapy , Major Histocompatibility Complex , Neoplasms/immunology , Phylogeny , Protein Structure, Tertiary , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...