Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 835
Filter
1.
Chem Res Toxicol ; 37(6): 850-872, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38834188

ABSTRACT

Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.


Subject(s)
Haptens , Hypersensitivity , Proteins , Humans , Haptens/chemistry , Haptens/immunology , Hypersensitivity/immunology , Proteins/chemistry , Proteins/immunology , Animals
2.
ACS Chem Biol ; 19(6): 1366-1375, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38829263

ABSTRACT

Eliciting an antihapten antibody response to vaccination typically requires the use of constructs where multiple copies of the hapten are covalently attached to a larger carrier molecule. The carrier is required to elicit T cell help via presentation of peptide epitopes on major histocompatibility complex (MHC) class II molecules; as such, attachment to full-sized proteins, alone or in a complex, is generally used to account for the significant MHC diversity in humans. While such carrier-based vaccines have proven extremely successful, particularly in protecting against bacterial diseases, they can be challenging to manufacture, and repeated use can be compromised by pre-existing immunity against the carrier. One approach to reducing these complications is to recruit help from type I natural killer T (NKT) cells, which exhibit limited diversity in their antigen receptors and respond to glycolipid antigens presented by the highly conserved presenting molecule CD1d. Synthetic vaccines for universal use can, therefore, be prepared by conjugating haptens to an NKT cell agonist such as α-galactosylceramide (αGalCer, KRN7000). An additional advantage is that the quality of NKT cell help is sufficient to overcome the need for an extra immune adjuvant. However, while initial studies with αGalCer-hapten conjugate vaccines report strong and rapid antihapten antibody responses, they can fail to generate lasting memory. Here, we show that antibody responses to the hapten 4-hydoxy-3-nitrophenyl acetyl (NP) can be improved through additional attachment of a fusion peptide containing a promiscuous helper T cell epitope (Pan DR epitope, PADRE) that binds diverse MHC class II molecules. Such αGalCer-hapten-peptide tricomponent vaccines generate strong and sustained anti-NP antibody titers with increased hapten affinity compared to vaccines without the helper epitope. The tricomponent vaccine platform is therefore suitable for further exploration in the pursuit of efficacious antihapten immunotherapies.


Subject(s)
Haptens , Vaccines, Conjugate , Animals , Haptens/immunology , Haptens/chemistry , Mice , Vaccines, Conjugate/immunology , Peptides/immunology , Peptides/chemistry , Antibody Formation/immunology , Mice, Inbred C57BL , Galactosylceramides/immunology , Galactosylceramides/chemistry , Female , Natural Killer T-Cells/immunology , Glycolipids/immunology , Glycolipids/chemistry
3.
Anal Methods ; 16(25): 4074-4082, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855900

ABSTRACT

Prothioconazole and its metabolite are considered a potential threat to human health and environmental safety. Thus, the development of a sensitive and rapid detection method for prothioconazole is crucial to ensure the safety of agricultural products. In this study, a new hapten of prothioconazole was designed and synthesized, and a selective polyclonal antibody with high affinity against prothioconazole was produced, which was obtained from immunized New Zealand white rabbits. Based on the polyclonal antibody, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) were developed for detecting prothioconazole pesticides. Under optimized experimental conditions, the limit of quantification (LOQ) values for ic-CLEIA and ic-ELISA were 1.8 and 10.7 ng mL-1, respectively. The results demonstrated that the sensitivity (LOQ) achieved by ic-CLEIA was more than five times higher compared to that obtained with ic-ELISA. In addition, the recoveries obtained by adding standard prothioconazole to wheat grain, soybean, and pond water samples were in the range of 81.9 to 104.7% for ic-ELISA and 89.0 to 118.0% for ic-CLEIA.


