Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 17(2): 110-117, 2017 02.
Article in English | MEDLINE | ID: mdl-28151694

ABSTRACT

Three halophilic archaea, Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae, have been exposed to different regimes of simulated outer space ionizing radiation. Strains were exposed to high-energy heavy ion (HZE) particles, namely iron and argon ions, as well as to γ radiation (60Co) and X-rays, and the survival and the genetic integrity of the 16S rRNA gene were evaluated. Exposure to 1 kGy of argon or iron ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Japan did not lead to a detectable loss in viability; only after exposure to 2 kGy of iron ions a decline in survival was observed. Furthermore, a delay in growth was manifested following exposure to 2 kGy iron ions. DNA integrity of the 16S rRNA was not compromised up to 1 kGy, with the exception of Hcc. hamelinensis following exposure to argon particles. All three strains showed a high resistance toward X-rays (exposed at the DLR in Cologne, Germany), where Hcc. hamelinensis and Hcc. morrhuae displayed better survival compared to Hbt. salinarum NRC-1. In all three organisms the DNA damage increased in a dose-dependent manner. To determine a biological endpoint for survival following exposure to γ radiation, strains were exposed to up to 112 kGy at the Beta-Gamma-Service GmbH (BGS) in Germany. Although all strains were incubated for up to 4 months, only Hcc. hamelinensis and Hcc. morrhuae recovered from 6 kGy of γ radiation. In comparison, Hbt. salinarum NRC-1 did not recover. The 16S rRNA gene integrity stayed remarkably well preserved up to 48 kGy for both halococci. This research presents novel data on the survival and genetic stability of three halophilic archaea following exposure to simulated outer space radiation. Key Words: Halophilic archaea-Radiation-Survival. Astrobiology 17, 110-117.


Subject(s)
Gamma Rays , Halobacterium salinarum/genetics , Halobacterium salinarum/radiation effects , Halococcus/genetics , Halococcus/radiation effects , Heavy Ions , Microbial Viability/radiation effects , Colony Count, Microbial , DNA, Bacterial/genetics , Halobacterium salinarum/growth & development , Halococcus/growth & development , Time Factors , X-Rays
2.
Archaea ; 2015: 241608, 2015.
Article in English | MEDLINE | ID: mdl-25709556

ABSTRACT

Halococcus hamelinensis was the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome of H. hamelinensis consisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of the H. hamelinensis genome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome of H. hamelinensis also revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes of H. hamelinensis against various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.


Subject(s)
Adaptation, Biological , Evolution, Molecular , Halococcus/genetics , Base Composition , Cyanobacteria/growth & development , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , Ecosystem , Genome, Archaeal , Halococcus/growth & development , Halococcus/isolation & purification , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA
3.
Extremophiles ; 15(1): 39-44, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21061030

ABSTRACT

The hydrocarbon utilizing haloarchaea, Haloferax (two strains), Halobacterium and Halococcus from a hypersaline coastal area of the Arabian Gulf, had the potential for resistance and volatilization of Hg(2+). Individual haloarchaea resisted up to between 100 and 200 ppm HgCl2 in hydrocarbon free media with salinities between 1 and 4 M NaCl, but only up to between 20 and 30 ppm in a mineral medium containing 3 M NaCl, with 0.5% (w/v) crude oil, as a sole source of carbon and energy. Halococcus and Halobacterium volatilized more mercury than Haloferax. The individual haloarchaea consumed more crude oil in the presence of 3 M NaCl than in the presence of 2 M NaCl. At both salinities, increasing the HgCl2 concentration in the medium from 0 to 20 ppm resulted in decreasing the oil consumption values by the individual haloarchaea. However, satisfactory oil consumption still occurred in the presence of 10 ppm HgCl2. It was concluded that haloarchaea with the combined potential for mercury resistance and volatilization and hydrocarbon consumption could be useful in removing toxic mercury forms effectively from oil free, mercury contaminated, hypersaline environments, and mercury and oil, albeit less effectively, from oily hypersaline environments.


