Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
Dev Biol ; 513: 3-11, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759942

ABSTRACT

The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.


Subject(s)
Hair Follicle , Nails , Hair Follicle/embryology , Humans , Nails/embryology , Nails/growth & development , Animals , Signal Transduction , Regeneration/physiology
2.
Adv Sci (Weinh) ; 11(20): e2306703, 2024 May.
Article in English | MEDLINE | ID: mdl-38561967

ABSTRACT

The dermis and epidermis, crucial structural layers of the skin, encompass appendages, hair follicles (HFs), and intricate cellular heterogeneity. However, an integrated spatiotemporal transcriptomic atlas of embryonic skin has not yet been described and would be invaluable for studying skin-related diseases in humans. Here, single-cell and spatial transcriptomic analyses are performed on skin samples of normal and hairless fetal pigs across four developmental periods. The cross-species comparison of skin cells illustrated that the pig epidermis is more representative of the human epidermis than mice epidermis. Moreover, Phenome-wide association study analysis revealed that the conserved genes between pigs and humans are strongly associated with human skin-related diseases. In the epidermis, two lineage differentiation trajectories describe hair follicle (HF) morphogenesis and epidermal development. By comparing normal and hairless fetal pigs, it is found that the hair placode (Pc), the most characteristic initial structure in HFs, arises from progenitor-like OGN+/UCHL1+ cells. These progenitors appear earlier in development than the previously described early Pc cells and exhibit abnormal proliferation and migration during differentiation in hairless pigs. The study provides a valuable resource for in-depth insights into HF development, which may serve as a key reference atlas for studying human skin disease etiology using porcine models.


Subject(s)
Hair Follicle , Transcriptome , Animals , Swine/genetics , Swine/embryology , Hair Follicle/metabolism , Hair Follicle/embryology , Hair Follicle/growth & development , Transcriptome/genetics , Single-Cell Analysis/methods , Skin/metabolism , Skin/embryology , Cell Differentiation/genetics , Gene Expression Profiling/methods , Humans , Mice
3.
J Invest Dermatol ; 144(6): 1223-1237.e10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38159590

ABSTRACT

The Wnt/ß-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/ß-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/ß-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial ß-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/ß-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high ß-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of ß-catenin, suggesting that the level of epithelial Wnt/ß-catenin signaling activity may contribute to the choice between skin appendage identities.


Subject(s)
Cell Differentiation , Mammary Glands, Animal , Morphogenesis , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/embryology , Mammary Glands, Animal/growth & development , Female , Wnt Signaling Pathway/physiology , Hair Follicle/embryology , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental
4.
Stem Cell Reports ; 16(9): 2379-2394, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34358453

ABSTRACT

The skin epidermis is a highly compartmentalized tissue consisting of a cornifying epithelium called the interfollicular epidermis (IFE) and associated hair follicles (HFs). Several stem cell populations have been described that mark specific compartments in the skin but none of them is specific to the IFE. Here, we identify Troy as a marker of IFE and HF infundibulum basal layer cells in developing and adult human and mouse epidermis. Genetic lineage-tracing experiments demonstrate that Troy-expressing basal cells contribute to long-term renewal of all layers of the cornifying epithelium. Single-cell transcriptomics and organoid assays of Troy-expressing cells, as well as their progeny, confirmed stem cell identity as well as the ability to generate differentiating daughter cells. In conclusion, we define Troy as a marker of epidermal basal cells that govern interfollicular epidermal renewal and cornification.


Subject(s)
Cell Differentiation/genetics , Epidermal Cells/cytology , Epidermal Cells/metabolism , Hair Follicle/embryology , Hair Follicle/metabolism , Organogenesis/genetics , Receptors, Tumor Necrosis Factor/genetics , Animals , Cell Proliferation , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Developmental , Immunohistochemistry , Immunophenotyping , Mice , Organoids , Receptors, Tumor Necrosis Factor/metabolism , Single-Cell Analysis/methods
5.
Nat Commun ; 12(1): 3227, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050161

ABSTRACT

The development of complex stratified epithelial barriers in mammals is initiated from single-layered epithelia. How stratification is initiated and fueled are still open questions. Previous studies on skin epidermal stratification suggested a central role for perpendicular/asymmetric cell division orientation of the basal keratinocyte progenitors. Here, we use centrosomes, that organize the mitotic spindle, to test whether cell division orientation and stratification are linked. Genetically ablating centrosomes from the developing epidermis leads to the activation of the p53-, 53BP1- and USP28-dependent mitotic surveillance pathway causing a thinner epidermis and hair follicle arrest. The centrosome/p53-double mutant keratinocyte progenitors significantly alter their division orientation in the later stages without majorly affecting epidermal differentiation. Together with time-lapse imaging and tissue growth dynamics measurements, the data suggest that the first and major phase of epidermal development is boosted by high proliferation rates in both basal and suprabasally-committed keratinocytes as well as cell delamination, whereas the second phase maybe uncoupled from the division orientation of the basal progenitors. The data provide insights for tissue homeostasis and hyperproliferative diseases that may recapitulate developmental programs.


Subject(s)
Epidermis/growth & development , Keratinocytes/physiology , Skin Physiological Phenomena , Adolescent , Adult , Aged , Animals , Asymmetric Cell Division , Cell Differentiation , Cell Proliferation , Centrosome/metabolism , Child , Child, Preschool , Embryo, Mammalian , Epidermis/diagnostic imaging , Female , Hair Follicle/embryology , Humans , Male , Mice , Mice, Knockout , Middle Aged , Models, Biological , Spindle Apparatus/metabolism , Time-Lapse Imaging , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Young Adult
6.
Mamm Genome ; 32(1): 12-29, 2021 02.
Article in English | MEDLINE | ID: mdl-33367954

ABSTRACT

We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


Subject(s)
Alopecia/genetics , Alopecia/metabolism , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Disease Susceptibility , Endogenous Retroviruses/genetics , Gene Expression Regulation , Mutation , Animals , Biomarkers , Hair Follicle/embryology , Hair Follicle/metabolism , Immunohistochemistry , Mice , Mice, Knockout , Morphogenesis/genetics
7.
PLoS One ; 15(12): e0243507, 2020.
Article in English | MEDLINE | ID: mdl-33351808

ABSTRACT

OBJECTIVE: Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. METHODS: We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45-135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). RESULTS: Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n.


Subject(s)
Goats/genetics , Hair Follicle/embryology , Animals , China , Fetal Development/genetics , Fetus/metabolism , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks/genetics , Genome/genetics , Goats/embryology , Hair Follicle/metabolism , RNA, Messenger/genetics , Skin/metabolism , Transcriptome/genetics
8.
Proc Natl Acad Sci U S A ; 117(48): 30509-30519, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199643

ABSTRACT

Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.


Subject(s)
Ectoderm/metabolism , Gene Expression Regulation, Developmental , Genes, Homeobox , Hair Follicle/metabolism , Nails/metabolism , Animals , Biomarkers , Ectoderm/embryology , Hair Follicle/embryology , Humans , Mice , Mice, Knockout , Nails/embryology
9.
Theranostics ; 10(17): 7581-7598, 2020.
Article in English | MEDLINE | ID: mdl-32685006

ABSTRACT

It is estimated that 50% of men and 25% of women worldwide suffer from hair loss, and therefore it is of great significance to investigate the molecular pathways driving hair follicle de novo morphogenesis. However, due to high cellular heterogeneity and the asynchronous development of hair follicles, our current understanding of the molecular mechanisms involved in follicle development remains limited. Methods: Single-cell suspensions from the dorsal skin of E13.5 (induction stage), E16.5 (organogenesis) fetal mice, and newborn mice (cytodifferentiation stage, postnatal day 0, P0) were prepared for unbiased single-cell RNA sequencing. To delineate the single-cell transcriptional landscape during hair follicle de novo morphogenesis, we performed t-distributed Stochastic Neighbor Embedding (tSNE), pseudotime cell trajectory inference, and regulon enrichment analysis to dissect cellular heterogeneity and reveal the molecular pathways underlying major cell type cell fate decisions. To validate our analysis, we further performed immunohistochemistry analysis of the key molecules involved during hair follicle morphogenesis. Meanwhile, intercellular communication between different cell populations was inferred based on a priori knowledge of ligand-receptor pairs. Results: Based on tSNE analysis, we identified 14 cell clusters from skin tissue and delineated their cellular identity from specific gene expression profiles. By using pseudotime ordering analysis, we successfully constructed the epithelium/dermal cell lineage differentiation trajectory. For dermal cell lineage, our analysis here recapitulated the dynamic gene expression profiles during dermal condensate (DC) cell fate commitment and delineated the heterogeneity of the different dermal papilla (DP) cell populations during in utero hair follicle development. For the epithelium cell lineage, our analysis revealed the dynamic gene expression profiles of the underappreciated matrix, interfollicular epidermis (IFE), hair shaft and inner root sheath (IRS) cell populations. Furthermore, single-cell regulatory network inference and clustering analysis revealed key regulons during cell fate decisions. Finally, intercellular communication analysis demonstrated that strong intercellular communication was involved during early hair follicle development. Conclusions: Our findings here provide a molecular landscape during hair follicle epithelium/dermal cell lineage fate decisions, and recapitulate the sequential activation of core regulatory transcriptional factors (TFs) in different cell populations during hair follicle morphogenesis. More importantly, our study here represents a valuable resource for understanding the molecular pathways involved during hair follicle de novo morphogenesis, which will have implications for future hair loss treatments.


Subject(s)
Cell Differentiation/genetics , Hair Follicle/embryology , Organogenesis/genetics , Animals , Animals, Newborn , Cell Communication/genetics , Cell Lineage/genetics , Embryo, Mammalian , Female , Hair Follicle/cytology , Male , Mice , Models, Animal , RNA-Seq , Signal Transduction/genetics , Single-Cell Analysis , Skin/cytology
10.
Histol Histopathol ; 35(8): 911-917, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32364615

ABSTRACT

INTRODUCTION: Hair follicles are produced in a cyclical manner and the machinery involved in the reproduction of these follicles is present since the fetal stage. Although extensive research has been done on the human hair follicle, very little is known about the importance of adhesion molecules in its development. MATERIAL AND METHODS: We analyzed here, the immunoexpression of beta-1 integrin, p-cadherin, e-cadherin, and beta-catenin in hair follicles from 26 formalin-fixed and paraffin-embedded skin samples from human embryos and fetus between 12-23 weeks of gestational age. RESULTS: The adhesion molecules beta-1 integrin and e-cadherin/p-cadherin were expressed from 12 weeks and seemed to play a role in regulating epidermis invagination. Beta-catenin immunostaining was negative in all cases; down regulation of this protein may be necessary for fetal hair development and thus facilitating hair follicle down growth. DISCUSSION/CONCLUSION: Adhesion molecules are essential for hair follicle down growth and proliferation; integrins and cadherins play a major role in this process. More studies are needed to describe hair follicle development.


Subject(s)
Cell Adhesion Molecules/analysis , Hair Follicle/embryology , Cell Adhesion Molecules/metabolism , Female , Fetus , Humans , Male , Retrospective Studies
11.
Elife ; 92020 04 20.
Article in English | MEDLINE | ID: mdl-32310087

ABSTRACT

To spatially co-exist and differentially specify fates within developing tissues, morphogenetic cues must be correctly positioned and interpreted. Here, we investigate mouse hair follicle development to understand how morphogens operate within closely spaced, fate-diverging progenitors. Coupling transcriptomics with genetics, we show that emerging hair progenitors produce both WNTs and WNT inhibitors. Surprisingly, however, instead of generating a negative feedback loop, the signals oppositely polarize, establishing sharp boundaries and consequently a short-range morphogen gradient that we show is essential for three-dimensional pattern formation. By establishing a morphogen gradient at the cellular level, signals become constrained. The progenitor preserves its WNT signaling identity and maintains WNT signaling with underlying mesenchymal neighbors, while its overlying epithelial cells become WNT-restricted. The outcome guarantees emergence of adjacent distinct cell types to pattern the tissue.


Subject(s)
Hair Follicle/embryology , Stem Cells/physiology , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway/physiology , Animals , Cell Polarity , Mice , Morphogenesis/physiology , Wnt Proteins/physiology
12.
Elife ; 92020 03 17.
Article in English | MEDLINE | ID: mdl-32178760

ABSTRACT

Hair follicle (HF) development is orchestrated by coordinated signals from adjacent epithelial and mesenchymal cells. In humans this process only occurs during embryogenesis and viable strategies to induce new HFs in adult skin are lacking. Here, we reveal that activation of Hedgehog (Hh) signaling in adjacent epithelial and stromal cells induces new HFs in adult, unwounded dorsal mouse skin. Formation of de novo HFs recapitulated embryonic HF development, and mature follicles produced hair co-occurring with epithelial tumors. In contrast, Hh-pathway activation in epithelial or stromal cells alone resulted in tumor formation or stromal cell condensation respectively, without induction of new HFs. Provocatively, adjacent epithelial-stromal Hh-pathway activation induced de novo HFs also in hairless paw skin, divorced from confounding effects of pre-existing niche signals in haired skin. Altogether, cell-type-specific modulation of a single pathway is sufficient to reactivate embryonic programs in adult tissues, thereby inducing complex epithelial structures even without wounding.


We are born with all the hair follicles that we will ever have in our life. These structures are maintained by different types of cells (such as keratinocytes and fibroblasts) that work together to create hair. Follicles form in the embryo thanks to complex molecular signals, which include a molecular cascade known as the Hedgehog signaling pathway. After birth however, these molecular signals are shut down to avoid conflicting messages ­ inappropriate activation of Hedgehog signaling in adult skin, for instance, leads to tumors. This means that our skin loses the ability to make new hair follicles, and if skin is severely damaged it cannot regrow hair or produce the associated sebaceous glands that keep skin moisturized. Being able to create new hair follicles in adult skin would be both functionally and aesthetically beneficial for patients in need, for example, burn victims. Overall, it would also help to understand if and how it is possible to reactivate developmental programs after birth. To investigate this question, Sun, Are et al. triggered Hedgehog signaling in the skin cells of genetically modified mice; this was done either in keratinocytes, in fibroblasts, or in both types of cells. The experiments showed that Hedgehog signaling could produce new hair follicles, but only when activated in keratinocytes and fibroblasts together. The process took several weeks, mirrored normal hair follicle development and resulted in new hair shafts. The follicles grew on both the back of mice, where hair normally occurs, and even in paw areas that are usually hairless. Not unexpectedly the new hair follicles were accompanied with skin tumors. But, promisingly, treatment with Hedgehog-pathway inhibitor Vismodegib restricted tumor growth while keeping the new follicles intact. This suggests that future work on improving "when and where" Hedgehog signaling is activated may allow the formation of new follicles in adult skin with fewer adverse effects.


Subject(s)
Hair Follicle/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Skin/metabolism , Adult , Age Factors , Anilides/pharmacology , Animals , Fluorescent Antibody Technique , Gene Expression , Hair Follicle/drug effects , Hair Follicle/embryology , Humans , Immunohistochemistry , Mice , Organogenesis/genetics , Pyridines/pharmacology , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
13.
Gene ; 731: 144338, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31923576

ABSTRACT

The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.


Subject(s)
Feathers/embryology , Geese , Genes, Developmental , Hair Follicle/embryology , Morphogenesis/genetics , Skin/embryology , Animals , Chick Embryo , Embryo, Nonmammalian , Embryonic Development/genetics , Feathers/metabolism , Geese/embryology , Geese/genetics , Geese/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Developmental/genetics , Hair Follicle/metabolism , Skin/metabolism
14.
J Invest Dermatol ; 140(2): 425-434.e10, 2020 02.
Article in English | MEDLINE | ID: mdl-31330146

ABSTRACT

Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Melanocytes/physiology , Neural Crest/physiology , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line , Cell Movement/physiology , Embryo, Mammalian , Extracellular Matrix/metabolism , Hair Follicle/cytology , Hair Follicle/embryology , Hair Follicle/metabolism , Mice , Mice, Knockout , Neuropeptides/metabolism , Primary Cell Culture , Protein Serine-Threonine Kinases/genetics , Pseudopodia/metabolism , rac1 GTP-Binding Protein/metabolism
15.
Sci Rep ; 9(1): 17735, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780728

ABSTRACT

The undercoat fiber of the cashmere goat, from the secondary hair follicle (HF), possesses commercial value. However, very few studies have focused on the molecular details of primary and secondary HF initiation and development in goat embryos. In this study, skin samples at embryonic day 45, 55, and 65 (E45, E55, and E65) were collected and prepared for RNA sequencing (RNA-seq). We found that the HF probably initiated from E55 to E65 by analyzing the functional pathways of differentially expressed genes (DEGs). Most key genes in canonical signaling pathways, including WNT, TGF-ß, FGF, Hedgehog, NOTCH, and other factors showed clear expression changes from E55 to E65. We, for the first time, explored alternative splicing (AS) alterations, which showed distinct patterns among these three stages. Functional pathways of AS-regulated genes showed connections to HF development. By comparing the published RNA-seq samples from the E60, E120, and newborn (NB) stages, we found the majority of WNT/ß-catenin signaling genes were important in the initiation of HF development, while other factors including FOXN1, GATA3, and DLX3 may have a consistent influence on HF development. Our investigation supported the time points of embryonic HF initiation and identified genes that have potential functions of embryonic HF initiation and development. We further explored the potential regulatory roles of AS in HF initiation, which extended our knowledge about the molecular mechanisms of HF development.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Developmental , Goats/genetics , Hair Follicle/embryology , Transcriptome , Animals , Gene Expression Profiling , Goats/embryology , Hair Follicle/metabolism
16.
Exp Dermatol ; 28(4): 332-344, 2019 04.
Article in English | MEDLINE | ID: mdl-30887615

ABSTRACT

Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.


Subject(s)
Hair Follicle/embryology , Animals , Humans , Morphogenesis , Signal Transduction
17.
Exp Dermatol ; 28(4): 355-366, 2019 04.
Article in English | MEDLINE | ID: mdl-30681746

ABSTRACT

Human skin progenitor cells will form new hair follicles, although at a low efficiency, when injected into nude mouse skin. To better study and improve upon this regenerative process, we developed an in vitro system to analyse the morphogenetic cell behaviour in detail and modulate physical-chemical parameters to more effectively generate hair primordia. In this three-dimensional culture, dissociated human neonatal foreskin keratinocytes self-assembled into a planar epidermal layer while fetal scalp dermal cells coalesced into stripes, then large clusters, and finally small clusters resembling dermal condensations. At sites of dermal clustering, subjacent epidermal cells protruded to form hair peg-like structures, molecularly resembling hair pegs within the sequence of follicular development. The hair peg-like structures emerged in a coordinated, formative wave, moving from periphery to centre, suggesting that the droplet culture constitutes a microcosm with an asymmetric morphogenetic field. In vivo, hair follicle populations also form in a progressive wave, implying the summation of local periodic patterning events with an asymmetric global influence. To further understand this global patterning process, we developed a mathematical simulation using Turing activator-inhibitor principles in an asymmetric morphogenetic field. Together, our culture system provides a suitable platform to (a) analyse the self-assembly behaviour of hair progenitor cells into periodically arranged hair primordia and (b) identify parameters that impact the formation of hair primordia in an asymmetric morphogenetic field. This understanding will enhance our future ability to successfully engineer human hair follicle organoids.


Subject(s)
Hair Follicle/embryology , Tissue Engineering/methods , Hair Follicle/cytology , Humans , Models, Biological , Morphogenesis , Primary Cell Culture
18.
Biochem Biophys Res Commun ; 509(4): 862-868, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30638933

ABSTRACT

Sox13, a group D member of the Sry-related high-mobility group box (Sox) transcription factor family, is expressed in various tissues including the hair follicle. However, its spatiotemporal expression patterns in the hair follicle and its role in hair development remain to be elucidated. To address these questions, we generated Sox13-LacZ-knock-in mice (Sox13LacZ/+), in which the LacZ reporter gene was inserted in-frame into exon 2, which contains the translation initiation codon. X-gal staining in Sox13LacZ/+ embryos revealed that Sox13 is initially expressed in the epithelial portion of the placode, and subsequently in the hair germ and the hair peg during early hair follicle development. In postnatal catagen and anagen, Sox13 was detected in the epithelial sheath, whereas in telogen, Sox13 was localized in the bulge region, where hair follicle stem cells reside. Immunohistochemistry with an anti-ß-galactosidase antibody and anti-hair keratin antibodies that specifically mark the different layers of the hair follicle revealed that Sox13 was predominantly expressed in the outer root sheath in anagen. However, the integumentary structures of Sox13LacZ/LacZ mice were grossly and histologically indistinguishable from those of wild type mice. These results suggest that although Sox13 is dispensable for epidermal and adnexal development, Sox13 is a useful marker for early hair follicle development.


Subject(s)
Autoantigens/genetics , Gene Expression Regulation, Developmental , Hair Follicle/growth & development , Spatio-Temporal Analysis , Animals , Autoantigens/analysis , Biomarkers , Connexins , Embryo, Mammalian , Hair Follicle/embryology , Immunohistochemistry , Mice , Mice, Transgenic , Transcription Factors/analysis , Transcription Factors/genetics , Zebrafish Proteins
19.
Dev Cell ; 48(1): 32-48.e5, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30595537

ABSTRACT

Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.


Subject(s)
Cell Differentiation/physiology , Dermis/metabolism , Gene Expression Regulation, Developmental/physiology , Hair Follicle/metabolism , Animals , Fibroblasts/cytology , Hair Follicle/embryology , Signal Transduction/genetics , Skin/metabolism , Stem Cells/cytology
20.
Nat Commun ; 9(1): 2333, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899403

ABSTRACT

Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the progenitor cell population that gives rise to these cells is unknown. Here, we show that during embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling in Merkel cell specification.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Hair Follicle/embryology , Hair Follicle/metabolism , Merkel Cells/cytology , Merkel Cells/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , SOX9 Transcription Factor/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Lineage , Female , Gene Knockout Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hair Follicle/cytology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , LIM-Homeodomain Proteins/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Pregnancy , Receptor, Fibroblast Growth Factor, Type 2/deficiency , Receptor, Fibroblast Growth Factor, Type 2/genetics , SOX9 Transcription Factor/antagonists & inhibitors , SOX9 Transcription Factor/genetics , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...