Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.932
Filter
1.
HLA ; 103(5): e15515, 2024 May.
Article in English | MEDLINE | ID: mdl-38747019

ABSTRACT

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Subject(s)
Alleles , Exome Sequencing , Genetic Predisposition to Disease , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Exome Sequencing/methods , Case-Control Studies , Male , Female , Gene Frequency , HLA-DQ beta-Chains/genetics , HLA Antigens/genetics , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Polymorphism, Single Nucleotide
3.
Nat Med ; 30(5): 1384-1394, 2024 May.
Article in English | MEDLINE | ID: mdl-38740997

ABSTRACT

How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.


Subject(s)
HLA-DRB1 Chains , Humans , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Infant , Black People/genetics , Hepatitis B Vaccines/immunology , Quantitative Trait Loci , Male , Female , Uganda , Antibody Formation/genetics , Antibody Formation/immunology , Pertussis Vaccine/immunology , Pertussis Vaccine/genetics , Vaccination , Whooping Cough/prevention & control , Whooping Cough/immunology , Whooping Cough/genetics
5.
HLA ; 103(4): e15462, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568165

ABSTRACT

Compared with HLA-DRB1*08:03:02:01, the alleles HLA-DRB1*08:03:13 and HLA-DRB1*08:119 each show one nucleotide substitution, respectively.


Subject(s)
Nucleotides , Humans , Alleles , HLA-DRB1 Chains/genetics
6.
HLA ; 103(4): e15412, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568180

ABSTRACT

The novel allele HLA-DRB1*03:210 differs from HLA-DRB1*03:01:01:01 by one non-synonymous nucleotide substitution in exon 3.


Subject(s)
Nucleotides , Humans , Alleles , HLA-DRB1 Chains/genetics , Exons/genetics , Sequence Analysis, DNA
7.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674141

ABSTRACT

A few cases of multiple sclerosis (MS) onset after COVID-19 vaccination have been reported, although the evidence is insufficient to establish causality. The aim of this study is to compare cases of newly diagnosed relapsing-remitting MS before and after the outbreak of the COVID-19 pandemic and the impact of COVID-19 vaccination. Potential environmental and genetic predisposing factors were also investigated, as well as clinical patterns. This is a single-centre retrospective cohort study including all patients who presented with relapsing-remitting MS onset between January 2018 and July 2022. Data on COVID-19 vaccination administration, dose, and type were collected. HLA-DRB1 genotyping was performed in three subgroups. A total of 266 patients received a new diagnosis of relapsing-remitting MS in our centre, 143 before the COVID-19 pandemic (until and including March 2020), and 123 during the COVID-19 era (from April 2020). The mean number of new MS onset cases per year was not different before and during the COVID-19 era and neither were baseline patients' characteristics, type of onset, clinical recovery, or radiological patterns. Fourteen (11.4%) patients who subsequently received a new diagnosis of MS had a history of COVID-19 vaccination within one month before symptoms onset. Patients' characteristics, type of onset, clinical recovery, and radiological patterns did not differ from those of patients with non-vaccine-related new diagnoses of MS. The allele frequencies of HLA-DRB1*15 were 17.6% and 22.2% in patients with non-vaccine-related disease onset before and during the COVID-19 era, respectively, while no case of HLA-DRB1*15 was identified among patients with a new diagnosis of MS post-COVID-19 vaccine. In contrast, HLA-DRB1*08+ or HLA-DRB1*10+ MS patients were present only in this subgroup. Although a causal link between COVID-19 vaccination and relapsing-remitting MS cannot be detected, it is interesting to note and speculate about the peculiarities and heterogeneities underlying disease mechanisms of MS, where the interactions of genetics and the environment could be crucial also for the follow-up and the evaluation of therapeutic options.


Subject(s)
COVID-19 Vaccines , COVID-19 , HLA-DRB1 Chains , Haplotypes , SARS-CoV-2 , Humans , Female , Male , HLA-DRB1 Chains/genetics , Adult , COVID-19/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Middle Aged , Vaccination , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis/genetics , Genetic Predisposition to Disease
8.
Immunogenetics ; 76(3): 175-187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607388

ABSTRACT

One of the probable hypotheses for the onset of autoimmunity is molecular mimicry. This study aimed to determine the HLA-II risk alleles for developing Hashimoto's thyroiditis (HT) in order to analyze the molecular homology between candidate pathogen-derived epitopes and potentially self-antigens (thyroid peroxidase, TPO) based on the presence of HLA risk alleles. HLA-DRB1/-DQB1 genotyping was performed in 100 HT patients and 330 ethnically matched healthy controls to determine the predisposing/protective alleles for HT disease. Then, in silico analysis was conducted to examine the sequence homology between epitopes derived from autoantigens and four potentially relevant pathogens and their binding capacities to HLA risk alleles based on peptide docking analysis. We identified HLA-DRB1*03:01, *04:02, *04:05, and *11:04 as predisposing alleles and DRB1*13:01 as a potentially predictive allele for HT disease. Also, DRB1*11:04 ~ DQB1*03:01 (Pc = 0.002; OR, 3.97) and DRB1*03:01 ~ DQB1*02:01 (Pc = 0.004; OR, 2.24) haplotypes conferred a predisposing role for HT. Based on logistic regression analysis, carrying risk alleles increased the risk of HT development 4.5 times in our population (P = 7.09E-10). Also, ROC curve analysis revealed a high predictive power of those risk alleles for discrimination of the susceptible from healthy individuals (AUC, 0.70; P = 6.6E-10). Analysis of peptide sequence homology between epitopes of TPO and epitopes derived from four candidate microorganisms revealed a homology between envelop glycoprotein D of herpes virus and sequence 151-199 of TPO with remarkable binding capacity to HLA-DRB1*03:01 allele. Our findings indicate the increased risk of developing HT in those individuals carrying HLA risk alleles which can also be related to herpes virus infection.


Subject(s)
Alleles , Autoantigens , Epitopes , Genetic Predisposition to Disease , HLA-DQ beta-Chains , HLA-DRB1 Chains , Hashimoto Disease , Humans , Male , Female , Hashimoto Disease/genetics , Hashimoto Disease/immunology , Adult , Iran , HLA-DRB1 Chains/genetics , HLA-DQ beta-Chains/genetics , Autoantigens/immunology , Autoantigens/genetics , Epitopes/immunology , Epitopes/genetics , Middle Aged , Case-Control Studies , Iodide Peroxidase/genetics , Iodide Peroxidase/immunology , Haplotypes , Genotype , Gene Frequency
9.
HLA ; 103(4): e15413, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575349

ABSTRACT

The novel allele HLA-DRB1*11:323 differs from HLA-DRB1*11:01:02:01 by one non-synonymous nucleotide substitution in exon 2.


Subject(s)
Nucleotides , Humans , HLA-DRB1 Chains/genetics , Alleles , Exons/genetics , Sequence Analysis, DNA
10.
HLA ; 103(4): e15446, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575369

ABSTRACT

This family-based study was conducted in a group of Iranians with Type 1 diabetes (T1D) to investigate the transmission from parents of risk and non-risk HLA alleles and haplotypes, and to estimate the genetic risk score for this disease within this population. A total of 240 T1D subjects including 111 parent-child trios (111 children with T1D, 133 siblings, and 222 parents) and 330 ethnically matched healthy individuals were recruited. High-resolution HLA typing for DRB1/DQB1 loci was performed for all study subjects (n = 925) using polymerase chain reaction-sequence-specific oligonucleotide probe method. The highest predisposing effect on developing T1D was conferred by the following haplotypes both in all subjects and in probands compared to controls: DRB1*04:05-DQB1*03:02 (Pc = 2.97e-06 and Pc = 6.04e-10, respectively), DRB1*04:02-DQB1*03:02 (Pc = 5.94e-17 and Pc = 3.86e-09, respectively), and DRB1*03:01-DQB1*02:01 (Pc = 8.26e-29 and Pc = 6.56e-16, respectively). Conversely, the major protective haplotypes included DRB1*13:01-DQB1*06:03 (Pc = 6.99e-08), DRB1*15:01-DQB1*06:02 (Pc = 2.97e-06) in the cases versus controls. Also, DRB1*03:01-DQB1*02:01/DRB1*04:02|05-DQB1*03:02 and DRB1*03:01-DQB1*02:01/DRB1*03:01-DQB1*02:01 diplotypes conferred the highest predisposing effect in the cases (Pc = 8.65e-17 and Pc = 6.26e-08, respectively) and in probands (Pc = 5.4e-15 and Pc = 0.001, respectively) compared to controls. Transmission disequilibrium test showed that the highest risk was conferred by DRB1*04:02-DQB1*03:02 (Pc = 3.26e-05) and DRB1*03:01-DQB1*02:01 (Pc = 1.78e-12) haplotypes and the highest protection by DRB1*14:01-DQB1*05:03 (Pc = 8.66e-05), DRB1*15:01-DQB1*06:02 (Pc = 0.002), and DRB1*11:01-DQB1*03:01 (Pc = 0.0003) haplotypes. Based on logistic regression analysis, carriage of risk haplotypes increased the risk of T1D development 24.5 times in the Iranian population (p = 5.61e-13). Also, receiver operating characteristic curve analysis revealed a high predictive power of those risk haplotypes in discrimination of susceptible from healthy individuals (area under curve: 0.88, p = 5.5e-32). Our study highlights the potential utility of genetic risk assessment based on HLA diplotypes for predicting T1D risk in individuals, particularly among family members of affected children in our population.