Subject(s)
Drug Resistance, Bacterial/physiology , Halobacterium/growth & development , Halococcus/growth & development , Mercury/pharmacology , Petroleum/microbiology , Biodegradation, Environmental , Drug Resistance, Bacterial/drug effects , Mercury/metabolism
4.
Arch Microbiol ; 175(1): 52-61, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11271421

ABSTRACT

The glucose and fructose degradation pathways were analyzed in the halophilic archaeon Halococcus saccharolyticus by 13C-NMR labeling studies in growing cultures, comparative enzyme measurements and cell suspension experiments. H. saccharolyticus grown on complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small amounts of lactate. The 13C-labeling patterns, analyzed by 1H- and 13C-NMR, indicated that glucose was degraded via an Entner-Doudoroff (ED) type pathway (100%), whereas fructose was degraded almost completely via an Embden-Meyerhof (EM) type pathway (96%) and only to a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activities of the modified versions of the ED and EM pathways recently proposed for halophilic archaea. Glucose-grown cells showed increased activities of the ED enzymes gluconate dehydratase and 2-keto-3-deoxy-gluconate kinase, whereas fructose-grown cells contained higher activities of the key enzymes of a modified EM pathway, ketohexokinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose and fructose, diauxic growth kinetics were observed. After complete consumption of glucose, fructose was degraded after a lag phase, in which fructose-1-phosphate kinase activity increased. Suspensions of glucose-grown cells consumed initially only glucose rather than fructose, those of fructose-grown cells degraded fructose rather than glucose. Upon longer incubation times, glucose- and fructose-grown cells also metabolized the alternate hexoses. The data indicate that, in the archaeon H. saccharolyticus, the isomeric hexoses glucose and fructose are degraded via inducible, functionally separated glycolytic pathways: glucose via a modified ED pathway, and fructose via a modified EM pathway.


Subject(s)
Fructose/metabolism , Glucose/metabolism , Halococcus/metabolism , Biodegradation, Environmental , Fructokinases/metabolism , Glycolysis , Halococcus/growth & development , Hydro-Lyases/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Phosphofructokinase-1/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
5.
Microbiology (Reading) ; 145 ( Pt 12): 3565-3574, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10627054

ABSTRACT

The authors have previously isolated a novel extremely halophilic archaeon, Halococcus salifodinae Blp, from Austrian rock salt deposited about 250 million years ago. In this study they compared strain Blp with two other halococci isolated independently from geographically distant salt deposits of similar age, and with two recent isolates (N1 and H2) from the same site as strain Blp. Strain BG2/2 was from a salt mine in Germany and strain Br3 from a halite deposit in England; both resembled Hc. salifodinae Blp in cellular and colonial morphology. Strains Blp, BG2/2 and Br3 had identical 16S rRNA sequences, very similar whole-cell protein patterns, which were different from those of other halococci, similar G+C contents and identical sequences in a 108-base insertion in their 5S rRNA gene. Other similarities included composition and relative abundances of polar lipids, antibiotic susceptibility, enzymic activities and Fourier-transform infrared spectra. Strains N1 and H2 showed similar morphology, whole-cell protein patterns and biochemical characteristics as strains Blp, Br3 and BG2/2. Their partial 16S rRNA sequences (682 and 641 bases, respectively) were indistinguishable from those of strains Blp, Br3 and BG2/2. Therefore strains N1 and H2 can be considered as reisolates of Hc. salifodinae which were obtained 8 years after the first samples were taken from that mine. The results presented suggest that viable halophilic archaea, which belong to the same species, occur in widely separated evaporite locations of similar geological age, and support the notion that these halophilic isolates from subterranean salt deposits may be the remnants of populations which inhabited ancient hypersaline seas.


Subject(s)
Geologic Sediments/microbiology , Halococcus/classification , Halococcus/isolation & purification , Base Composition , Base Sequence , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Halococcus/growth & development , Halococcus/ultrastructure , Lipids/analysis , Microscopy, Electron , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 5S/genetics , Sequence Analysis, DNA , Sodium Chloride , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL