Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Mol Biol ; 434(22): 167841, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36167183

ABSTRACT

Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.


Subject(s)
HSC70 Heat-Shock Proteins , HSP110 Heat-Shock Proteins , Humans , HSC70 Heat-Shock Proteins/chemistry , HSC70 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Nucleotides/metabolism , Protein Aggregates , Protein Binding
2.
J Biol Chem ; 297(3): 101082, 2021 09.
Article in English | MEDLINE | ID: mdl-34403698

ABSTRACT

Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDß interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDß contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.


Subject(s)
HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites/genetics , Candida albicans/genetics , Candida albicans/metabolism , HSP110 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Nucleotides/metabolism , Protein Binding/genetics , Protein Domains/genetics , Protein Folding
3.
Int J Biol Macromol ; 180: 272-285, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33741370

ABSTRACT

Plasmodium falciparum expresses two essential cytosol localised chaperones; PfHsp70-1 and PfHsp70-z. PfHsp70-z (Hsp110 homologue) is thought to facilitate nucleotide exchange function of PfHsp70-1. PfHsp70-1 is a refoldase, while PfHsp70-z is restricted to holdase chaperone function. The structural features delineating functional specialisation of these chaperones remain unknown. Notably, PfHsp70-z possesses a unique linker segment which could account for its distinct functions. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) as well as their linker switch mutant forms, we explored the effects of the linker mutations by conducting several assays such as circular dichroism, intrinsic and extrinsic fluorescence coupled to biochemical and in cellular analyses. Our findings demonstrate that the linker of PfHsp70-z modulates global conformation of the chaperone, regulating several functions such as client protein binding, chaperone- and ATPase activities. In addition, as opposed to the flexible linker of PfHsp70-1, the PfHsp70-z linker is rigid, thus regulating its notable thermal stability, making it an effective stress buffer. Our findings suggest a crucial role for the linker in streamlining the functions of these two chaperones. The findings further explain how these distinct chaperones cooperate to ensure survival of P. falciparum particularly under the stressful human host environment.


Subject(s)
Cytosol/metabolism , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , HSP72 Heat-Shock Proteins/chemistry , HSP72 Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Adenosine Triphosphatases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HSP110 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP72 Heat-Shock Proteins/genetics , Hydrogen Bonding , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Domains , Protein Stability , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
J Biol Chem ; 296: 100567, 2021.
Article in English | MEDLINE | ID: mdl-33753171

ABSTRACT

Molecular chaperones maintain proteostasis by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to numerous neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's disease. Hsp110 is related to the canonical Hsp70 class of protein-folding molecular chaperones and interacts with Hsp70 as a nucleotide exchange factor (NEF). In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate-binding domain (SBD) whose biological roles remain undefined. Previous work in Drosophila melanogaster has implicated the sole Hsp110 gene (Hsc70cb) in proteinopathic neurodegeneration. We hypothesize that in addition to its role as an Hsp70 NEF, Drosophila Hsp110 may function as a protective protein "holdase," preventing the aggregation of unfolded polypeptides via the SBD-ß subdomain. We demonstrate for the first time that Drosophila Hsp110 effectively prevents aggregation of the model substrate citrate synthase. We also report the discovery of a redundant and heretofore unknown potent holdase capacity in a 138-amino-acid region of Hsp110 carboxyl terminal to both SBD-ß and SBD-α (henceforth called the C-terminal extension). This sequence is highly conserved in metazoan Hsp110 genes, completely absent from fungal representatives, and is computationally predicted to contain an intrinsically disordered region (IDR). We demonstrate that this IDR sequence within the human Hsp110s, Apg-1 and Hsp105α, inhibits the formation of amyloid Aß-42 and α-synuclein fibrils in vitro but cannot mediate fibril disassembly. Together these findings establish capacity for metazoan Hsp110 chaperones to suppress both general protein aggregation and amyloidogenesis, raising the possibility of exploitation of this IDR for therapeutic benefit.


Subject(s)
Amyloid/chemistry , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Protein Aggregates , Animals
5.
Cells ; 10(2)2021 01 28.
Article in English | MEDLINE | ID: mdl-33525518

ABSTRACT

Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.


Subject(s)
HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Animals , Endoplasmic Reticulum/metabolism , HSP110 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Humans , Molecular Targeted Therapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/physiopathology , Proteomics
6.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32284329

ABSTRACT

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Subject(s)
HSP110 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Homeodomain Proteins/chemistry , Protein Aggregation, Pathological , Superoxide Dismutase-1/chemistry , Tumor Suppressor Proteins/chemistry , Amino Acid Substitution , Cell Line, Tumor , HEK293 Cells , HSP110 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Homeodomain Proteins/genetics , Humans , Mutation, Missense , Superoxide Dismutase-1/genetics , Tumor Suppressor Proteins/genetics
7.
Cell Death Differ ; 27(1): 117-129, 2020 01.
Article in English | MEDLINE | ID: mdl-31068676

ABSTRACT

Pro-survival stress-inducible chaperone HSP110 is the only HSP for which a mutation has been found in a cancer. Multicenter clinical studies demonstrated a direct association between HSP110 inactivating mutation presence and excellent prognosis in colorectal cancer patients. Here, we have combined crystallographic studies on human HSP110 and in silico modeling to identify HSP110 inhibitors that could be used in colorectal cancer therapy. Two molecules (foldamers 33 and 52), binding to the same cleft of HSP110 nucleotide-binding domain, were selected from a chemical library (by co-immunoprecipitation, AlphaScreening, Interference-Biolayer, Duo-link). These molecules block HSP110 chaperone anti-aggregation activity and HSP110 association to its client protein STAT3, thereby inhibiting STAT3 phosphorylation and colorectal cancer cell growth. These effects were strongly decreased in HSP110 knockdown cells. Foldamer's 33 ability to inhibit tumor growth was confirmed in two colorectal cancer animal models. Although tumor cell death (apoptosis) was noted after treatment of the animals with foldamer 33, no apparent toxicity was observed, notably in epithelial cells from intestinal crypts. Taken together, we identified the first HSP110 inhibitor, a possible drug-candidate for colorectal cancer patients whose unfavorable outcome is associated to HSP110.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/toxicity , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Crystallography, X-Ray , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Humans , Mice , Models, Molecular , STAT3 Transcription Factor/metabolism
8.
Cancer Sci ; 110(10): 3049-3060, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31390678

ABSTRACT

Heat shock protein 105 (HSP105) is overexpressed in many cancers, including colorectal cancer (CRC) and esophageal cancer (EC). We carried out a phase I clinical trial of HLA-A24- and HLA-A2-restricted HSP105 peptide vaccines in patients with CRC or EC. In this additional study of the trial, we examined the immunological efficacy of the novel vaccine. Thirty patients with advanced CRC or EC underwent HSP105 peptide vaccination. Immunological responses were evaluated by ex vivo and in vitro γ-interferon enzyme-linked immunospot assays and their correlation with patients' prognosis was analyzed. The HSP105 peptide vaccines induced peptide-specific CTLs in 15 of 30 patients. Among HLA-A24 patients (n = 15), 7 showed induction of CTLs only ex vivo, whereas among HLA-A2 patients (n = 15), 4 showed the induction ex vivo and 6 in vitro. Heat shock protein 105-specific CTL induction correlated with suppression of cancer progression and was revealed as a potential predictive biomarker for progression-free survival (P = .008; hazard ratio = 3.03; 95% confidence interval, 1.34-6.85) and overall survival (P = .025; hazard ratio = 2.72; 95% confidence interval, 1.13-6.52). Production of cytokines by HSP105 peptide-specific CTLs was observed at the injection sites (skin) and tumor tissues, suggesting that HSP105-specific CTLs not only accumulated at vaccination sites but also infiltrated tumors. Furthermore, we established 2 HSP105 peptide-specific CTL clones, which showed HSP105-specific cytokine secretion and cytotoxicity. Our results suggest that the HSP105 peptide vaccine could induce immunological effects in cancer patients and improve their prognosis.


Subject(s)
Cancer Vaccines/administration & dosage , Colorectal Neoplasms/drug therapy , Esophageal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Adult , Aged , Cancer Vaccines/immunology , Cell Line, Tumor , Colorectal Neoplasms/immunology , Cytokines/metabolism , Disease-Free Survival , Esophageal Neoplasms/immunology , Female , HLA-A2 Antigen/metabolism , HLA-A24 Antigen/metabolism , Hep G2 Cells , Humans , Male , Middle Aged , Prognosis , T-Lymphocytes, Cytotoxic/immunology , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
9.
EMBO J ; 37(2): 282-299, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29212816

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat in the huntingtin gene (HTT). Molecular chaperones have been implicated in suppressing or delaying the aggregation of mutant Htt. Using in vitro and in vivo assays, we have identified a trimeric chaperone complex (Hsc70, Hsp110, and J-protein) that completely suppresses fibrilization of HttExon1Q48 The composition of this chaperone complex is variable as recruitment of different chaperone family members forms distinct functional complexes. The trimeric chaperone complex is also able to resolubilize Htt fibrils. We confirmed the biological significance of these findings in HD patient-derived neural cells and on an organismal level in Caenorhabditis elegans Among the proteins in this chaperone complex, the J-protein is the concentration-limiting factor. The single overexpression of DNAJB1 in HEK293T cells is sufficient to profoundly reduce HttExon1Q97 aggregation and represents a target of future therapeutic avenues for HD.


Subject(s)
HSC70 Heat-Shock Proteins , HSP110 Heat-Shock Proteins , HSP40 Heat-Shock Proteins , Huntingtin Protein , Multiprotein Complexes , Neurons/metabolism , Animals , Caenorhabditis elegans , HEK293 Cells , HSC70 Heat-Shock Proteins/chemistry , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neurons/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology
10.
Cell Stress Chaperones ; 22(2): 191-200, 2017 03.
Article in English | MEDLINE | ID: mdl-27966060

ABSTRACT

Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as "holdases" that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as "foldases" that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.


Subject(s)
Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Cell Differentiation/drug effects , Cell Line, Tumor , HSC70 Heat-Shock Proteins/chemistry , HSC70 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Humans , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Protein Refolding , RNA Splicing , Temperature , Tretinoin/pharmacology
11.
Annu Rev Biochem ; 85: 715-42, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27050154

ABSTRACT

Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.


Subject(s)
Chaperonin 60/chemistry , HSP110 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins, Small/chemistry , Mitochondrial Proteins/chemistry , Protein Unfolding , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Chaperonin 60/genetics , Chaperonin 60/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Gene Expression , HSP110 Heat-Shock Proteins/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Protein Aggregates , Protein Folding , Protein Structure, Quaternary , Rhodospirillum rubrum/chemistry , Rhodospirillum rubrum/metabolism
12.
PLoS One ; 10(11): e0143752, 2015.
Article in English | MEDLINE | ID: mdl-26619280

ABSTRACT

Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.


Subject(s)
HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Allosteric Regulation , Allosteric Site , Entropy , Models, Molecular , Molecular Dynamics Simulation , Peptides/metabolism , Protein Conformation , Protein Folding , Protein Stability
13.
Arch Biochem Biophys ; 580: 121-34, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26159839

ABSTRACT

The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed.


Subject(s)
Escherichia coli Proteins/chemistry , HSP110 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Protein Aggregates , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Animals , Endopeptidase Clp , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation , HSP110 Heat-Shock Proteins/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Protein Conformation , Protein Multimerization , Protein Refolding , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Species Specificity
14.
Proteins ; 83(8): 1513-25, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26052682

ABSTRACT

Plasmodium falciparum encounters frequent environmental challenges during its life cycle which makes productive protein folding immensely challenging for its metastable proteome. To identify the important components of protein folding machinery involved in maintaining P. falciparum proteome, we performed a proteome-wide phylogenetic profiling across various species. We found that except HSP110, the parasite lost all other cytosolic nucleotide exchange factors essential for regulating HSP70 which is the centrum of the protein folding network. Evolutionary and structural analysis shows that besides its canonical interaction with HSP70, PfHSP110 has acquired sequence insertions for additional dynamic interactions. Molecular co-evolution profile depicts that the co-evolving proteins of PfHSP110 belong to distinct pathways like genetic variation, DNA repair, fatty acid biosynthesis, protein modification/trafficking, molecular motions, and apoptosis. These proteins exhibit unique physiochemical properties like large size, high iso-electric point, low solubility, and antigenicity, hence require PfHSP110 chaperoning to attain functional state. Co-evolving protein interaction network suggests that PfHSP110 serves as an important hub to coordinate protein quality control, survival, and immune evasion pathways in the parasite. Overall, our findings highlight potential accessory roles of PfHSP110 that may provide survival advantage to the parasite during its lifecycle and febrile conditions. The data also open avenues for experimental validation of auxiliary functions of PfHSP110 and their exploration for design of better antimalarial strategies.


Subject(s)
HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Plasmodium falciparum/physiology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Cluster Analysis , Evolution, Molecular , HSP110 Heat-Shock Proteins/genetics , Phylogeny , Plasmodium falciparum/genetics , Protein Folding , Protein Stability , Protozoan Proteins/genetics
15.
Subcell Biochem ; 78: 1-33, 2015.
Article in English | MEDLINE | ID: mdl-25487014

ABSTRACT

Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glycoproteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Animals , Glycoproteins/chemistry , Guanine Nucleotide Exchange Factors/chemistry , HSP110 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Homeostasis , Humans , Models, Molecular , Molecular Chaperones/chemistry , Protein Conformation , Protein Folding , Proteolysis , Signal Transduction , Structure-Activity Relationship
16.
Postepy Hig Med Dosw (Online) ; 68: 793-807, 2014 Jun 09.
Article in Polish | MEDLINE | ID: mdl-24934537

ABSTRACT

Heat shock proteins (Hsps) are a class of proteins with highly conserved amino acid sequences. They are widespread in nature; they are found in archeons, true bacteria and eukaryotic organisms. Hsps from various families, commonly interact to execute essential cellular tasks, such as molecular regulation of newly synthesized protein-folding or restoration of the appropriate conformation of denatured and aggregated proteins. In this review we discuss mechanisms of spatial organization of protein structure mediated by Hsp10, Hsp40, Hsp60, Hsp70, Hsp104 (Hsp100) and Hsp110. Interactions between Hsps of different molecular weights are described.


Subject(s)
Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Amino Acid Sequence , Animals , Bacteria/metabolism , Conserved Sequence , Eukaryotic Cells/metabolism , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Models, Molecular , Molecular Chaperones/metabolism , Molecular Structure , Molecular Weight , Protein Folding , Substrate Specificity
17.
Gastroenterology ; 146(2): 401-11.e1, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24512910

ABSTRACT

BACKGROUND & AIMS: Patients with colorectal tumors with microsatellite instability (MSI) have better prognoses than patients with tumors without MSI, but have a poor response to 5-fluorouracil­based chemotherapy. A dominant-negative form of heat shock protein (HSP)110 (HSP110DE9) expressed by cancer cells with MSI, via exon skipping caused by somatic deletions in the T(17) intron repeat, sensitizes the cells to 5-fluorouracil and oxaliplatin.We investigated whether HSP110 T(17) could be used to identify patients with colorectal cancer who would benefit from adjuvant chemotherapy with 5-fluorouracil and oxaliplatin. METHODS: We characterized the interaction between HSP110 and HSP110DE9 using surface plasmon resonance. By using polymerase chain reaction and fragment analysis, we examined how the size of somatic allelic deletions in HSP110 T(17) affected the HSP110 protein expressed by tumor cells. We screened 329 consecutive patients with stage II­III colorectal tumors with MSI who underwent surgical resection at tertiary medical centers for HSP110 T(17). RESULTS: HSP110 and HSP110DE9 interacted in a1:1 ratio. Tumor cells with large deletions in T(17) had increased ratios of HSP110DE9:HSP110, owing to the loss of expression of full-length HSP110. Deletions in HSP110 T(17) were mostly biallelic in primary tumor samples with MSI. Patients with stage II­III cancer who received chemotherapy and had large HSP110 T(17) deletions (≥5 bp; 18 of 77 patients, 23.4%) had longer times of relapse-free survival than patients with small or no deletions (≤4 bp; 59 of 77 patients, 76.6%) in multivariate analysis (hazard ratio, 0.16; 95% confidence interval, 0.012­0.8; P = .03). We found a significant interaction between chemotherapy and T17 deletion (P =.009). CONCLUSIONS: About 25% of patients with stages II­III colorectal tumors with MSI have an excellent response to chemotherapy, due to large, biallelic deletions in the T(17) intron repeat of HSP110 in tumor DNA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Base Sequence , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/genetics , Microsatellite Instability , Sequence Deletion , Aged , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Chemotherapy, Adjuvant , Colectomy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Female , Fluorouracil/administration & dosage , Follow-Up Studies , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/metabolism , Humans , Introns , Leucovorin/administration & dosage , Male , Models, Molecular , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Retrospective Studies , Surface Plasmon Resonance , Survival Analysis , Treatment Outcome
18.
Amino Acids ; 46(4): 1059-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24449167

ABSTRACT

Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Previous studies showed that glutamine may affect protein expression by regulating ubiquitin-proteasome system. We thus aimed to evaluate the effects of glutamine on ubiquitinated proteins in human duodenal mucosa. Five healthy male volunteers were included and received during 5 h, on two occasions and in a random order, either an enteral infusion of maltodextrins alone (0.25 g kg(-1) h(-1), control), mimicking carbohydrate-fed state, or maltodextrins with glutamine (0.117 g kg(-1) h(-1), glutamine). Endoscopic duodenal biopsies were then taken. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using anti-ubiquitin antibody. Differentially ubiquitinated proteins were then identified by liquid chromatography-electrospray ionization MS/MS. Five proteins were differentially ubiquitinated between control and glutamine conditions. Among these proteins, we identified two chaperone proteins, Grp75 and hsp74. Grp75 was less ubiquitinated after glutamine infusion compared with control. In contrast, hsp74, also called Apg-2, was more ubiquitinated after glutamine. In conclusion, we provide evidence that glutamine may regulate ubiquitination processes of specific proteins, i.e., Grp75 and Apg-2. Grp75 has protective and anti-inflammatory properties, while Apg-2 indirectly regulates stress-induced cell survival and proliferation through interaction with ZO-1. Further studies should confirm these results in stress conditions.


Subject(s)
Duodenum/metabolism , Glutamine/metabolism , HSP110 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Intestinal Mucosa/metabolism , Membrane Proteins/metabolism , Adult , Blotting, Western , Female , HSP110 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Humans , Intestinal Mucosa/chemistry , Male , Membrane Proteins/chemistry , Tandem Mass Spectrometry , Ubiquitination , Young Adult
19.
J Biol Chem ; 289(3): 1402-14, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24318877

ABSTRACT

Proteins with Bcl2-associated anthanogene (BAG) domains act as nucleotide exchange factors (NEFs) for the molecular chaperone heat shock protein 70 (Hsp70). There are six BAG family NEFs in humans, and each is thought to link Hsp70 to a distinct cellular pathway. However, little is known about how the NEFs compete for binding to Hsp70 or how they might differentially shape its biochemical activities. Toward these questions, we measured the binding of human Hsp72 (HSPA1A) to BAG1, BAG2, BAG3, and the unrelated NEF Hsp105. These studies revealed a clear hierarchy of affinities: BAG3 > BAG1 > Hsp105 ≫ BAG2. All of the NEFs competed for binding to Hsp70, and their relative affinity values predicted their potency in nucleotide and peptide release assays. Finally, we combined the Hsp70-NEF pairs with cochaperones of the J protein family (DnaJA1, DnaJA2, DnaJB1, and DnaJB4) to generate 16 permutations. The activity of the combinations in ATPase and luciferase refolding assays were dependent on the identity and stoichiometry of both the J protein and NEF so that some combinations were potent chaperones, whereas others were inactive. Given the number and diversity of cochaperones in mammals, it is likely that combinatorial assembly could generate a large number of distinct permutations.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , DNA-Binding Proteins/chemistry , HSP110 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Multiprotein Complexes/chemistry , Transcription Factors/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HSP110 Heat-Shock Proteins/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding/physiology , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Int J Hyperthermia ; 29(5): 364-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23829534

ABSTRACT

Although the large stress/heat shock proteins (HSPs), i.e. Hsp110 and Grp170, were identified over 30 years ago, these abundant and highly conserved molecules have received much less attention compared to other conventional HSPs. Large stress proteins act as molecular chaperones with exceptional protein-holding capability and prevent the aggregation of proteins induced by thermal stress. The chaperoning properties of Hsp110 and Grp170 are integral to the ability of these molecules to modulate immune functions and are essential for developing large chaperone complex vaccines for cancer immunotherapy. The potent anti-tumour activity of the Hsp110/Grp170-tumour protein antigen complexes demonstrated in preclinical studies has led to a phase I clinical trial through the National Cancer Institute's rapid access to intervention development (RAID) programme that is presently underway. Here we review aspects of the structure and function of these large stress proteins, their roles as molecular chaperones in the biology of cell stress, and prospects for their use in immune regulation and cancer immunotherapy. Lastly, we will discuss the recently revealed immunosuppressive activity of scavenger receptor A that binds to Hsp110 and Grp170, as well as the feasibility of targeting this receptor to promote T-cell activation and anti-tumour immunity induced by large HSP vaccines and other immunotherapies.


Subject(s)
HSP110 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Animals , Cancer Vaccines/therapeutic use , HSP110 Heat-Shock Proteins/chemistry , HSP110 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/physiology , Humans , Immunotherapy , Molecular Weight , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...