Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 888
Filter
2.
HLA ; 103(4): e15494, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634571

ABSTRACT

The novel HLA-DPB1*1437:01 and HLA-DPB1*1438:01 alleles first identified in the Chinese individuals.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Alleles , HLA-DP beta-Chains/genetics
3.
HLA ; 103(4): e15483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605645

ABSTRACT

HLA-DPB1*1500:01N differs from HLA-DPB1*05:01:01:01 by one nucleotide in exon 3.


Subject(s)
HLA-DP beta-Chains , Nucleotides , Humans , Alleles , Base Sequence , China , Sequence Analysis, DNA
4.
HLA ; 103(4): e15409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575362

ABSTRACT

The novel allele HLA-DPB1*1467:01 differs from HLA-DPB1*09:01:01:01 by one non-synonymous nucleotide substitution in exon 2.


Subject(s)
Base Sequence , Humans , Alleles , HLA-DP beta-Chains/genetics , Exons/genetics , Sequence Analysis, DNA
5.
HLA ; 103(3): e15449, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526319

ABSTRACT

The novel HLA-DPB1*1449:01N allele differs from HLA-DPB1*16:01:01:01 by a nucleotide at codon 92 in exon 2.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Alleles , Exons/genetics , HLA-DP beta-Chains/genetics
6.
HLA ; 103(3): e15431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526340

ABSTRACT

HLA-DPB1*05:01:21 differs from HLA-DPB1*05:01:01:01 by one nucleotide in exon 3.


Subject(s)
HLA-DP beta-Chains , Nucleotides , Humans , Alleles , Base Sequence , China
7.
HLA ; 103(3): e15445, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494874

ABSTRACT

Identification of four new HLA alleles (B*27:265, B*35:569, DRB1*08:117, and DPB1*1435:01) in Brazilian bone marrow donors.


Subject(s)
HLA-B Antigens , Humans , Gene Frequency , Alleles , HLA-DP beta-Chains/genetics , HLA-DRB1 Chains/genetics , HLA-B Antigens/genetics
8.
HLA ; 103(3): e15444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494882

ABSTRACT

HLA-DPB1*1550:01 differs from HLA-DPB1*02:02:01:01 by one nucleotide in exon 2.


Subject(s)
HLA-DP beta-Chains , Nucleotides , Humans , Alleles , Base Sequence , China
9.
HLA ; 103(3): e15384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488692

ABSTRACT

HLA-DPB1*03:01:29 differs from HLA-DPB1*03:01:01:01 by one nucleotide in exon 2.


Subject(s)
HLA-DP beta-Chains , Nucleotides , Humans , Alleles , Sequence Analysis, DNA , China
10.
HLA ; 103(3): e15435, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488774

ABSTRACT

HLA-DPB1*1584:01 differs from HLA-DPB1*104:01:01:03 by one nucleotide substitution in exon 2.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Base Sequence , Alleles , HLA-DP beta-Chains/genetics
11.
Zhonghua Yi Xue Za Zhi ; 104(11): 850-856, 2024 Mar 19.
Article in Chinese | MEDLINE | ID: mdl-38462361

ABSTRACT

Objective: To evaluate the risk prediction and assessment function of HLA-DPB1 T-cell epitope (TCE) model and expression model in human leukocyte antigen (HLA)-matched unrelated hematopoietic stem cell transplantation (MUD-HSCT) with HLA-DPB1 mismatching. Methods: A total of 364 (182 pairs) potential MUD-HSCT donors and recipients confirmed by HLA high-resolution typing in Shaanxi Blood Center from 2016 to 2019 were analyzed retrospectively. Of the 182 recipients, there were 121 males and 61 females with an average age of (26.3±14.2) years. Of the 182 donors, there were 148 males and 34 females with an average age of (33.7±7.5) years. Polymerase chain reaction-sequence-based typing (PCR-SBT), next-generation sequencing (NGS) and polymerase chain reaction-sequence specific oligonucleotide probe (PCR-SSO) based on LABScan®3D platform were used for high-resolution typing of HLA-A, B, C, DRB1, DQB1, DPB1 gene, and PCR-SBT was used for single nucleotide polymorphism (SNP) typing. TCE model and expression model were used to predict and evaluate the HLA-DPB1 mismatch pattern and acute graft-versus-host-disease (aGVHD) risk. Results: A total of 26 HLA-DPB1 alleles and their 3'-UTR rs9277534 SNP genotypes were detected in this study population, and two new alleles HLA-DPB1*1052∶01 and HLA-DPB1*1119∶01 were found and officially named. The overall mismatch rate of HLA-DPB1 in MUD-HSCT donors and recipients was 90.66% (165/182). In TCE model, the HLA-DPB1 mismatch rates of permissible mismatch (PM) and non-permissible mismatch (non-PM) were 47.80% (87/182) and 42.86% (78/182), respectively. The non-PM in GvH direction was 13.73% (25/182), and which in HvG direction was 29.12% (53/182). A total of 73 pairs of donors and recipients in TCE model met the evaluation criteria of expression model. Among of TCE PM group, recipient DP5 mismatches accounted for 34.25% (25/73) were predicted as aGVHD high risk according to expression model. For the TCE non-PM group, both the recipient DP2 mismatches of 6.85% (5/73) and recipient DP5 mismatches of 10.86% (8/73) were predicted to be at high risk for aGVHD. Risk prediction by TCE model and expression model was 27.27% concordant and 16.97% unconcordant. Conclusions: TCE model and expression model are effective tools to predict aGVHD risk of MUD-HSCT. Comprehensive application of the two models is helpful to the hierarchical assessment of HSCT risk.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Male , Female , Humans , Child , Adolescent , Young Adult , Adult , Epitopes, T-Lymphocyte/genetics , Retrospective Studies , HLA-DP beta-Chains/genetics , Unrelated Donors , Graft vs Host Disease/genetics
12.
HLA ; 103(2): e15361, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305041

ABSTRACT

HLA-DPB1*1516:01 differs from HLA-DPB1*1229:01 by seven nucleotide substitutions in exon 3.


Subject(s)
Base Sequence , Humans , Alleles , HLA-DP beta-Chains/genetics , Exons/genetics
13.
HLA ; 103(2): e15368, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342772

ABSTRACT

Characterization of two novel HLA-DPB1 alleles: HLA-DPB1*1069:01, and DPB1*1072:01 containing non-synonymous nucleotide substitutions.


Subject(s)
High-Throughput Nucleotide Sequencing , Nucleotides , Humans , Alleles , HLA-DP beta-Chains/genetics
14.
HLA ; 103(2): e15401, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38414174

ABSTRACT

Two novel alleles, HLA-G*01:04:09 and HLA-DPB1*04:01:01:136, were identified in a single healthy individual.


Subject(s)
Genes, MHC Class I , HLA-G Antigens , Humans , Alleles , HLA-DP beta-Chains/genetics
15.
Ann Neurol ; 95(5): 901-906, 2024 May.
Article in English | MEDLINE | ID: mdl-38400794

ABSTRACT

We determined the genetic association between specific human leucocyte antigen (HLA) loci and autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Our results showed that autoimmune GFAP astrocytopathy was associated with HLA-A*3303 (odds ratio [OR] = 2.02, 95% confidence interval [CI] = 1.32-3.06, p = 0.00072, padj. = 0.046) and HLA-DBP1*0501 (OR = 0.51, 95% CI = 0.36-0.71, p = 0.000048, padj. = 0.0062). Moreover, HLA-A*3303 carriers with the disease had a longer hospital stay (p = 0.0005) than non-carriers. This study for the first time provides evidence for a role of genetic factor in the development of autoimmune GFAP astrocytopathy. ANN NEUROL 2024;95:901-906.


Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein , HLA-A Antigens , HLA-DP beta-Chains , Humans , Glial Fibrillary Acidic Protein/genetics , Male , Female , Middle Aged , HLA-DP beta-Chains/genetics , Adult , HLA-A Antigens/genetics , Astrocytes/metabolism , Astrocytes/pathology , Aged
16.
HLA ; 103(1): e15261, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850248

ABSTRACT

HLA-DPB1 is the classical HLA class II genes with the least recorded variation on the IPD-IMGT/HLA Database, suggesting the full extent of its diversity is perhaps yet to be characterized. Here, a full-gene typing strategy was employed to genotype a UK cohort of 1470 HCT recipients (n = 744) and donors (n = 726). In total, 2940 full-length HLA-DPB1 sequences were generated, comprising 193 distinct alleles. Of these, 107 sequences contained novel variation, totaling 49 unique intronic HLA-DPB1 alleles, and one coding variant (HLA-DPB1*1188:01). Full-gene sequencing resulted in zygosity changes for 129 individuals by identifying two distinct intronic variants of the same coding allele. We verified the existence of nine unconfirmed alleles and extended the sequence of two existing alleles on the IPD-IMGT/HLA Database.


Subject(s)
Unrelated Donors , Humans , Alleles , HLA-DP beta-Chains/genetics , Genotype , United Kingdom
17.
HLA ; 103(1): e15251, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850268

ABSTRACT

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Subject(s)
COVID-19 , HLA-DP beta-Chains , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Alleles , Receptors, KIR/genetics , Genotype , Autoantibodies/genetics
18.
Gene ; 896: 148024, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040271

ABSTRACT

Granulomatosis with polyangiitis (GPA) is a rare systemic autoimmune disease. Major contributions of HLA genes have been reported; however, HLA typing-based diagnosis or risk prediction in GPA has not been established. We have performed a sequencing-based HLA genotyping in a north Indian GPA cohort and controls to identify clinically relevant novel associations. PR3-ANCA-positive 40 GPA patients and 40 healthy controls from north India were recruited for the study. Targeted sequencing of HLA-A,-B,-C,-DRB1,-DQB1, and -DPB1 was performed. Allelic and haplotypic associations were tested. Molecular docking of susceptibility HLA alleles with reported super-antigen epitopes was performed. The association of substituted amino acids located at the antigen-binding domain of HLA was evaluated. Genetic association of five HLA-alleles was identified in GPA. The novel association was identified for C*15:02 (p = 0.04; OR = 0.27(0.09-0.88)). The strongest association was observed for DPB1*04:01 (p < 0.0001; OR = 6.2(3.08-11.71)), previously reported in European studies. 35 of 40 GPA subjects had at least one DPB1*04:01 allele, and its significant risk was previously not reported from the Indian population. Significantly associated haplotypes DRB1*03:01-DQB1*02:01-DPB1*04:01 (p = 0.02; OR = 3.46(1.11-12.75)) and DRB1*07:01-DQB1*02:02-DPB1*04:01 (p = 0.04; OR = 3.35(0.95-14.84)) were the most frequent in GPA patients. Ranging from 89 % to 100 % of GPA patients with organ involvement can be explained by at least one DPB1*04:01 allele. A strong interaction between the HLA and three epitopes of the reported super antigen TSST-1 of Staphylococcus aureus was confirmed. Our study highlighted the potential applicability of HLA typing for screening and diagnosis of GPA. A large multi-centric study and genotype-phenotype correlation analysis among GPA patients will enable the establishment of HLA-typing based GPA diagnosis.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Granulomatosis with Polyangiitis , HLA-DP beta-Chains , Humans , Alleles , Antibodies, Antineutrophil Cytoplasmic/genetics , Clinical Relevance , Epitopes/genetics , Gene Frequency , Granulomatosis with Polyangiitis/genetics , Haplotypes , HLA-DP beta-Chains/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Molecular Docking Simulation
19.
Nagoya J Med Sci ; 85(4): 779-796, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38155626

ABSTRACT

Human leukocyte antigen (HLA)-DPB1 antigens are mismatched in approximately 70% of allogeneic hematopoietic stem cell transplantations (allo-HSCT) from HLA 10/10 matched unrelated donors. HLA-DP-mismatched transplantation was shown to be associated with an increase in acute graft-versus-host disease (GVHD) and a decreased risk of leukemia relapse due to the graft-versus-leukemia (GVL) effect. Immunotherapy targeting mismatched HLA-DP is considered reasonable to treat leukemia following allo-HCT if performed under non-inflammatory conditions. Therefore, we isolated CD4+ T cell clones that recognize mismatched HLA-DPB1 from healthy volunteer donors and generated T cell receptor (TCR)-gene-modified T cells for future clinical applications. Detailed analysis of TCR-T cells expressing TCR from candidate clone #17 demonstrated specificity to myeloid and monocytic leukemia cell lines that even expressed low levels of targeted HLA-DP. However, they did not react to non-hematopoietic cell lines with a substantial level of targeted HLA-DP expression, suggesting that the TCR recognized antigenic peptide is only present in some hematopoietic cells. This study demonstrated that induction of T cells specific for HLA-DP, consisting of hematopoietic cell lineage-derived peptide and redirection of T cells with cloned TCR cDNA by gene transfer, is feasible when using careful specificity analysis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia , Humans , T-Lymphocytes , Transplantation, Homologous , Leukemia/therapy , HLA-DP beta-Chains/genetics , Chronic Disease , Recurrence , Peptides , Receptors, Antigen, T-Cell/genetics
20.
HLA ; 102(6): 777-778, 2023 12.
Article in English | MEDLINE | ID: mdl-37622239

ABSTRACT

HLA-DPB1*02:02:07 differs from HLA-DPB1*02:02:01:01 by one nucleotide in exon 2.


Subject(s)
East Asian People , HLA-DP beta-Chains , Humans , Alleles , Nucleotides , Sequence Analysis, DNA , HLA-DP beta-Chains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...