Subject(s)
Antibodies , Enzyme-Linked Immunosorbent Assay , Glycine max , Triazoles , Triticum , Animals , Enzyme-Linked Immunosorbent Assay/methods , Triazoles/analysis , Triazoles/chemistry , Triticum/chemistry , Glycine max/chemistry , Rabbits , Antibodies/immunology , Antibodies/chemistry , Water Pollutants, Chemical/analysis , Edible Grain/chemistry , Fresh Water/analysis , Limit of Detection , Luminescent Measurements/methods , Fungicides, Industrial/analysis , Haptens/chemistry , Haptens/immunology
4.
Food Chem ; 452: 139580, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744129

ABSTRACT

The absence of high-affinity antibodies has hindered the development of satisfactory immunoassays for dichlorvos (DDVP) and trichlorfon (TCP), two highly toxic organophosphorus pesticides. Herein, the de novo synthesis of a novel anti-DDVP hapten was introduced. Subsequently, a specific anti-DDVP monoclonal antibody (Mab) was produced with satisfying affinity to DDVP (IC50: 12.4 ng mL-1). This Mab was highly specific to DDVP, and TCP could readily convert into DDVP under mild alkaline conditions. Leveraging this insight, an indirect competitive ELISA was successfully developed for simultaneous detection of DDVP and TCP. The limit of detection in rice, cabbage and apple for DDVP /TCP was found to be 12.1/14.6 µg kg-1, 7.3/8.8 µg kg-1 and 6.9/8.3 µg kg-1, respectively. This study not only provides an effective strategy for producing a high-quality anti-DDVP Mab but also affords a reliable and cost-effective tool suitable for high-throughput detection of DDVP and TCP in food samples.


Subject(s)
Antibodies, Monoclonal , Dichlorvos , Enzyme-Linked Immunosorbent Assay , Food Contamination , Haptens , Oryza , Trichlorfon , Haptens/chemistry , Haptens/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Animals , Food Contamination/analysis , Enzyme-Linked Immunosorbent Assay/methods , Dichlorvos/analysis , Oryza/chemistry , Oryza/immunology , Trichlorfon/analysis , Trichlorfon/immunology , Mice , Mice, Inbred BALB C , Malus/chemistry , Brassica/chemistry , Brassica/immunology , Immunoassay/methods
5.
J Hazard Mater ; 474: 134705, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38805812

ABSTRACT

Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.


Subject(s)
Antibodies, Monoclonal , Haptens , Herbicides , Herbicides/analysis , Haptens/chemistry , Haptens/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Limit of Detection , Oryza/chemistry , Animals , Water Pollutants, Chemical/analysis , Chromatography, Affinity/methods , Gold Colloid/chemistry , Mice , Soil Pollutants/analysis , Environmental Monitoring/methods
6.
Food Chem ; 453: 139697, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788652

ABSTRACT

Spiropidion developed by Syngenta shows high insecticidal and acaricidal activity against a wide range of sucking pests. In this study, according to the structure of spiropidion, two haptens were synthesized by introducing carboxyl groups from the ester group. After cell fusion, a monoclonal antibody (mAb 8B5) of spiropidion was obtained. The IC50 of the established heterologous indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was 7.36 ng/mL, and its working range was 1.75-34.92 ng/mL. The average recoveries were 76.05-124.78% in the Yangtze River and citrus samples. Moreover, the ic-ELISA results of 15 citrus samples agreed well with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Overall, the established ic-ELISA could be applied for the spiropidion residue monitor in food and agricultural samples.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Haptens , Pesticide Residues , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Haptens/chemistry , Haptens/immunology , Animals , Pesticide Residues/analysis , Pesticide Residues/chemistry , Tandem Mass Spectrometry , Food Contamination/analysis , Mice, Inbred BALB C , Mice , Citrus/chemistry , Insecticides/chemistry , Insecticides/analysis
7.
Chem Commun (Camb) ; 60(35): 4711-4714, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38596865

ABSTRACT

Xylazine has emerged as a primary adulterant in fentanyl, exacerbating the complexity of the opioid crisis. Yet, there is no approved drug that can reverse xylazine's pathophysiology. As a prelude to monoclonal antibodies being assessed as a viable therapeutic, a vaccine inquiry was conducted evaluating the immune response in reversing xylazine induced behavior effects.


