Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Otol Neurotol ; 45(9): 1059-1067, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39264922

ABSTRACT

PURPOSE: Gentamicin is a broad-spectrum antibiotic commonly used in clinical practice. However, the drug causes side effects of ototoxicity, leading to disruption in balance functionality. This study investigated the effect of gastrodin, a prominent compound present in Gastrodia, and the underlying mechanism on the development of gentamicin-induced vestibular dysfunction. METHODS: Wild-type C57BL/6 mice were randomly assigned to three groups: control, gentamicin, and gentamicin + gastrodin groups. The extent of gentamicin-induced vestibular impairment was assessed through a series of tests including the swimming test, contact righting reflex test, and air-righting reflex. Alterations in vestibular hair cells were monitored through immunofluorescence assay, and cellular apoptosis was observed using TUNEL staining. The mRNA and protein expression of Notch1, Jagged1, and Hes1 was quantified through qRT-PCR, immunofluorescence, and western blot analyses. RESULTS: Gentamicin treatment led to pronounced deficits in vestibular function and otolith organ hair cells in mice. Nevertheless, pretreatment with gastrodin significantly alleviated these impairments. Additionally, the Notch signaling pathway was activated by gentamicin in the utricle, contributing to a notable increase in the expression levels of apoptosis-associated proteins. By contrast, gastrodin treatment effectively suppressed the Notch signaling pathway, thereby mitigating the occurrence of apoptosis. CONCLUSION: Collectively, these findings underscore the crucial role of gastrodin in safeguarding against gentamicin-induced vestibular dysfunction through the modulation of the Notch signaling pathway. This study suggests the potential of gastrodin as a promising therapeutic agent for preventing vestibular injuries.


Subject(s)
Benzyl Alcohols , Gentamicins , Glucosides , Mice, Inbred C57BL , Signal Transduction , Animals , Gentamicins/toxicity , Benzyl Alcohols/pharmacology , Signal Transduction/drug effects , Glucosides/pharmacology , Mice , Apoptosis/drug effects , Vestibular Diseases/chemically induced , Vestibular Diseases/pathology , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Male
2.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201487

ABSTRACT

Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 µM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 µM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 µM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.


Subject(s)
Fluoxetine , Gerbillinae , Fluoxetine/pharmacology , Animals , Membrane Potentials/drug effects , Vestibule, Labyrinth/drug effects , Vestibule, Labyrinth/metabolism , Patch-Clamp Techniques , Selective Serotonin Reuptake Inhibitors/pharmacology , Potassium Channels/metabolism , Male , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism
3.
Sci Rep ; 14(1): 15296, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961203

ABSTRACT

Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.


Subject(s)
Blast Injuries , Hair Cells, Vestibular , Spiral Ganglion , Animals , Spiral Ganglion/drug effects , Spiral Ganglion/pathology , Rats , Blast Injuries/prevention & control , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Male , Oxidation-Reduction , Rats, Sprague-Dawley , Cochlea/drug effects , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Oxidative Stress/drug effects , Hearing Loss, Noise-Induced/prevention & control , Hearing Loss, Noise-Induced/pathology
4.
Exp Cell Res ; 398(1): 112395, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33279477

ABSTRACT

Loss of hair cells from vestibular epithelium results in balance dysfunction. The current therapeutic regimen for vestibular diseases is limited. Upon injury or Atoh1 overexpression, hair cell replacement occurs rapidly in the mammalian utricle, suggesting a promising approach to induce vestibular hair cell regeneration. In this study, we applied simultaneous gentamicin-mediated hair cell ablation and Atoh1 overexpression to induce neonatal utricular hair cell formation in vitro. We confirmed that type I hair cells were the primary targets of gentamicin. Furthermore, injury and Atoh1 overexpression promoted hair cell regeneration in a timely and efficient manner through robust viral transfection. Hair cells regenerated with type II characteristics in the striola and type I/II characteristics in non-sensory regions. Rare EdU+/myosin7a+ cells in sensory regions and robust EdU+/myosin7a+ signals in ectopic regions indicate that transdifferentiation of supporting cells in situ, and mitosis and differentiation of non-sensory epithelial cells in ectopic regions, are sources of regenerative hair cells. Distinct regeneration patterns in in situ and ectopic regions suggested robust plasticity of vestibular non-sensory epithelium, generating more developed hair cell subtypes and thus providing a promising stem cell-like source of hair cells. These findings suggest that simultaneously causing injury and overexpressing Atoh1 promotes hair cell regeneration efficacy and maturity, thus expanding the understanding of ectopic plasticity in neonatal vestibular organs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gentamicins/pharmacology , Hair Cells, Vestibular/drug effects , Saccule and Utricle/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hair Cells, Vestibular/metabolism , Hair Cells, Vestibular/pathology , Mice , Mice, Inbred C57BL , Saccule and Utricle/metabolism , Saccule and Utricle/pathology
5.
J Neurophysiol ; 124(3): 962-972, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32816581

ABSTRACT

Previous studies have found GABA in vestibular end organs. However, existence of GABA receptors or possible GABAergic effects on vestibular nerve afferents has not been investigated. The current study was conducted to determine whether activation of GABAB receptors affects calyx afferent terminals in the central region of the cristae of semicircular canals. We used patch-clamp recording in postnatal day 13-18 (P13-P18) Sprague-Dawley rats of either sex. Application of GABAB receptor agonist baclofen inhibited voltage-sensitive potassium currents. This effect was blocked by selective GABAB receptor antagonist CGP 35348. Application of antagonists of small (SK)- and large-conductance potassium (BK) channels almost completely blocked the effects of baclofen. The remaining baclofen effect was blocked by cadmium chloride, suggesting that it could be due to inhibition of voltage-gated calcium channels. Furthermore, baclofen had no effect in the absence of calcium in the extracellular fluid. Inhibition of potassium currents by GABAB activation resulted in an excitatory effect on calyx terminal action potential firing. While in the control condition calyces could only fire a single action potential during step depolarizations, in the presence of baclofen they fired continuously during steps and a few even showed repetitive discharge. We also found a decrease in threshold for action potential generation and a decrease in first-spike latency during step depolarization. These results provide the first evidence for the presence of GABAB receptors on calyx terminals, showing that their activation results in an excitatory effect and that GABA inputs could be used to modulate calyx response properties.NEW & NOTEWORTHY Using in vitro whole cell patch-clamp recordings from calyx terminals in the vestibular end organs, we show that activation of GABAB receptors result in an excitatory effect, with decreased spike-frequency adaptation and shortened first-spike latencies. Our results suggest that these effects are mediated through inhibition of calcium-sensitive potassium channels.


Subject(s)
Action Potentials/physiology , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Hair Cells, Vestibular/physiology , Potassium Channels, Calcium-Activated/metabolism , Presynaptic Terminals/physiology , Receptors, GABA-B/metabolism , Semicircular Canals/physiology , Action Potentials/drug effects , Animals , Baclofen/pharmacology , Cadmium Chloride/pharmacology , Female , Hair Cells, Vestibular/drug effects , Male , Organophosphorus Compounds/pharmacology , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated/drug effects , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Receptors, GABA-B/drug effects , Semicircular Canals/drug effects
6.
J Neurophysiol ; 124(2): 510-524, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32667253

ABSTRACT

Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


Subject(s)
Action Potentials/physiology , Hair Cells, Vestibular/physiology , NAV1.6 Voltage-Gated Sodium Channel/physiology , Sodium Channel Blockers/pharmacology , Sodium , Tetrodotoxin/pharmacology , Vestibular Nerve/physiology , Action Potentials/drug effects , Age Factors , Animals , Gerbillinae , Hair Cells, Vestibular/drug effects , NAV1.6 Voltage-Gated Sodium Channel/drug effects , Vestibular Nerve/drug effects
7.
Neural Plast ; 2020: 1823454, 2020.
Article in English | MEDLINE | ID: mdl-32714382