Subject(s)
Diabetes Mellitus, Type 1 , Middle Eastern People , Humans , Diabetes Mellitus, Type 1/genetics , HLA-DRB1 Chains/genetics , Haplotypes , Iran/epidemiology , Gene Frequency , Alleles , HLA-DQ beta-Chains/genetics , Genetic Predisposition to Disease
11.
Sci Rep ; 14(1): 7967, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575661

ABSTRACT

Behçet's disease (BD) manifests as an autoimmune disorder featuring recurrent ulcers and multi-organ involvement, influenced by genetic factors associated with both HLA and non-HLA genes, including TNF-α and ERAP1. The study investigated the susceptible alleles of both Class I and II molecules of the HLA gene in 56 Thai BD patients and 192 healthy controls through next-generation sequencing using a PacBio kit. The study assessed 56 BD patients, primarily females (58.9%), revealing diverse manifestations including ocular (41.1%), vascular (35.7%), skin (55.4%), CNS (5.4%), and GI system (10.7%) involvement. This study found associations between BD and HLA-A*26:01:01 (OR 3.285, 95% CI 1.135-9.504, P-value 0.028), HLA-B*39:01:01 (OR 6.176, 95% CI 1.428-26.712, P-value 0.015), HLA-B*51:01:01 (OR 3.033, 95% CI 1.135-8.103, P-value 0.027), HLA-B*51:01:02 (OR 6.176, 95% CI 1.428-26.712, P-value 0.015), HLA-C*14:02:01 (OR 3.485, 95% CI 1.339-9.065, P-value 0.01), HLA-DRB1*14:54:01 (OR 1.924, 95% CI 1.051-3.522, P-value 0.034), and HLA-DQB1*05:03:01 (OR 3.00, 95% CI 1.323-6.798, P-value 0.008). However, after Bonferroni correction none of these alleles were found to be associated with BD. In haplotype analysis, we found a strong linkage disequilibrium in HLA-B*51:01:01, HLA-C*14:02:01 (P-value 0.0, Pc-value 0.02). Regarding the phenotype, a significant association was found between HLA-DRB1*14:54:01 (OR 11.67, 95% CI 2.86-47.57, P-value 0.001) and BD with ocular involvement, apart from this, no distinct phenotype-HLA association was documented. In summary, our study identifies specific HLA associations in BD. Although limited by a small sample size, we acknowledge the need for further investigation into HLA relationships with CNS, GI, and neurological phenotypes in the Thai population.


Subject(s)
Behcet Syndrome , Female , Humans , Behcet Syndrome/epidemiology , HLA-DRB1 Chains/genetics , High-Throughput Nucleotide Sequencing , HLA-C Antigens/genetics , Thailand , HLA-B Antigens/genetics , Alleles , Technology , Genetic Predisposition to Disease , Aminopeptidases/genetics , Minor Histocompatibility Antigens
12.
PLoS One ; 19(4): e0281698, 2024.
Article in English | MEDLINE | ID: mdl-38593173

ABSTRACT

Several genes involved in the pathogenesis have been identified, with the human leukocyte antigen (HLA) system playing an essential role. However, the relationship between HLA and a cluster of hematological diseases has received little attention in China. Blood samples (n = 123913) from 43568 patients and 80345 individuals without known pathology were genotyped for HLA class I and II using sequencing-based typing. We discovered that HLA-A*11:01, B*40:01, C*01:02, DQB1*03:01, and DRB1*09:01 were prevalent in China. Furthermore, three high-frequency alleles (DQB1*03:01, DQB1*06:02, and DRB1*15:01) were found to be hazardous in malignant hematologic diseases when compared to controls. In addition, for benign hematologic disorders, 7 high-frequency risk alleles (A*01:01, B*46:01, C*01:02, DQB1*03:03, DQB1*05:02, DRB1*09:01, and DRB1*14:54) and 8 high-frequency susceptible genotypes (A*11:01-A*11:01, B*46:01-B*58:01, B*46:01-B*46:01, C*01:02-C*03:04, DQB1*03:01-DQB1*05:02, DQB1*03:03-DQB1*06:01, DRB1*09:01-DRB1*15:01, and DRB1*14:54-DRB1*15:01) were observed. To summarize, our findings indicate the association between HLA alleles/genotypes and a variety of hematological disorders, which is critical for disease surveillance.


Subject(s)
Hematologic Diseases , Histocompatibility Antigens Class I , Humans , Gene Frequency , Alleles , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Genotype , Histocompatibility Antigens Class I/genetics , Hematologic Diseases/genetics , Haplotypes , Genetic Predisposition to Disease
13.
Front Immunol ; 15: 1377535, 2024.
Article in English | MEDLINE | ID: mdl-38601147

ABSTRACT

Introduction: We investigated the potential role of HLA molecular mismatches (MM) in achieving stable chimerism, allowing for donor-specific tolerance in patients undergoing combined living donor kidney and hematopoietic stem cell transplantation (HSCT). Methods: All patients with available DNA samples (N=32) who participated in a phase 2 clinical trial (NCT00498160) where they received an HLA mismatched co-transplantation of living donor kidney and facilitating cell-enriched HSCT were included in this study. High-resolution HLA genotyping data were used to calculate HLA amino acid mismatches (AAMM), Eplet MM, three-dimensional electrostatic mismatch scores (EMS-3D), PIRCHE scores, HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence MM, and KIR ligands MM between the donor and recipient in both directions. HLA MM were analyzed to test for correlation with the development of chimerism, graft vs. host disease (GvHD), de novo DSA, and graft rejection. Results: Follow-up time of this cohort was 6-13.5 years. Of the 32 patients, 26 developed high-level donor or mixed stable chimerism, followed by complete withdrawal of immunosuppression (IS) in 25 patients. The remaining six of the 32 patients had transient chimerism or no engraftment and were maintained on IS (On-IS). In host versus graft direction, a trend toward higher median number of HLA-DRB1 MM scores was seen in patients On-IS compared to patients with high-level donor/mixed chimerism, using any of the HLA MM modalities; however, initial statistical significance was observed only for the EMS-3D score (0.45 [IQR, 0.30-0.61] vs. 0.24 [IQR, 0.18-0.36], respectively; p=0.036), which was lost when applying the Bonferroni correction. No statistically significant differences between the two groups were observed for AAMM, EMS-3D, Eplet MM, and PIRCHE-II scores calculated in graft versus host direction. No associations were found between development of chimerism and GvHD and non-permissive HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence, and KIR ligands MM. Conclusion: Our results suggest an association between HLA-DRB1 molecular mismatches and achieving stable chimerism, particularly when electrostatic quality of the mismatch is considered. The non-permissive HLA-DPB1 T-cell epitope group, HLA-B leader sequence, and KIR ligands MM do not predict chimerism and GvHD in this combined kidney/HSCT transplant patient cohort. Further work is needed to validate our findings. Clinical trial registration: https://clinicaltrials.gov/study/NCT00498160, identifier NCT00498160.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Living Donors , Epitopes, T-Lymphocyte , HLA-DRB1 Chains , Histocompatibility Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/etiology , Kidney , HLA-B Antigens
14.
HLA ; 103(5): e15503, 2024 May.
Article in English | MEDLINE | ID: mdl-38686516

ABSTRACT

Compared with HLA-DRB1*09:01:02:05, the alleles HLA-DRB1*09:57 and HLA-DRB1*09:58 each show one nucleotide change, respectively.


Subject(s)
Alleles , Asian People , Base Sequence , Exons , HLA-DRB1 Chains , Humans , HLA-DRB1 Chains/genetics , Asian People/genetics , Histocompatibility Testing , China , Sequence Analysis, DNA/methods , Sequence Alignment , Codon , East Asian People
15.
Acta Diabetol ; 61(6): 791-805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483572

ABSTRACT

AIM: This study was undertaken to explicate the shared and distinctive genetic susceptibility and immune dysfunction in patients with T1D alone and T1D with CD (T1D + CD). METHODS: A total of 100 T1D, 50 T1D + CD and 150 healthy controls were recruited. HLA-DRB1/DQB1 alleles were determined by PCR-sequence-specific primer method, SNP genotyping for CTLA-4 and PTPN22 was done by simple probe-based SNP-array and genotyping for INS-23 Hph1 A/T was done by RFLP. Autoantibodies and cytokine estimation was done by ELISA. Immune-regulation was analysed by flow-cytometry. Clustering of autoantigen epitopes was done by epitope cluster analytical tool. RESULTS: Both T1D alone and T1D + CD had a shared association of DRB1*03:01, DRB1*04, DRB3*01:07/15 and DQB1*02. DRB3*01:07/15 confers the highest risk for T1D with relative risk of 11.32 (5.74-22.31). Non-HLA gene polymorphisms PTPN22 and INS could discriminate between T1D and T1D + CD. T1D + CD have significantly higher titers of autoantibodies, expression of costimulatory molecules on CD4 and CD8 cells, and cytokine IL-17A and TGF-ß1 levels compared to T1D patients. Epitopes from immunodominant regions of autoantigens of T1D and CD clustered together with 40% homology. CONCLUSION: Same HLA genes provide susceptibility for both T1D and CD. Non-HLA genes CTLA4, PTPN22 and INS provide further susceptibility while different polymorphisms in PTPN22 and INS can discriminate between T1D and T1D + CD. Epitope homology between autoantigens of two diseases further encourages the two diseases to occur together. The T1D + CD being more common in females along with co-existence of thyroid autoimmunity, and have more immune dysregulated state than T1D alone.


Subject(s)
Autoantigens , Celiac Disease , Diabetes Mellitus, Type 1 , Genetic Predisposition to Disease , Protein Tyrosine Phosphatase, Non-Receptor Type 22 , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , India/epidemiology , Celiac Disease/genetics , Celiac Disease/immunology , Female , Male , Autoantigens/immunology , Autoantigens/genetics , Child , Adolescent , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Adult , HLA-DQ beta-Chains/genetics , Autoantibodies/immunology , Autoantibodies/blood , HLA-DRB1 Chains/genetics , Young Adult , Polymorphism, Single Nucleotide , Child, Preschool , CTLA-4 Antigen/genetics , Genotype , Case-Control Studies
16.
Ann Neurol ; 95(6): 1112-1126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551149

ABSTRACT

OBJECTIVE: Specific human leucocyte antigen (HLA) alleles are not only associated with higher risk to develop multiple sclerosis (MS) and other autoimmune diseases, but also with the severity of various viral and bacterial infections. Here, we analyzed the most specific biomarker for MS, that is, the polyspecific intrathecal IgG antibody production against measles, rubella, and varicella zoster virus (MRZ reaction), for possible HLA associations in MS. METHODS: We assessed MRZ reaction from 184 Swiss patients with MS and clinically isolated syndrome (CIS) and 89 Swiss non-MS/non-CIS control patients, and performed HLA sequence-based typing, to check for associations of positive MRZ reaction with the most prevalent HLA alleles. We used a cohort of 176 Swedish MS/CIS patients to replicate significant findings. RESULTS: Whereas positive MRZ reaction showed a prevalence of 38.0% in MS/CIS patients, it was highly specific (97.7%) for MS/CIS. We identified HLA-DRB1*15:01 and other tightly linked alleles of the HLA-DR15 haplotype as the strongest HLA-encoded risk factors for a positive MRZ reaction in Swiss MS/CIS (odds ratio [OR], 3.90, 95% confidence interval [CI] 2.05-7.46, padjusted = 0.0004) and replicated these findings in Swedish MS/CIS patients (OR 2.18, 95%-CI 1.16-4.02, padjusted = 0.028). In addition, female MS/CIS patients had a significantly higher probability for a positive MRZ reaction than male patients in both cohorts combined (padjusted <0.005). INTERPRETATION: HLA-DRB1*15:01, the strongest genetic risk factor for MS, and female sex, 1 of the most prominent demographic risk factors for developing MS, predispose in MS/CIS patients for a positive MRZ reaction, the most specific CSF biomarker for MS. ANN NEUROL 2024;95:1112-1126.


Subject(s)
Immunoglobulin G , Multiple Sclerosis , Humans , Female , Male , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/cerebrospinal fluid , Immunoglobulin G/blood , Adult , Middle Aged , Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/genetics , HLA-DRB1 Chains/genetics , Sweden/epidemiology , Cohort Studies , Young Adult , Rubella virus/genetics , Rubella virus/immunology , HLA Antigens/genetics , Antibodies, Viral/cerebrospinal fluid , Antibodies, Viral/blood , Alleles , Switzerland/epidemiology
17.
Parkinsonism Relat Disord ; 122: 106036, 2024 May.
Article in English | MEDLINE | ID: mdl-38462403

ABSTRACT

BACKGROUND: Although there are many possible causes for cervical dystonia (CD), a specific etiology cannot be identified in most cases. Prior studies have suggested a relationship between autoimmune disease and some cases of CD, pointing to possible immunological mechanisms. OBJECTIVE: The goal was to explore the potential role of multiple different immunological mechanisms in CD. METHODS: First, a broad screening test compared neuronal antibodies in controls and CD. Second, unbiased blood plasma proteomics provided a broad screen for potential biologic differences between controls and CD. Third, a multiplex immunoassay compared 37 markers associated with immunological processes in controls and CD. Fourth, relative immune cell frequencies were investigated in blood samples of controls and CD. Finally, sequencing studies investigated the association of HLA DQB1 and DRB1 alleles in controls versus CD. RESULTS: Screens for anti-neuronal antibodies did not reveal any obvious abnormalities. Plasma proteomics pointed towards certain abnormalities of immune mechanisms, and the multiplex assay pointed more specifically towards abnormalities in T lymphocytes. Abnormal immune cell frequencies were identified for some CD cases, and these cases clustered together as a potential subgroup. Studies of HLA alleles indicated a possible association between CD and DRB1*15:03, which is reported to mediate the penetrance of autoimmune disorders. CONCLUSIONS: Altogether, the association of CD with multiple different blood-based immune measures point to abnormalities in cell-mediated immunity that may play a pathogenic role for a subgroup of individuals with CD.


Subject(s)
Torticollis , Humans , Torticollis/immunology , Torticollis/genetics , Male , Female , Middle Aged , Proteomics , Adult , Aged , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Autoantibodies/blood
18.
Diabetes ; 73(6): 1002-1011, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38530923

ABSTRACT

We sought to identify genetic/immunologic contributors of type 2 diabetes (T2D) in an indigenous American community by genotyping all study participants for both high-resolution HLA-DRB1 alleles and SLC16A11 to test their risk and/or protection for T2D. These genes were selected based on independent reports that HLA-DRB1*16:02:01 is protective for T2D and that SLC16A11 associates with T2D in individuals with BMI <35 kg/m2. Here, we test the interaction of the two loci with a more complete data set and perform a BMI sensitivity test. We defined the risk protection haplotype of SLC16A11, T-C-G-T-T, as allele 2 of a diallelic genetic model with three genotypes, SLC16A11*11, *12, and *22, where allele 1 is the wild type. Both earlier findings were confirmed. Together in the same logistic model with BMI ≥35 kg/m2, DRB1*16:02:01 remains protective (odds ratio [OR] 0.73), while SLC16A11 switches from risk to protection (OR 0.57 [*22] and 0.78 [*12]); an added interaction term was statistically significant (OR 0.49 [*12]). Bootstrapped (b = 10,000) statistical power of interaction, 0.4801, yielded a mean OR of 0.43. Sensitivity analysis demonstrated that the interaction is significant in the BMI range of 30-41 kg/m2. To investigate the epistasis, we used the primary function of the HLA-DRB1 molecule, peptide binding and presentation, to search the entire array of 15-mer peptides for both the wild-type and ancient human SLC16A11 molecules for a pattern of strong binding that was associated with risk and protection for T2D. Applying computer binding algorithms suggested that the core peptide at SLC16A11 D127G, FSAFASGLL, might be key for moderating risk for T2D with potential implications for type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Epistasis, Genetic , Genetic Predisposition to Disease , HLA-DRB1 Chains , Monocarboxylic Acid Transporters , Humans , Diabetes Mellitus, Type 2/genetics , HLA-DRB1 Chains/genetics , Female , Male , Middle Aged , Monocarboxylic Acid Transporters/genetics , Indians, North American/genetics , Adult , Genotype , Alleles , Body Mass Index , Haplotypes , Polymorphism, Single Nucleotide , Aged
19.
Diabetes Care ; 47(5): 826-834, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38498185

ABSTRACT

OBJECTIVE: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression. RESULTS: First, the current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). Second, after adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). Third, DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). Fourth, through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression. CONCLUSIONS: These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/prevention & control , Seroconversion , Genotype , Haplotypes , Disease Progression , HLA-DRB1 Chains/genetics , HLA-DQ beta-Chains/genetics , Alleles , Gene Frequency
20.
Neurology ; 102(8): e209268, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38547417

ABSTRACT

OBJECTIVE: Characteristics of myositis with anti-Ku antibodies are poorly understood. The purpose of this study was to elucidate the pathologic features of myositis associated with anti-Ku antibodies, compared with immune-mediated necrotizing myopathy (IMNM) with anti-signal recognition particle (SRP) and anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibodies, in muscle biopsy-oriented registration cohorts in Japan and Germany. METHODS: We performed a retrospective pathology review of patients with anti-Ku myositis samples diagnosed in the Japanese and German cohorts. We evaluated histologic features and performed HLA phenotyping. RESULTS: Fifty biopsied muscle samples in the Japanese cohort and 10 in the German cohort were obtained. After exclusion of myositis-specific autoantibodies or other autoimmune connective tissue diseases, 26 samples (43%) of anti-Ku antibody-positive myositis were analyzed. All the samples shared some common features with IMNM, whereas they showed expression of MHC class II and clusters of perivascular inflammatory cells more frequently than the anti-SRP/HMGCR IMNM samples (71% vs 7%/16%; p < 0.005/<0.005; 64% vs 0%/0%; p < 0.005/<0.005). Anti-Ku myositis biopsies could be divided into 2 subgroups based on the extent of necrosis and regeneration. The group with more abundant necrosis and regeneration showed a higher frequency of MHC class II expression and perivascular inflammatory cell clusters. HLA phenotyping in the 44 available patients showed possible associations of HLA-DRB1*03:01, HLA-DRB1*11:01, and HLA-DQB1*03:01 (p = 0.0045, 0.019, and 0.027; odds ratio [OR] 50.2, 4.6, and 2.8; 95% CI 2.6-2942.1, 1.1-14.5, and 1.0-7.0) in the group with less conspicuous necrosis and regeneration. On the contrary, in the group of more abundant necrosis and regeneration, the allele frequencies of HLA-A*24:02, HLA-B*52:01, HLA-C*12:02, and HLA-DRB1*15:02 were lower than those of healthy controls (p = 0.0036, 0.027, 0.016, and 0.026; OR = 0.27, 0, 0, and 0; 95% CI 0.1-0.7, 0-0.8, 0-0.8, and 0-0.8). However, these HLA associations did not remain significant after statistical correction for multiple testing. DISCUSSION: While anti-Ku myositis shows necrotizing myopathy features, they can be distinguished from anti-SRP/HMGCR IMNM by their MHC class II expression and clusters of perivascular inflammatory cells. The HLA analyses suggest that anti-Ku myositis may have different subsets associated with myopathologic subgroups.


Subject(s)
Autoimmune Diseases , Muscular Diseases , Myositis , Humans , Muscle, Skeletal/pathology , Retrospective Studies , HLA-DRB1 Chains/genetics , Myositis/diagnosis , Muscular Diseases/pathology , Autoantibodies , Necrosis , Signal Recognition Particle
SELECTION OF CITATIONS
SEARCH DETAIL
...