Subject(s)
Haptens , Xylazine , Xylazine/chemistry , Xylazine/pharmacology , Haptens/chemistry , Haptens/immunology , Animals , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology , Mice
8.
J Agric Food Chem ; 72(17): 10055-10064, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634336

ABSTRACT

Enantioselective antibodies have emerged as efficient tools in the field of chiral chemical detection and separation. However, it is complicated to obtain a highly stereoselective antibody due to the unclear recognition mechanism. In this study, the hapten of metolachlor was synthesized and enantio-separated. The absolute configuration of the four haptens obtained was identified by the computed and experimental electronic circular dichroism comparison. Five polyclonal antibodies against the Rac-metolachlor and its enantiomers were generated by immunization. The cross-activity of all the 5 antibodies with 44 structural analogues, including metolachlor enantiomers, was tested. It demonstrated that antibodies have higher specificity to recognize central chirality than axial chirality. Especially, αRR-MET-Ab exhibited excellent specificity and stereoselectivity. Accordingly, 3D-QSAR models were constructed and revealed that paired stereoisomers exhibited opposite interactions with the antibodies. It is the first time that the antibodies against four stereoisomers were prepared and analyzed, which will be conducive to the rational design of the stereoselective antibodies.


Subject(s)
Acetamides , Antibodies , Herbicides , Herbicides/chemistry , Herbicides/immunology , Stereoisomerism , Animals , Antibodies/chemistry , Antibodies/immunology , Acetamides/chemistry , Quantitative Structure-Activity Relationship , Haptens/chemistry , Haptens/immunology , Rabbits
9.
Food Chem ; 449: 139198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574526

ABSTRACT

The preparation of high specificity and affinity antibodies is challenging due to limited information on characteristic groups of haptens in traditional design strategy. In this study, we first predicted characteristic groups of flurogestone acetate (FGA) using quantitative analysis of molecular surface combined with atomic charge distribution. Subsequently, FGA haptens were rationally designed to expose these identified characteristic groups fully. As a result, seven monoclonal antibodies were obtained with satisfactory performance, exhibiting IC50 values from 0.17 to 0.45 µg/L and negligible cross-reactivities below 1% to other 18 hormones. The antibody recognition mechanism further confirmed hydrogen bonds and hydrophobic interactions involving predicted FGA characteristic groups and specific amino acids in the antibodies contributed to their high specificity and affinity. Finally, one selective and sensitive ic-ELISA was developed for FGA determination with a detection limit as low as 0.12 µg/L, providing an efficient tool for timely monitoring of FGA in goat milk samples.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Food Contamination , Goats , Haptens , Milk , Animals , Milk/chemistry , Haptens/chemistry , Haptens/immunology , Enzyme-Linked Immunosorbent Assay/methods , Food Contamination/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Mice , Mice, Inbred BALB C , Female , Antibody Formation
10.
Food Chem ; 450: 139372, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640545

ABSTRACT

Based on the size and surface properties of dimethomorph and flumorph, we used a computer simulation-assisted size exclusion hapten design strategy to develop group-specific monoclonal antibodies that can simultaneously recognize dimethomorph and flumorph. For this, we performed quantitative and visual semi-quantitative time-resolved fluorescence immunochromatography (TRFICA) to simultaneously detect dimethomorph and flumorph in potatoes and apples. In potato samples, the visual limit of detection (vLOD) for dimethomorph and flumorph was 4 ng/mL and 8 ng/mL, respectively, whereas the quantitative limit of detection (qLOD) for dimethomorph and flumorph was 0.26 and 0.33 ng/mL, respectively. The vLOD of dimethomorph and flumorph in apple samples was 8 ng/mL, whereas the qLOD of dimethomorph and flumorph was 0.17 and 0.38 ng/mL, respectively. The average recovery of potato and apple samples ranged from 77.5% to 121.7%, which indicated that the method can be used to rapidly detect dimethomorph and flumorph in food samples.


Subject(s)
Chromatography, Affinity , Food Contamination , Haptens , Malus , Solanum tuberosum , Solanum tuberosum/chemistry , Haptens/chemistry , Malus/chemistry , Food Contamination/analysis , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Antibodies, Monoclonal/chemistry , Limit of Detection , Fungicides, Industrial/analysis
11.
Food Chem ; 446: 138912, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38452509

ABSTRACT

Screening for the hazardous adulterant phenolphthalein (PTH) in slimming foods is necessary. Herein, the linkage of the PTH target epitope with various spacer arms was proposed for hapten design, aiming to produce highly sensitive and specific antibodies targeting PTH. To understand the influence of spacer arms on epitope, comprehensive evaluations were conducted using computer-aided chemistry and animal immunization. The resulting antibody exhibited maximal half-inhibitory concentration (IC50) of 0.25 ng/mL. Then, a lateral flow immunoassay (LFIA) was established with detection capability for screening (CCß) of less than 140, 240, and 25 ng/g for PTH in tea, instant coffee, and oral liquid, respectively. Furthermore, blind sample results agreed well with LFIA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Therefore, this work not only provides a robust tool for detecting PTH adulteration but also suggests that the careful pairing of spacer arms with hapten epitope is a key factor in advancing rational hapten design.


Subject(s)
Phenolphthalein , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Epitopes , Tandem Mass Spectrometry/methods , Immunoassay/methods , Antibodies , Haptens/chemistry
12.
Anal Bioanal Chem ; 416(12): 2995-3006, 2024 May.
Article in English | MEDLINE | ID: mdl-38502374

ABSTRACT

Stimulant laxatives were recently found to be abused in slimming foods, resulting in harmful effects on consumers. To ensure the safety of relative products, sensitive yet multiplex immunoassays are crucial in rapid screening of stimulant laxatives. However, there are few immunoassays for these substances, and even less for broad-specific recognition. Thus, in this work, four theoretically promising haptens of emerging stimulant laxative bisacodyl were rationally designed using molecular modeling and synthesized to immune animals, whose feasibility was confirmed by the obtained broad-specific antibody. Based on this unique antibody, a highly sensitive multiplex competitive indirect enzyme-linked immunosorbent assay (ciELISA) was established with low limits of detection for bisacodyl, sodium picosulfate, and BHPM (0.23, 13.68, and 0.11 ng/mL). In spiked sample recovery test and real sample detection, this ciELISA exhibited acceptable consistency with the validation method, demonstrating high accuracy and applicability of our method. This reliable multiplex ciELISA proceeds the rapid screening of stimulant laxatives in slimming foods.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Laxatives , Enzyme-Linked Immunosorbent Assay/methods , Laxatives/analysis , Limit of Detection , Food Contamination/analysis , Animals , Antibodies/immunology , Food Analysis/methods , Haptens/chemistry , Haptens/immunology
13.
Food Chem ; 443: 138539, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38320375

ABSTRACT

Quinoxalines are a class of veterinary drugs with antibacterial and growth-promoting functions. They are often widely used to treat and prevent animal diseases and are illegally used as animal growth promoters to increase economic benefits. Quinoxalines could be easily metabolized in animals to various residue markers and remain in animal-derived foods, which would pose a serious threat to human health. Consequently, it is necessary to detect the residues of quinoxalines and their metabolites. This article reviewed and evaluated immunoassays for quinoxalines and their metabolites in animal-derived foods, mainly including enzyme-linked immunosorbent assays, fluorescence immunosorbent assays, immunochromatography, and surface plasmon resonance biosensors. In addition, we deeply explored the design of haptens for quinoxalines and their metabolites and analyzed the effect of haptens on antibody performance. This paper aims to provide guidance and references for their accurate and sensitive detection, thereby ensuring food safety and human public health.


Subject(s)
Antibodies , Quinoxalines , Animals , Humans , Quinoxalines/analysis , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay , Haptens/chemistry
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 163-167, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38284257

ABSTRACT

Objective To synthesize carbendazim artificial antigens, prepare carbendazim polyclonal antibodies and identify their characteristics. Methods Active carboxyl groups were introduced to prepare the carbendazim haptens by the mixed anhydride method. The artificial antigens and coating antigens were obtained by coupling the small molecule haptens with carriers of bovine serum albumin (BSA) and ovalbumin (OVA). Sodium dodecyl sulfate polycrylamide gel electropheresis (SDS-PAGE) was used to identify carbendazim artificial antigens. Mice were immunized with the prepared artificial antigens to obtain polyclonal antibodies against carbendazim, and the antibody titers and specificity were identified by indirect ELISA. Results Carbendazim artificial antigens were successfully prepared. The titer of polyclonal antibody was above 1:12 800 and the half-maximal inhibitory concentration ( IC50) of the antibody was 0.107 µg/mL. The cross-reactivity rates with both benomyl and thiabendazole were less than 1%. Conclusion Polyclonal antibodies with high sensitivity and high specificity were successfully prepared, laying the foundation for the establishment of a rapid detection method for carbendazim residues.


Subject(s)
Antibodies , Antigens , Benzimidazoles , Carbamates , Animals , Mice , Enzyme-Linked Immunosorbent Assay , Antigens/chemistry , Haptens/chemistry , Serum Albumin, Bovine/chemistry , Vaccines, Synthetic , Antibody Specificity
15.
J Immunol Methods ; 525: 113604, 2024 02.
Article in English | MEDLINE | ID: mdl-38142928

ABSTRACT

Hapten design and synthesis have been regarded as the key factor to generate high-quality antibodies. In the present study, a novel hapten of chloramphenicol was synthesized, characterized and compared with two conventional haptens. The new hapten generated mAb 4B5 showed higher sensitivity and titer than the other two haptens-based mAbs. The haptens synthesized with the structure of chloramphenicol base generated more sensitive antibodies than the hapten with chloramphenicol succinate, and the spacer arm linked to the phenyl group hapten elicited the strongest antibody response. After optimization, a direct competitive enzyme-linked immunosorbent assay (dcELISA) and a lateral flow immunoassay (LFIA), both based on the mAb 4B5, were developed. The dcELISA had a half maximum inhibition concentration of 0.23 ng/mL and the LFIA showed a cutoff value of 5-10 ng/mL. The LFIA was applied to detect illegally-added chloramphenicol samples in anti-acne cosmetics, five out of 19 samples were tested chloramphenicol containing within 10 min, which result was confirmed with the dcELISA and HPLC. The LFIA has an adequate sensitivity and can be used as a point of care diagnostic device for rapidly screening chloramphenicol in cosmetics.


Subject(s)
Antibodies, Monoclonal , Antibody Formation , Enzyme-Linked Immunosorbent Assay , Immunoassay , Chloramphenicol , Haptens/chemistry
16.
Chemistry ; 29(30): e202300474, 2023 May 26.
Article in English | MEDLINE | ID: mdl-36862311

ABSTRACT

Antibody recruiting molecules (ARMs) are an innovative class of chimeric molecules, consisting of an antibody-binding ligand (ABL) and a target-binding ligand (TBL). ARMs mediate ternary complex formation between a target cell of interest for elimination and endogenous antibodies that are present in human serum. Clustering of fragment crystallizable (Fc) domains on the surface of antibody-bound cells mediate destruction of the target cell by innate immune effector mechanisms. ARMs are typically designed by conjugating small molecule haptens to a (macro)molecular scaffold, without considering the structure of the respective anti-hapten antibody. Here we report on a computational molecular modeling methodology that allows for studying the close contacts between ARMs and the anti-hapten antibody, considering (1) the spacer length between ABL and TBL; (2) the number of ABL and TBL, and (3) the molecular scaffold onto which these are positioned. Our model predicts the difference in binding modes of the ternary complex and predicts which ARMs are optimal recruiters. Avidity measurements of the ARM-antibody complex and ARM-mediated antibody recruitment to cell surfaces in vitro confirmed these computational modeling predictions. This kind of multiscale molecular modelling holds potential for design of drug molecules that rely on antibody binding for their mechanism of action.


Subject(s)
Antibodies , Microscopy , Humans , Ligands , Antigens , Haptens/chemistry
17.
ACS Nano ; 17(7): 6719-6730, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36990450

ABSTRACT

The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.


Subject(s)
Mast Cells , Nanostructures , Rats , Animals , Mast Cells/physiology , Ligands , Antigens , Haptens/chemistry , Immunoglobulin E/metabolism , Receptors, IgE , Nanostructures/chemistry , DNA
18.
Anal Chim Acta ; 1239: 340699, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628767

ABSTRACT

Antibodies against small molecules with high titer and high affinity are always pursued in the field of vaccines for drugs of abuse, antidotes to toxins and immunoassays in medical, environmental, and food safety. The exposure degree of the target molecule to the immune system is critical to induce a strongly specific antibody response, thus, the spacer arm length between the target molecule and carrier protein plays an important role. However, the influence of spacer arm length on antibody titer, affinity, and assay performance is not yet clear and highly demanded to be addressed. In the present study, we proposed a model study to answer the question by using two typical small molecules, melamine and p-nitroaniline, which were introduced by varied spacer arms with increasing alkane linear length from 2 to 12 carbon atoms brick by brick. The spacer arm lengths of the haptens were obtained by computational chemistry. The titer and affinity of mouse antisera were analyzed and compared, showing that all haptens with spacer arms of 6-8 carbon atoms, i.e. 6.3-8.8 Å in length, induced strong antibodies represented by the highest titer and affinity without exception, while the haptens with spacer arms of 2-4 carbon atoms and 10-12 carbon atoms, i.e. 1.5-3.9 Å and 11.3-13.9 Å in length, failed to induce high-quality antibody response. Moreover, the titer and sensitivity of the subsequently developed immunoassays were significantly affected by using coating haptens with different spacer arm lengths, and coating haptens with a spacer arm of 6.3-8.8 Å in length delivered the optimum detection performance. The antibody recognition mechanism study further confirmed that the hapten spacer arm length had a critical effect on the recognition properties of the induced antibody, which should be interactive with the spacer arm each other. This study showed that the hapten with appropriate spacer arm length is important to antibody response and immunoassay development, providing a valuable and general clue for the rational design of hapten.


Subject(s)
Antibody Formation , Haptens , Animals , Mice , Haptens/chemistry , Antibodies , Immunoassay , Enzyme-Linked Immunosorbent Assay
19.
Anal Chim Acta ; 1222: 340011, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35934421

ABSTRACT

Ester-type Aconitum alkaloids (AAs), the main medicinal ingredients of Aconitum L. herbs, could cause brain and heart damage in humans and animals and have raised concerns worldwide. In the present study, we aimed to produce a high-performance and broad-spectrum antibody and establish an immunoassay method of ester-type AAs, 3-succinyl aconitine (ACO-HS) was selected as an optimal hapten from five designed haptens comparing the similarity of stereo structure, electronic distribution, and physicochemical properties using the computer-aided molecular modeling technology. The monoclonal antibody (mAb) 1A9 exhibited broad-spectrum recognition specificity of 15 ester-type AAs was obtained and had a high sensitivity with the binding affinity (half-maximum inhibition concentration, IC50) of 0.73-130.36 µg L-1. Through molecular docking, it was found that mAb 1A9 and ester-type AAs showed a semi-enveloped structure through hydrogen bonds and hydrophobicity interaction. The amino acid residues that responsible for recognition were ARG107, GLU55, PRO113, VAL36, and SER64, and the critical structures to be recognized of AAs were acetyl group, benzoyl group, and N-linked carbon chains. The developed indirect competitive enzyme-linked immunosorbent assay (icELISA) based on mAb 1A9 allowed a sensitive determination of 15 ester-type AAs with the limit of detection (LOD) of 0.21-43.72 µg L-1, and it was suitable for the analysis of ester-type AAs in various Aconitum L. samples. These results provided an effective strategy for the preparation of targeted broad-spectrum antibodies of small molecules and proposed an icELISA method available for rapid, sensitive, and high-throughput detection of toxic ester-type AAs in Aconitum L. herbs.


Subject(s)
Aconitum , Alkaloids , Aconitum/chemistry , Alkaloids/analysis , Animals , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Esters , Haptens/chemistry , Humans , Molecular Docking Simulation
20.
Sci Total Environ ; 848: 157770, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35926599

ABSTRACT

Weed resistance to glyphosate has been a driving force behind the increased use of alternative herbicides in agriculture. Recently, dicamba-tolerant recombinant plants were introduced to the market, which may result in residues of this agrochemical contaminating environmental waters. Given that restrictions on the use of dicamba have consequently been established by regulatory agencies, it is therefore also desirable to conduct extensive controls on dicamba residues. Immunoassays are currently the most powerful bioanalytical technology for the rapid monitoring of chemical residues and contaminants. In the present study, a novel hapten was designed maintaining unaltered all the antigenic moieties of the target molecule, and this was used to generate high-affinity monoclonal antibodies against dicamba for the first time. Additionally, a collection of haptens with different linker composition or linker tethering site was synthesized and conjugated to proteins. Using these novel immunoreagents, a direct competitive enzyme-linked immunosorbent assay with a limit of detection for dicamba of 0.24 ng/mL was developed and validated. Analysis of water samples from different origins afforded recovery values between 90 % and 120 %, and coefficients of variation below 20 % were obtained. These results indicate that the developed immunochemical assay is suitable for the rapid determination of dicamba residues in environmental water samples.


Subject(s)
Dicamba , Herbicides , Antibodies, Monoclonal , Dicamba/chemistry , Haptens/chemistry , Herbicides/chemistry , Immunoassay , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...