Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.179
Filter
1.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38655676

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive , Sputum , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Sputum/microbiology
2.
Lancet Infect Dis ; 22(9): 1374-1387, 2022 09.
Article in English | MEDLINE | ID: mdl-35772449

ABSTRACT

BACKGROUND: Australian First Nations children are at very high risk of early, recurrent, and persistent bacterial otitis media and respiratory tract infection. With the PREVIX randomised controlled trials, we aimed to evaluate the immunogenicity of novel pneumococcal conjugate vaccine (PCV) schedules. METHODS: PREVIX_BOOST was a parallel, open-label, outcome-assessor-blinded, randomised controlled trial. Aboriginal children living in remote communities of the Northern Territory of Australia were eligible if they had previously completed the three-arm PREVIX_COMBO randomised controlled trial of the following vaccine schedules: three doses of a 13-valent PCV (PCV13; PPP) or a ten-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10; SSS) given at 2, 4, and 6 months, or SSS given at 1, 2, and 4 months followed by PCV13 at 6 months (SSSP). At age 12 months, eligible children were randomly assigned by a computer-generated random sequence (1:1, stratified by primary group allocation) to receive either a PCV13 booster or a PHiD-CV10 booster. Analyses used intention-to-treat principles. Co-primary outcomes were immunogenicity against protein D and serotypes 3, 6A, and 19A. Immunogenicity measures were geometric mean concentrations (GMC) and proportion of children with IgG concentrations of 0·35 µg/mL or higher (threshold for invasive pneumococcal disease), and GMCs and proportion of children with antibody levels of 100 EU/mL or higher against protein D. Standardised assessments of otitis media, hearing impairment, nasopharyngeal carriage, and developmental outcomes are reported. These trials are registered with ClinicalTrials.gov (NCT01735084 and NCT01174849). FINDINGS: Between April 10, 2013, and Sept 4, 2018, 261 children were randomly allocated to receive a PCV13 booster (n=131) or PHiD-CV10 booster (n=130). Adequate serum samples for pneumococcal serology were obtained from 127 (95%) children in the PCV13 booster group and 126 (97%) in the PHiD-CV10 booster group; for protein D, adequate samples were obtained from 126 (96%) children in the PCV13 booster group and 123 (95%) in the PHiD-CV10 booster group. The proportions of children with IgG concentrations above standard thresholds in PCV13 booster versus PHiD-CV10 booster groups were the following: 71 (56%) of 126 versus 81 (66%) of 123 against protein D (difference 10%, 95% CI -2 to 22), 85 (67%) of 127 versus 59 (47%) of 126 against serotype 3 (-20%, -32 to -8), 119 (94%) of 127 versus 91 (72%) of 126 against serotype 6A (-22%, -31 to -13), and 116 (91%) of 127 versus 108 (86%) of 126 against serotype 19A (-5%, -13 to 3). Infant PCV13 priming mitigated differences between PCV13 and PHiD-CV10 boosters. In both groups, we observed a high prevalence of otitis media (about 90%), hearing impairment (about 75%), nasopharyngeal carriage of pneumococcus (about 66%), and non-typeable H influenzae (about 57%). Of 66 serious adverse events, none were vaccine related. INTERPRETATION: Low antibody concentrations 6 months post-booster might indicate increased risk of pneumococcal infection. The preferred booster was PCV13 if priming did not have PCV13, otherwise either PCV13 or PHiD-CV10 boosters provided similar immunogenicity. Mixed schedules offer flexibility to regional priorities. Non-PCV13 serotypes and non-typeable H influenzae continue to cause substantial disease and disability in Australian First Nation's children. FUNDING: National Health and Medical Research Council (NHMRC).


Subject(s)
Hearing Loss , Immunization, Secondary , Indigenous Peoples , Nasopharynx , Otitis Media , Pneumococcal Vaccines , Vaccines, Conjugate , Antibodies, Bacterial/immunology , Australia , Haemophilus influenzae/immunology , Hearing Loss/immunology , Humans , Immunoglobulin G/immunology , Infant , Infant, Newborn , Nasopharynx/immunology , Nasopharynx/microbiology , Otitis Media/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Respiratory Tract Infections , Streptococcus pneumoniae/immunology , Time Factors , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
3.
Respir Res ; 23(1): 40, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236342

ABSTRACT

BACKGROUND: In chronic obstructive pulmonary disease (COPD), exacerbations cause acute inflammatory flare-ups and increase the risk for hospitalization and mortality. Exacerbations are common in all disease stages and are often caused by bacterial infections e.g., non-typeable Heamophilus influenzae (NTHi). Accumulating evidence also associates vitamin D deficiency with the severity of COPD and exacerbation frequency. However, it is still unclear whether vitamin D deficiency when combined with cigarette smoking would worsen and prolong exacerbations caused by repeated infections with the same bacterial strain. METHODS: Vitamin D sufficient (VDS) and deficient (VDD) mice were exposed to nose-only cigarette smoke (CS) for 14 weeks and oropharyngeally instilled with NTHi at week 6, 10 and 14. Three days after the last instillation, mice were assessed for lung function, tissue remodeling, inflammation and immunity. The impact of VDD and CS on inflammatory cells and immunoglobulin (Ig) production was also assessed in non-infected animals while serum Ig production against NTHi and dsDNA was measured in COPD patients before and 1 year after supplementation with Vitamin D3. RESULTS: VDD enhanced NTHi eradication, independently of CS and complete eradication was reflected by decreased anti-NTHi Ig's within the lung. In addition, VDD led to an increase in total lung capacity (TLC), lung compliance (Cchord), MMP12/TIMP1 ratio with a rise in serum Ig titers and anti-dsDNA Ig's. Interestingly, in non-infected animals, VDD exacerbated the CS-induced anti-NTHi Ig's, anti-dsDNA Ig's and inflammatory cells within the lung. In COPD patients, serum Ig production was not affected by vitamin D status but anti-NTHi IgG increased after vitamin D3 supplementation in patients who were Vitamin D insufficient before treatment. CONCLUSION: During repeated infections, VDD facilitated NTHi eradication and resolution of local lung inflammation through production of anti-NTHi Ig, independently of CS whilst it also promoted autoantibodies. In COPD patients, vitamin D supplementation could be protective against NTHi infections in vitamin D insufficient patients. Future research is needed to decipher the determinants of dual effects of VDD on adaptive immunity. TRAIL REGISTRATION: ClinicalTrials, NCT00666367. Registered 23 April 2008, https://www.clinicaltrials.gov/ct2/show/study/NCT00666367 .


Subject(s)
Cigarette Smoking/adverse effects , Haemophilus Infections/complications , Haemophilus influenzae/immunology , Lung/microbiology , Pneumonia/complications , Vitamin D Deficiency/metabolism , Animals , Disease Models, Animal , Haemophilus Infections/metabolism , Haemophilus Infections/microbiology , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pneumonia/metabolism
4.
PLoS One ; 17(1): e0261750, 2022.
Article in English | MEDLINE | ID: mdl-34986178

ABSTRACT

BACKGROUND: In the nation-wide double-blind cluster-randomised Finnish Invasive Pneumococcal disease trial (FinIP, ClinicalTrials.gov NCT00861380, NCT00839254), we assessed the indirect impact of the 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against five pneumococcal disease syndromes. METHODS: Children 6 weeks to 18 months received PHiD-CV10 in 48 clusters or hepatitis B/A-vaccine as control in 24 clusters according to infant 3+1/2+1 or catch-up schedules in years 2009-2011. Outcome data were collected from national health registers and included laboratory-confirmed and clinically suspected invasive pneumococcal disease (IPD), hospital-diagnosed pneumonia, tympanostomy tube placements (TTP) and outpatient antimicrobial prescriptions. Incidence rates in the unvaccinated population in years 2010-2015 were compared between PHiD-CV10 and control clusters in age groups <5 and ≥5 years (5-7 years for TTP and outpatient antimicrobial prescriptions), and in infants <3 months. PHiD-CV10 was introduced into the Finnish National Vaccination Programme (PCV-NVP) for 3-month-old infants without catch-up in 9/2010. RESULTS: From 2/2009 to 10/2010, 45398 children were enrolled. Vaccination coverage varied from 29 to 61% in PHiD-CV10 clusters. We detected no clear differences in the incidence rates between the unvaccinated cohorts of the treatment arms, except in single years. For example, the rates of vaccine-type IPD, non-laboratory-confirmed IPD and empyema were lower in PHiD-CV10 clusters compared to control clusters in 2012, 2015 and 2011, respectively, in the age-group ≥5 years. CONCLUSIONS: This is the first report from a clinical trial evaluating the indirect impact of a PCV against clinical outcomes in an unvaccinated population. We did not observe consistent indirect effects in the PHiD-CV10 clusters compared to the control clusters. We consider that the sub-optimal trial vaccination coverage did not allow the development of detectable indirect effects and that the supervening PCV-NVP significantly diminished the differences in PHiD-CV10 vaccination coverage between the treatment arms.


Subject(s)
Bacterial Proteins/administration & dosage , Carrier Proteins/administration & dosage , Haemophilus Infections/prevention & control , Haemophilus Vaccines/administration & dosage , Haemophilus influenzae/immunology , Immunoglobulin D/administration & dosage , Lipoproteins/administration & dosage , Pneumococcal Vaccines/administration & dosage , Pneumonia, Bacterial/prevention & control , Bacterial Proteins/adverse effects , Bacterial Proteins/immunology , Carrier Proteins/adverse effects , Carrier Proteins/immunology , Child , Child, Preschool , Double-Blind Method , Female , Haemophilus Infections/immunology , Haemophilus Vaccines/adverse effects , Haemophilus Vaccines/immunology , Humans , Immunoglobulin D/adverse effects , Immunoglobulin D/immunology , Infant , Lipoproteins/adverse effects , Lipoproteins/immunology , Male , Pneumococcal Vaccines/adverse effects , Pneumococcal Vaccines/immunology , Pneumonia, Bacterial/immunology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects , Vaccines, Conjugate/immunology
5.
Auris Nasus Larynx ; 49(1): 1-10, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34304944

ABSTRACT

The mucosal immune system prevents microorganism invasion through mucosal surfaces and consists of inductive and effector sites. Nasopharynx-associated lymphoid tissue (NALT) functions as an inductive site, inducing mucosal immune responses in the upper respiratory tract. It follows that intranasal vaccines may prevent upper respiratory infections. To induce and enhance the immune response by administering inactivated antigens intranasally, mucosal adjuvants have been developed, including mutant cholera toxin and cationic cholesteryl pullulan nanogel, which do not accumulate in the central nervous system. Moreover, multivalent pneumococcal polysaccharide conjugate vaccines are used to prevent invasive pneumococcal infections and otitis media, although they only provide moderate protection against acute otitis media because non-vaccine serotypes of Streptococcus pneumoniae and Haemophilus influenzae also cause this infection. To address this problem, pneumococcal surface protein A of S. pneumoniae and P6 of H. influenzae are used as broad-spectrum vaccine antigens. Alternatively, phosphorylcholine (PC) is present in the cell walls of both gram-positive and gram-negative bacteria and induces immune responses through antigenic activity. The significant effects of PC as a mucosal vaccine have been demonstrated through intranasal and sublingual immunization in mice. Furthermore, intranasal administration of PC reverses increases in IgE levels and prevents allergic rhinitis. After immunization with pneumococcal polysaccharide conjugate vaccine, intranasal immunization with PC boosts immune responses to vaccine strains and to PC itself. Thus, PC may be useful as a mucosal vaccine to prevent upper respiratory infections and allergic rhinitis, and it could be used as a booster to the currently used pneumococcal vaccine as it protects against non-vaccine strains.


Subject(s)
Immunity, Mucosal , Phosphorylcholine/immunology , Respiratory System/immunology , Vaccines , Administration, Intranasal , Animals , Antigens, Bacterial , Haemophilus influenzae/immunology , Humans , Immune System , Immunoglobulin A, Secretory , Mice , Mucous Membrane , Phosphorylcholine/therapeutic use , Pneumococcal Vaccines , Rhinitis, Allergic/prevention & control , Streptococcus pneumoniae/immunology , Vaccines/immunology
6.
Front Immunol ; 12: 725244, 2021.
Article in English | MEDLINE | ID: mdl-34447389

ABSTRACT

Background: Development of vaccines to prevent disease and death from Streptococcus pneumoniae, and nontypeable Haemophilus influenzae (NTHi), the main pathogens that cause otitis media, pneumonia, meningitis and sepsis, are a global priority. Children living in low and lower-middle income settings are at the highest risk of contracting and dying from these diseases. Improved vaccines with broader coverage are required. Data on the natural development of antibodies to putative vaccine antigens, especially in high-risk settings, can inform the rational selection of the best antigens for vaccine development. Methods: Serum IgG titres to four pneumococcal proteins (PspA1, PspA2, CbpA, and Ply) and five NTHi antigens (P4, P6, OMP26, rsPilA and ChimV4) were measured in sera collected from 101 Papua New Guinean children at 1, 4, 9, 10, 23 and 24 months of age using multiplexed bead-based immunoassays. Carriage density of S. pneumoniae and H. influenzae were assessed by quantitative PCR on genomic DNA extracted from nasopharyngeal swabs using species-specific primers and probes. All data were log-transformed for analysis using Student's unpaired t-tests with geometric mean titre (GMT) or density (GMD) calculated with 95% confidence intervals (CI). Results: Serum -pneumococcal protein-specific IgG titres followed a "U" shaped pattern, with a decrease in presumably maternally-derived IgG titres between 1 and 4 months of age and returning to similar levels as those measured at 1 month of age by 24 months of age. In contrast, NTHi protein-specific IgG titres steadily increased with age. There was no correlation between antibody titres and carriage density for either pathogen. Conclusion: This longitudinal study indicates that the waning of maternally- derived antibodies that is usually observed in infants, after infants does not occur for NTHi antigens in Papua New Guinean infants. Whether NTHi antigen IgG can be transferred maternally remains to be determined. Vaccines that are designed to specifically increase the presence of protective NTHi antibodies in the first few months of life may be most effective in reducing NTHi disease. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT01619462.


Subject(s)
Antibodies, Bacterial/blood , Haemophilus Infections/blood , Haemophilus influenzae/immunology , Pneumococcal Infections/blood , Streptococcus pneumoniae/immunology , Child, Preschool , Female , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/growth & development , Humans , Immunoglobulin G/blood , Infant , Linear Models , Longitudinal Studies , Male , Papua New Guinea , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Species Specificity , Streptococcus pneumoniae/growth & development , Vaccine Development
7.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34344825

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.


Subject(s)
Adhesins, Bacterial/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Adhesins, Bacterial/genetics , Agglutination Tests , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Adhesion , Female , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/genetics , Haemophilus influenzae/immunology , Immunization , Interleukin-17/blood , Mice, Inbred BALB C , Nasopharynx/microbiology
8.
J Immunol Res ; 2021: 6629824, 2021.
Article in English | MEDLINE | ID: mdl-34222496

ABSTRACT

Haemophilus influenzae is a common organism of the human upper respiratory tract; this bacterium is responsible of a wide spectrum for respiratory infections and can generate invasive diseases such as meningitis and septicemia. These infections are associated with H. influenzae encapsulated serotype b. However, the incidence of invasive disease caused by nontypeable H. influenzae (NTHi) has increased in the post-H. influenzae serotype b (Hib) vaccine era. Currently, an effective vaccine against NTHi is not available; due to this, it is important to find an antigen capable to confer protection against NTHi infection. In this study, 10 linear B cell epitopes and 13 CTL epitopes and a putative plasminogen-binding motif (252FYNKENGMY260) and the presence of enolase on the surface of different strains of H. influenzae were identified in the enolase sequence of H. influenzae. Both in silico and experimental results showed that recombinant enolase from H. influenzae is immunogenic that could induce a humoral immune response; this was observed mediating the generation of specific polyclonal antibodies anti-rNTHiENO that recognize typeable and nontypeable H. influenzae strains. The immunogenic properties and the superficial localization of enolase in H. influenzae, important characteristics to be considered as a new candidate for the development of a vaccine, were demonstrated.


Subject(s)
Bacterial Proteins/immunology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/immunology , Haemophilus influenzae/immunology , Phosphopyruvate Hydratase/immunology , Respiratory Tract Infections/prevention & control , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cloning, Molecular , Computational Biology , Epitopes/genetics , Epitopes/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus Vaccines/genetics , Haemophilus Vaccines/therapeutic use , Haemophilus influenzae/enzymology , Haemophilus influenzae/genetics , Humans , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Vaccine Development , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use
9.
Clin Exp Immunol ; 206(1): 99-109, 2021 10.
Article in English | MEDLINE | ID: mdl-34143447

ABSTRACT

Defective phagocytosis has been shown in chronic obstructive pulmonary disease (COPD) bronchoalveolar lavage and blood monocyte-derived macrophages. Phagocytic capabilities of sputum macrophages and neutrophils in COPD are unknown. We investigated phagocytosis in these cells from COPD patients and controls. Phagocytosis of Streptococcus pneumoniae or fluorescently labelled non-typeable Haemophilus influenzae (NTHi) by sputum macrophages and neutrophils was determined by gentamycin protection assay (COPD; n = 5) or flow cytometry in 14 COPD patients, 8 healthy smokers (HS) and 9 healthy never-smokers (HNS). Sputum macrophages and neutrophils were differentiated by adherence for the gentamycin protection assay or receptor expression (CD206 and CD66b, respectively), by flow cytometry. The effects of NTHi on macrophage expression of CD206 and CD14 and neutrophil expression of CD16 were determined by flow cytometry. There was greater uptake of S. pneumoniae [~10-fold more colony-forming units (CFU)/ml] by sputum neutrophils compared to macrophages in COPD patients. Flow cytometry showed greater NTHi uptake by neutrophils compared to macrophages in COPD (67 versus 38%, respectively) and HS (61 versus 31%, respectively). NTHi uptake by macrophages was lower in HS (31%, p = 0.019) and COPD patients (38%, p = 0.069) compared to HNS (57%). NTHi uptake by neutrophils was similar between groups. NTHi exposure reduced CD206 and CD14 expression on macrophages and CD16 expression on neutrophils. Sputum neutrophils showed more phagocytic activity than macrophages. There was some evidence that bacterial phagocytosis was impaired in HS sputum macrophages, but no impairment of neutrophils was observed in HS or COPD patients. These results highlight the relative contributions of neutrophils and macrophages to bacterial clearance in COPD.


Subject(s)
Haemophilus influenzae/immunology , Macrophages/immunology , Neutrophils/immunology , Phagocytosis , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Streptococcus mutans/immunology , Adult , Aged , Antigens, CD/immunology , Female , Flow Cytometry , Humans , Macrophages/microbiology , Male , Middle Aged , Neutrophils/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Sputum/microbiology
10.
Biochem J ; 478(8): 1485-1509, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33881487

ABSTRACT

Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.


Subject(s)
Guillain-Barre Syndrome/immunology , Haemophilus Infections/immunology , Meningitis, Meningococcal/immunology , Pneumonia, Pneumococcal/immunology , Polysaccharides/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/therapeutic use , Autoantibodies/biosynthesis , Autoantibodies/blood , Bacterial Vaccines/biosynthesis , Bacterial Vaccines/therapeutic use , Carbohydrate Sequence , Guillain-Barre Syndrome/pathology , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/biosynthesis , Haemophilus Vaccines/therapeutic use , Haemophilus influenzae/immunology , Humans , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control , Neisseria meningitidis/immunology , Pneumococcal Vaccines/biosynthesis , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/prevention & control , Polysaccharides/antagonists & inhibitors , Polysaccharides/chemistry , Streptococcus pneumoniae/immunology
11.
Respir Res ; 22(1): 113, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879129

ABSTRACT

BACKGROUND: Lower airway bacterial colonisation (LABC) in COPD patients is associated with increased exacerbation frequency and faster lung function decline. Defective macrophage phagocytosis in COPD drives inflammation, but how defective macrophage function contributes to exacerbations is not clear. This study investigated the association between macrophage phagocytosis and exacerbation frequency, LABC and clinical parameters. METHODS: Monocyte-derived macrophages (MDM) were generated from 92 stable COPD patients, and at the onset of exacerbation in 39 patients. Macrophages were exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, then phagocytosis measured by fluorimetry and cytokine release by ELISA. Sputum bacterial colonisation was measured by PCR. RESULTS: Phagocytosis of H. influenzae was negatively correlated with exacerbation frequency (r = 0.440, p < 0.01), and was significantly reduced in frequent vs. infrequent exacerbators (1.9 × 103 RFU vs. 2.5 × 103 RFU, p < 0.01). There was no correlation for S. pneumoniae. There was no association between phagocytosis of either bacteria with age, lung function, smoking history or treatment with inhaled corticosteroids, or long-acting bronchodilators. Phagocytosis was not altered during an exacerbation, or in the 2 weeks post-exacerbation. In response to phagocytosis, MDM from exacerbating patients showed increased release of CXCL-8 (p < 0.001) and TNFα (p < 0.01) compared to stable state. CONCLUSION: Impaired COPD macrophage phagocytosis of H. influenzae, but not S. pneumoniae is associated with exacerbation frequency, resulting in pro-inflammatory macrophages that may contribute to disease progression. Targeting these frequent exacerbators with drugs that improve macrophage phagocytosis may prove beneficial.


Subject(s)
Haemophilus influenzae/immunology , Lung/microbiology , Macrophages/microbiology , Phagocytosis , Pulmonary Disease, Chronic Obstructive/microbiology , Aged , Case-Control Studies , Cells, Cultured , Disease Progression , Female , Haemophilus influenzae/pathogenicity , Humans , Inflammation Mediators/metabolism , Interleukin-8/metabolism , Lung/immunology , Lung/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Phenotype , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/pathogenicity , Tumor Necrosis Factor-alpha/metabolism
12.
PLoS Pathog ; 17(4): e1009513, 2021 04.
Article in English | MEDLINE | ID: mdl-33914847

ABSTRACT

Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.


Subject(s)
Haemophilus Infections/microbiology , Haemophilus influenzae/immunology , Meningitis, Bacterial/microbiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/immunology , Virulence Factors/metabolism , Bacterial Capsules/metabolism , Base Sequence/genetics , Complement Factor H/metabolism , Environment , Haemophilus influenzae/genetics , Haemophilus influenzae/physiology , Nasopharynx/microbiology , Pneumococcal Infections/genetics , Polysaccharides, Bacterial/metabolism , Streptococcus pneumoniae/physiology , Temperature , Thermosensing
13.
Infect Immun ; 89(6)2021 05 17.
Article in English | MEDLINE | ID: mdl-33782153

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi), a common inhabitant of the human nasopharynx and upper airways, causes opportunistic respiratory tract infections that are frequently recurring and chronic. NTHi utilizes sialic acid from the host to evade antibacterial defenses and persist in mucosal tissues; however, the role of sialic acid scavenged by NTHi during infection is not fully understood. We previously showed that sialylation protects specific epitopes on NTHi lipooligosaccharide (LOS) targeted by bactericidal IgM in normal human serum. Here, we evaluated the importance of immune evasion mediated by LOS sialylation in the mouse respiratory tract using wild-type H. influenzae and an isogenic siaB mutant incapable of sialylating the LOS. Sialylation protected common NTHi glycan structures recognized by human and murine IgM and protected NTHi from complement-mediated killing directed by IgM against these structures. Protection from IgM binding by sialylated LOS correlated with decreased survival of the siaB mutant versus the wild type in the murine lung. Complement depletion with cobra venom factor increased survival of the siaB mutant in the nasopharynx but not in the lungs, suggesting differing roles of sialylation at these sites. Prior infection increased IgM against H. influenzae but not against sialic acid-protected epitopes, consistent with sialic acid-mediated immune evasion during infection. These results provide mechanistic insight into an NTHi evasive strategy against an immune defense conserved across host species, highlighting the potential of the mouse model for development of anti-infective strategies targeting LOS antigens of NTHi.


Subject(s)
Antibodies, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/drug effects , Haemophilus influenzae/immunology , Immunoglobulin M/immunology , N-Acetylneuraminic Acid/pharmacology , Animals , Disease Models, Animal , Lipopolysaccharides/immunology , Mice , Microbial Viability/drug effects , Microbial Viability/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology
14.
J Immunol ; 206(6): 1348-1360, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33558371

ABSTRACT

Cigarette smoke is a potent proinflammatory trigger contributing to acute lung injury and the development of chronic lung diseases via mechanisms that include the impairment of inflammation resolution. We have previously demonstrated that secondhand smoke (SHS) exposure exacerbates bacterial infection-induced pulmonary inflammation and suppresses immune responses. It is now recognized that resolution of inflammation is a bioactive process mediated by lipid-derived specialized proresolving mediators that counterregulate proinflammatory signaling and promote resolution pathways. We therefore hypothesized that proresolving mediators could reduce the burden of inflammation due to chronic lung infection following SHS exposure and restore normal immune responses to respiratory pathogens. To address this question, we exposed mice to SHS followed by chronic infection with nontypeable Haemophilus influenzae (NTHI). Some groups of mice were treated with aspirin-triggered resolvin D1 (AT-RvD1) during the latter half of the smoke exposure period or during a period of smoking cessation and before infection. Treatment with AT-RvD1 markedly reduced the recruitment of neutrophils, macrophages, and T cells in lung tissue and bronchoalveolar lavage and levels of proinflammatory cytokines in the bronchoalveolar lavage. Additionally, treatment with AT-RvD1 improved Ab titers against the NTHI outer membrane lipoprotein Ag P6 following infection. Furthermore, treatment with AT-RvD1 prior to classically adjuvanted immunization with P6 increased Ag-specific Ab titers, resulting in rapid clearance of NTHI from the lungs after acute challenge. Collectively, we have demonstrated that AT-RvD1 potently reverses the detrimental effects of SHS on pulmonary inflammation and immunity and thus could be beneficial in reducing lung injury associated with smoke exposure and infection.


Subject(s)
Docosahexaenoic Acids/pharmacology , Haemophilus Infections/drug therapy , Pneumonia/drug therapy , Tobacco Smoke Pollution/adverse effects , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Disease Models, Animal , Docosahexaenoic Acids/therapeutic use , Female , Haemophilus Infections/blood , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/immunology , Humans , Lung/drug effects , Lung/immunology , Lung/microbiology , Mice , Pneumonia/blood , Pneumonia/immunology , Pneumonia/microbiology
15.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468699

ABSTRACT

Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent "molecular mimicry" of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic "Trojan horse" that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.IMPORTANCE All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of "self" cells by the immune system, thereby guiding an appropriate immune response against foreign "nonself" and/or damaged cells. Several pathogenic bacteria have evolved mechanisms to cloak themselves with sialic acids and evade immune responses. Here we explore a type of sialic acid called "Kdn" (ketodeoxynonulosonic acid) that has not received much attention in the past and compare and contrast how it interacts with the immune system. Our results show potential for the use of Kdn as a natural intervention against pathogenic bacteria that take up and coat themselves with external sialic acid from the environment.


Subject(s)
Antigens, CD/immunology , Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Host-Pathogen Interactions/immunology , N-Acetylneuraminic Acid/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/immunology , Sialic Acids/immunology , Animals , Antibodies/chemistry , Antibodies/metabolism , Antigens, CD/metabolism , Biological Transport , Complement C3/immunology , Complement C3/metabolism , Female , Glycoconjugates/chemistry , Glycoconjugates/immunology , Haemophilus Infections/genetics , Haemophilus Infections/microbiology , Haemophilus influenzae/chemistry , Host-Pathogen Interactions/genetics , Humans , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Mice , Mice, Inbred C57BL , Molecular Mimicry/genetics , Molecular Mimicry/immunology , N-Acetylneuraminic Acid/immunology , Protein Binding , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acids/chemistry , Sugar Acids/chemistry , Sugar Acids/immunology
16.
J Infect Dis ; 223(2): 333-341, 2021 02 03.
Article in English | MEDLINE | ID: mdl-32572481

ABSTRACT

BACKGROUND: Otitis media (OM) is a common and potentially serious disease of childhood. Although OM is multifactorial on origin, bacterial infection is a unifying component. Many studies have established a critical role for innate immunity in bacterial clearance and OM resolution. A key component of innate immunity is the recruitment of immune and inflammatory cells, including macrophages. METHODS: To explore the role of macrophages in OM, we evaluated the expression of genes related to macrophage function during a complete episode of acute OM in the mouse caused by middle ear (ME) inoculation with Haemophilus influenzae. We also combined CCR2 deficiency with chlodronate liposome toxicity to deplete macrophages during OM. RESULTS: Macrophage genes were robustly regulated during OM. Moreover, macrophage depletion enhanced and prolonged the infiltration of neutrophils into the infected ME and increased the persistence of bacterial infection. CONCLUSIONS: The results illustrate the critical role played by macrophages in OM resolution.


Subject(s)
Bacterial Infections/etiology , Macrophages/immunology , Macrophages/metabolism , Neutrophil Infiltration/immunology , Otitis Media/etiology , Receptors, CCR2/deficiency , Animals , Bacterial Infections/metabolism , Bacterial Infections/pathology , Biomarkers , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Haemophilus Infections/etiology , Haemophilus Infections/pathology , Haemophilus influenzae/immunology , Mice , Mice, Knockout , Otitis Media/pathology
17.
Clin Infect Dis ; 73(2): e371-e379, 2021 07 15.
Article in English | MEDLINE | ID: mdl-32589699

ABSTRACT

BACKGROUND: Haemophilus influenzae serotype a (Hia) can cause invasive disease similar to serotype b; no Hia vaccine is available. We describe the epidemiology of invasive Hia disease in the United States overall and specifically in Alaska during 2008-2017. METHODS: Active population- and laboratory-based surveillance for invasive Hia disease was conducted through Active Bacterial Core surveillance sites and from Alaska statewide invasive bacterial disease surveillance. Sterile-site isolates were serotyped via slide agglutination or real-time polymerase chain reaction. Incidences in cases per 100 000 were calculated. RESULTS: From 2008 to 2017, an estimated average of 306 invasive Hia disease cases occurred annually in the United States (estimated annual incidence: 0.10); incidence increased by an average of 11.1% annually. Overall, 42.7% of cases were in children aged <5 years (incidence: 0.64), with highest incidence among children aged <1 year (1.60). Case fatality was 7.8% overall and was highest among adults aged ≥65 years (15.1%). Among children aged <5 years, the incidence was 17 times higher among American Indian and Alaska Native (AI/AN) children (8.29) than among children of all other races combined (0.49). In Alaska, incidences among all ages (0.68) and among children aged <1 year (24.73) were nearly 6 and 14 times higher, respectively, than corresponding US incidences. Case fatality in Alaska was 10.2%, and the vast majority (93.9%) of cases occurred among AI/AN. CONCLUSIONS: Incidence of invasive Hia disease has increased since 2008, with the highest burden among AI/AN children. These data can inform prevention strategies, including Hia vaccine development.


Subject(s)
Haemophilus Infections , Adult , Alaska/epidemiology , Child , Haemophilus Infections/epidemiology , Haemophilus influenzae/immunology , Humans , Incidence , Serogroup , Serotyping , United States/epidemiology , Vaccines, Conjugate
19.
J Infect Dis ; 223(2): 326-332, 2021 02 03.
Article in English | MEDLINE | ID: mdl-32594132

ABSTRACT

BACKGROUND: Haemophilus influenzae bacteria can cause asymptomatic carriage and invasive disease. Haemophilus influenzae serotype a (Hia) is an emerging cause of invasive disease in Alaska, with greatest burden occurring among rural Alaska Native (AN) children. The first case of invasive Hia (iHia) in Alaska was reported in 2002; however, it is unclear how long the pathogen has been in Alaska. METHODS: We quantified immunoglobulin G antibodies against Hia (anti-Hia) in 839 banked serum samples from Alaska residents, comparing antibody concentrations in samples drawn in the decades before (1980s and 1990s) and after (2000s) the emergence of iHia. We also assessed serum antibody concentration by age group, region of residence, and race. RESULTS: The anti-Hia was >0.1 µg/mL in 88.1% (348 of 395) and 91.0% (404 of 444) of samples from the decades prior and after the emergence of Hia, respectively (P = .17). No significant differences in antibody levels were detected between people from rural and urban regions (1.55 vs 2.08 µg/mL, P = .91 for age ≥5) or between AN and non-AN people (2.50 vs 2.60 µg/mL, P = .26). CONCLUSIONS: Our results are consistent with widespread Hia exposure in Alaska predating the first iHia case. No difference in Hia antibody prevalence was detected between populations with differing levels of invasive disease.


Subject(s)
Antibodies, Bacterial/immunology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Haemophilus Infections/epidemiology , Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Alaska/epidemiology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/microbiology , Haemophilus Infections/history , Haemophilus Infections/microbiology , History, 20th Century , History, 21st Century , Humans , Immunoglobulin G/immunology , Prevalence , Public Health Surveillance , Seroepidemiologic Studies , Serogroup
20.
J Interferon Cytokine Res ; 40(12): 555-569, 2020 12.
Article in English | MEDLINE | ID: mdl-33337936

ABSTRACT

Secretory otitis media (SOM) is characterized by persistence of fluid in the middle ear, often following an episode of acute otitis media. Our hypothesis is that failure to eliminate bacterial or viral pathogens may result in persistent low-grade inflammation. In this study, we analyzed inflammatory mediators in middle ear fluids from 67 children with SOM. This was combined with determinations of viable bacteria by culture along with detection of bacterial and viral genetic material by real-time polymerase chain reaction (PCR). The inflammatory mediators found at the highest concentrations (>30 ng/mL) were stem cell growth factor-ß (median 110 ng/mL), CXCL1, IL-16, IL-8, migration inhibitory factor, CXCL10, and CXCL9. Among bacterial pathogens, Moraxella catarrhalis and Haemophilus influenzae dominated, regardless of detection methods, while rhinovirus dominated among viral pathogens. Middle ear fluid levels of interleukin (IL)-1α, IL-17, IL-1ß, fibroblast growth factor basic, and tumor necrosis factor correlated strongly with presence of bacteria detected either by culture or PCR, while IL-1RA, IL-3, IL-6, IL-8, CCL3, CCL4, and granulocyte-colony stimulating factor correlated significantly with real-time PCR values. CXCL10, CXCL9, CCL2, and TRAIL correlated significantly with viral nucleic acid levels. To conclude, persistence of viral and bacterial pathogens may fuel persistent inflammation in SOM. Bacteria caused a broad inflammatory response, while viruses chiefly elicited the interferon-induced chemokines CXCL9 and CXCL10.


Subject(s)
Haemophilus influenzae/immunology , Inflammation Mediators/immunology , Moraxella catarrhalis/immunology , Nucleic Acids/immunology , Otitis Media with Effusion/immunology , Rhinovirus/immunology , Body Fluids/immunology , Body Fluids/microbiology , Body Fluids/virology , Child , Child, Preschool , Cytokines/genetics , Cytokines/immunology , Ear, Middle/immunology , Ear, Middle/microbiology , Ear, Middle/virology , Female , Humans , Infant , Male , Nucleic Acids/genetics , Otitis Media with Effusion/microbiology , Otitis Media with Effusion/virology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...