ABSTRACT

The utricle is one of the five sensory organs in the mammalian vestibular system, and while the utricle has a limited ability to repair itself, this is not sufficient for the recovery of vestibular function after hair cell (HC) loss induced by ototoxic drugs. In order to further explore the possible self-recovery mechanism of the adult mouse vestibular system, we established a reliable utricle epithelium injury model for studying the regeneration of HCs and examined the toxic effects of 3,3'-iminodiproprionitrile (IDPN) on the utricle in vivo in C57BL/6J mice, which is one of the most commonly used strains in inner ear research. This work focused on the epithelial cell loss, vestibular dysfunction, and spontaneous cell regeneration after IDPN administration. HC loss and supporting cell (SC) loss after IDPN treatment was dose-dependent and resulted in dysfunction of the vestibular system, as indicated by the swim test and the rotating vestibular ocular reflex (VOR) test. EdU-positive SCs were observed only in severely injured utricles wherein above 47% SCs were dead. No EdU-positive HCs were observed in either control or injured utricles. RT-qPCR showed transient upregulation of Hes5 and Hey1 and fluctuating upregulation of Axin2 and ß-catenin after IDPN administration. We conclude that a single intraperitoneal injection of IDPN is a practical way to establish an injured utricle model in adult C57BL/6J mice in vivo. We observed activation of Notch and Wnt signaling during the limited spontaneous HC regeneration after vestibular sensory epithelium damage, and such signaling might act as the promoting factors for tissue self-repair in the inner ear.


Subject(s)
Hair Cells, Vestibular/drug effects , Nitriles/toxicity , Saccule and Utricle/drug effects , Animals , Mice , Mice, Inbred C57BL , Receptors, Notch/metabolism , Signal Transduction/drug effects , Vestibular Function Tests , Wnt Signaling Pathway/drug effects
8.
Anat Rec (Hoboken) ; 303(3): 506-515, 2020 03.
Article in English | MEDLINE | ID: mdl-31090209

ABSTRACT

The auditory apparatus of the inner ear does not show turnover of sensory hair cells (HCs) in adult mammals; in contrast, there are many observations supporting low-level turnover of vestibular HCs within the balance organs of mammalian inner ears. This low-level renewal of vestibular HCs exists during normal conditions and it is further enhanced after trauma-induced loss of these HCs. The main process for renewal of HCs within mammalian vestibular epithelia is a conversion/transdifferentiation of existing supporting cells (SCs) into replacement HCs.In earlier studies using long-term organ cultures of postnatal rat macula utriculi, HC loss induced by gentamicin resulted in an initial substantial decline in HC density followed by a significant increase in the proportion of HCs to SCs indicating the production of replacement HCs. In the present study, using the same model of ototoxic damage to study renewal of vestibular HCs, we focus on the ultrastructural characteristics of SCs undergoing transdifferentiation into new HCs. Our objective was to search for morphological signs of SC plasticity during this process. In the utricular epithelia, we observed immature HCs, which appear to be SCs transdifferentiating into HCs. These bridge SCs have unique morphological features characterized by formation of foot processes, basal accumulation of mitochondria, and an increased amount of connections with nearby SCs. No gap junctions were observed on these transitional cells. The tight junction seals were morphologically intact in both control and gentamicin-exposed explants. Anat Rec, 303:506-515, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Subject(s)
Cell Transdifferentiation/physiology , Gentamicins/toxicity , Hair Cells, Vestibular/ultrastructure , Saccule and Utricle/ultrastructure , Stem Cells/ultrastructure , Animals , Hair Cells, Vestibular/drug effects , Ototoxicity , Rats , Rats, Wistar , Saccule and Utricle/drug effects , Stem Cells/drug effects
9.
Molecules ; 24(4)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791463

ABSTRACT

Saffron, a kind of rare medicinal herb with antioxidant, antitumor, and anti-inflammatory activities, is the dry stigma of Crocus sativus L. A new water-soluble endophytic exopolysaccharide (EPS-2) was isolated from saffron by anion exchange chromatography and gel filtration. The chemical structure was characterized by FT-IR, GC-MS, and 1D and 2D-NMR spectra, indicating that EPS-2 has a main backbone of (1→2)-linked α-d-Manp, (1→2, 4)-linked α-d-Manp, (1→4)-linked α-d-Xylp, (1→2, 3, 5)-linked ß-d-Araf, (1→6)- linked α-d-Glcp with α-d-Glcp-(1→ and α-d-Galp-(1→ as sidegroups. Furthermore, EPS-2 significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and increased cell survival in zebrafish model. The results suggested that EPS-2 could protect cochlear hair cells from ototoxicity exposure. This study could provide new insights for studies on the pharmacological mechanisms of endophytic exopolysaccharides from saffron as otoprotective agents.


Subject(s)
Crocus/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Endophytes , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Zebrafish
10.
Arch Toxicol ; 93(2): 417-434, 2019 02.
Article in English | MEDLINE | ID: mdl-30377733

ABSTRACT

The cellular and molecular events that precede hair cell (HC) loss in the vestibular epithelium during chronic ototoxic exposure have not been widely studied. To select a study model, we compared the effects of sub-chronic exposure to different concentrations of 3,3'-iminodipropionitrile (IDPN) in the drinking water of two strains of mice and of both sexes. In subsequent experiments, male 129S1/SvImJ mice were exposed to 30 mM IDPN for 5 or 8 weeks; animals were euthanized at the end of the exposure or after a washout period of 13 weeks. In behavioral tests, IDPN mice showed progressive vestibular dysfunction followed by recovery during washout. In severely affected animals, light and electron microscopy observations of the vestibular epithelia revealed HC extrusion towards the endolymphatic cavity. Comparison of functional and ultrastructural data indicated that animals with fully reversible dysfunction did not have significant HC loss or stereociliary damage, but reversible dismantlement of the calyceal junctions that characterize the contact between type I HCs (HCI) and their calyx afferents. Immunofluorescent analysis revealed the loss of calyx junction proteins, Caspr1 and Tenascin-C, during exposure and their recovery during washout. Synaptic uncoupling was also recorded, with loss of pre-synaptic Ribeye and post-synaptic GluA2 puncta, and differential reversibility among the three different kinds of synaptic contacts existing in the epithelium. qRT-PCR analyses demonstrated that some of these changes are at least in part explained by gene expression modifications. We concluded that calyx junction dismantlement and synaptic uncoupling are early events in the mouse vestibular sensory epithelium during sub-chronic IDPN ototoxicity.


Subject(s)
Hair Cells, Auditory/drug effects , Hair Cells, Vestibular/drug effects , Nitriles/toxicity , Ototoxicity/pathology , Animals , Behavior, Animal/drug effects , Body Weight/drug effects , Epithelium/drug effects , Epithelium/pathology , Epithelium/ultrastructure , Female , Hair Cells, Auditory/pathology , Hair Cells, Vestibular/metabolism , Hair Cells, Vestibular/pathology , Male , Membrane Proteins/metabolism , Mice, Inbred Strains , Nerve Tissue Proteins/metabolism , Ototoxicity/etiology , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Tenascin/metabolism , Toxicity Tests, Subchronic , Vestibule, Labyrinth/drug effects , Vestibule, Labyrinth/pathology , Vestibule, Labyrinth/physiopathology
11.
J Clin Neurosci ; 57: 152-156, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30243600

ABSTRACT

Cisplatin is a widely used chemotherapy drug that can damage auditory and vestibular tissue and cause hearing and balance loss through the intracellular release of reactive oxygen species (ROS). Curcumin has anticancer efficacy and can also counteract cisplatin's damaging effect against sensory tissue by scavenging intracellular ROS, but curcumin's applicability is limited due to its low bioavailability. EF-24 is a synthetic curcumin analog that is more bioavailable than curcumin and can target cancer, but its effects against cisplatin-mediated ROS in auditory and vestibular tissue is currently unknown. In this study, we employed a novel zebrafish inner ear tissue culture system to determine if EF-24 counteracted cisplatin-mediated ROS release in two sensory endorgans, the saccule and the utricle. The zebrafish saccule is associated with auditory function and the utricle with vestibular function. Trimmed endorgans were placed in tissue culture media with a fluorescent reactive oxygen species indicator dye, and intracellular ROS release was measured using a spectrophotometer. We found that cisplatin treatment significantly increased ROS compared to controls, but that EF-24 treatment did not alter or even decreased ROS. Importantly, when equimolar cisplatin and EF-24 treatments are combined, ROS did not increase compared to controls. This suggests that EF-24 may be able to prevent intracellular ROS caused by cisplatin treatment in inner ear tissue.


Subject(s)
Antineoplastic Agents/pharmacology , Benzylidene Compounds/pharmacology , Cisplatin/pharmacology , Hair Cells, Auditory/drug effects , Hair Cells, Vestibular/drug effects , Piperidones/pharmacology , Reactive Oxygen Species/metabolism , Animals , Drug Antagonism , Hair Cells, Auditory/metabolism , Hair Cells, Vestibular/metabolism , Zebrafish
12.
Elife ; 72018 12 31.
Article in English | MEDLINE | ID: mdl-30596476

ABSTRACT

Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found that mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in the vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not correspond to the acute level of mitochondrial activity but rather to the cumulative history of that activity.


Subject(s)
Anti-Bacterial Agents/toxicity , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/physiology , Mitochondria/metabolism , Neomycin/toxicity , Animals , Calcium/metabolism , Cell Survival/drug effects , Oxidation-Reduction , Oxygen/metabolism , Zebrafish
13.
Auris Nasus Larynx ; 45(3): 412-416, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28781154

ABSTRACT

OBJECTIVE: We recently reported that the heat shock response played a major role in the protection of hair cells against stress. Oral administration of the heat shock inducer, geranylgeranylacetone (GGA) protected hair cells against intense noise. In our present study, we investigated the effect of GGA on vestibular hair cell death induced by an aminoglycoside. METHODS: We used CBA/N mice aged 4-6 weeks. The mice were divided into two groups, GGA and control. Mice in the GGA group were fed a diet containing GGA (0.5%) for 4 weeks, and those in the control group were fed a standard diet. Immunohistochemical analyses for Hsp70 were performed in four animals. The utricles of the remaining animals were cultured in medium for 24h with neomycin to induce hair cell death. After fixation, the vestibular hair cells were immunohistochemically stained against calmodulin, and hair cell survival was evaluated. RESULTS: The vestibular hair cells of mice in the GGA group expressed Hsp70. In addition, after exposure to neomycin, vestibular hair cell survival was higher in the GGA group than in the control group. CONCLUSION: Our results demonstrated the oral administration of GGA induced the heat shock response in the vestibule and could protect sensory cells.


Subject(s)
Anti-Bacterial Agents/toxicity , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Diterpenes/pharmacology , Hair Cells, Vestibular/drug effects , Neomycin/toxicity , Administration, Oral , Animals , Calmodulin/drug effects , Calmodulin/metabolism , Cell Survival/drug effects , HSP72 Heat-Shock Proteins/drug effects , HSP72 Heat-Shock Proteins/metabolism , Hair Cells, Vestibular/metabolism , Heat-Shock Response/drug effects , Mice , Mice, Inbred CBA , Saccule and Utricle/cytology , Saccule and Utricle/metabolism
14.
J Neurophysiol ; 119(1): 312-325, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28978760

ABSTRACT

In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9-/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.


Subject(s)
Acetylcholine/metabolism , Hair Cells, Vestibular/metabolism , Membrane Potentials , Receptors, Nicotinic/metabolism , Acetylcholine/pharmacology , Animals , Apamin/pharmacology , Female , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/physiology , Male , Mice , Mice, Inbred C57BL , Potassium Channel Blockers/pharmacology , Receptors, Nicotinic/genetics , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Strychnine/pharmacology
15.
J Neurophysiol ; 117(6): 2312-2323, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28298303

ABSTRACT

In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. Neurotransmitter release was measured as excitatory postsynaptic currents (EPSCs) in voltage clamp. Spontaneous EPSCs were classified as simple or complex. Simple events exhibited a rapid rise time and a fast monoexponential decay (time constant < 1 ms). The remaining events, constituting ~40% of EPSCs, showed more complex characteristics. Extracellular Sr2+ greatly increased EPSC frequency, and EPSCs were blocked by the AMPA receptor blocker NBQX. The role of presynaptic Ca2+ channels was assessed by application of the L-type Ca2+ channel blocker nifedipine (20 µM), which reduced EPSC frequency. In contrast, the L-type Ca2+ channel opener BAY K 8644 increased EPSC frequency. Cyclothiazide increased the decay time constant of averaged simple EPSCs by approximately twofold. The low-affinity AMPA receptor antagonist γ-d-glutamylglycine (2 mM) reduced the proportion of simple EPSCs relative to complex events, indicating glutamate accumulation in the restricted cleft between HCI and calyx. In crista slices EPSC frequency was greater in central compared with peripheral calyces, which may be due to greater numbers of presynaptic ribbons in central hair cells. Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse.NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.


Subject(s)
Excitatory Postsynaptic Potentials , Hair Cells, Vestibular/physiology , Receptors, AMPA/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Benzothiadiazines/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Cells, Cultured , Dipeptides/pharmacology , Female , Gerbillinae , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Male , Nifedipine/pharmacology , Quinoxalines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Strontium/pharmacology , Synapses/drug effects , Synapses/metabolism , Synapses/physiology
16.
Int J Pediatr Otorhinolaryngol ; 92: 108-114, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28012509

ABSTRACT

OBJECTIVE: Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. METHODS: We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. RESULTS: In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal's canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. CONCLUSIONS: Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself.


Subject(s)
Aminoglycosides/adverse effects , Cystic Fibrosis/complications , Ear, Inner/drug effects , Hair Cells, Auditory/drug effects , Hair Cells, Vestibular/drug effects , Respiratory Tract Infections/drug therapy , Temporal Bone/drug effects , Adolescent , Adult , Aged , Child , Child, Preschool , Ear, Inner/pathology , Female , Hair Cells, Auditory/pathology , Hair Cells, Vestibular/pathology , Humans , Male , Middle Aged , Temporal Bone/pathology , Young Adult
17.
Toxicol Sci ; 156(1): 109-122, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28013217

ABSTRACT

The nitrile 3,3'-iminodipropionitrile (IDPN) causes a loss of hair cells in the vestibular epithelium of the inner ear in several species of both mammals and nonmammals. It is of interest as a model compound in ototoxicity and vestibular regeneration research, but its effects on the mouse, including the potential relevance of strain and sex differences for susceptibility, have not yet been thoroughly characterized. In this study, we compared the vestibular toxicity of IDPN in dose-response studies (0, 8, 12, 16, and 24 mmol/kg IDPN p.o.) in males and females of 2 different mouse strains (RjOrl:Swiss/CD-1 and 129S1/SvImJ). 3,3'-Iminodipropionitrile caused a dose-dependent loss of vestibular function in all sex and strain groups, as assessed by a specific battery of behavioral tests. However, large differences in systemic toxicity were recorded, with high systemic toxicity in 129S1 mice of both sexes compared to limited effects on the Swiss mice. Both male and female Swiss mice showed a marked increase of hindlimb stride width after exposure. The Swiss, but not the 129S1, mice treated with IDPN showed hyperactivity in the open field. The dose-response relationships in the behavioral effects were matched by the extent of hair cell loss assessed by scanning electron microscopy. Altogether, the data demonstrated prominent strain-dependent differences in the systemic toxicity of IDPN between 129S1 and Swiss mice, in contrast to no differences between the strains and small differences between the sexes in its vestibular toxicity. These results support the use of Swiss mice exposed to IDPN as a mouse lesion model for research in vestibular therapy and regeneration.


Subject(s)
Akathisia, Drug-Induced/pathology , Bilateral Vestibulopathy/chemically induced , Drug Resistance , Hair Cells, Vestibular/drug effects , Nitriles/toxicity , Xenobiotics/toxicity , Administration, Oral , Akathisia, Drug-Induced/physiopathology , Animals , Animals, Outbred Strains , Behavior, Animal/drug effects , Bilateral Vestibulopathy/pathology , Bilateral Vestibulopathy/physiopathology , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Female , Gait/drug effects , Hair Cells, Vestibular/pathology , Hair Cells, Vestibular/ultrastructure , Male , Mice , Mice, 129 Strain , Microscopy, Electron, Scanning , Nitriles/administration & dosage , Sex Characteristics , Species Specificity , Toxicity Tests, Acute , Weight Loss/drug effects , Xenobiotics/administration & dosage
18.
Neuroscience ; 322: 416-29, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26926966

ABSTRACT

The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development.


Subject(s)
Hair Cells, Vestibular/physiology , Semicircular Canals/growth & development , Semicircular Canals/physiology , Synaptic Transmission/physiology , Animals , Chickens , Cochlear Nerve/drug effects , Cochlear Nerve/growth & development , Cochlear Nerve/physiology , Computer Simulation , Hair Cells, Vestibular/drug effects , Hearing/drug effects , Hearing/physiology , Models, Neurological , Physical Stimulation , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Receptors, Kainic Acid/antagonists & inhibitors , Receptors, Kainic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Semicircular Canals/drug effects , Stochastic Processes , Synaptic Transmission/drug effects
19.
Neural Plast ; 2016: 3512098, 2016.
Article in English | MEDLINE | ID: mdl-28050287

ABSTRACT

The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.


Subject(s)
Hair Cells, Auditory, Outer/drug effects , Hair Cells, Vestibular/drug effects , Membrane Potentials/drug effects , Urethane/pharmacology , Animals , Cochlea/drug effects , Hair Cells, Vestibular/physiology , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Rats, Sprague-Dawley
20.
Acta Otolaryngol ; 135(5): 411-5, 2015 May.
Article in English | MEDLINE | ID: mdl-25739461

ABSTRACT

CONCLUSIONS: Our data indicate that SSSR and SSSR + FGLM-NH2 protect sensory hair cells against neomycin-induced death in the vestibular epithelium. In addition, the results show that SSSR and FGLM-NH2 can be used as protective molecules against aminoglycoside ototoxicity. OBJECTIVES: This study investigated the role of the peptides SSSR and SSSR + FGLM-NH2 in mammalian vestibular hair cell death induced by aminoglycoside. METHODS: Cultured utricles from mature CBA/N mice were used in this study. The cultured utricles were assigned to five groups (control group, neomycin group, neomycin + SSSR group, neomycin + FGLM-NH2 group, and neomycin + SSSR + FGLM-NH2 group). Aat 24 h after exposure to neomycin, the hair cells were labeled immunohistochemically, and the rate of survival of vestibular hair cells was evaluated using a fluorescence microscope. RESULTS: The rate of survival of vestibular hair cells was significantly higher in the neomycin + SSSR and neomycin + SSSR + FGLM-NH2 groups than in the neomycin group. The results suggest that SSSR could protect hair cells against aminoglycoside ototoxicity.


Subject(s)
Cell Death/drug effects , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/physiology , Insulin-Like Growth Factor I/pharmacology , Neomycin/toxicity , Oligopeptides/pharmacology , Substance P/pharmacology , Animals , Cell Count , Cells, Cultured , Drug Synergism , Mice, Inbred CBA , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL