Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Harmful Algae ; 134: 102625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705619

ABSTRACT

There is a concern that harmful algal bloom (HAB) species may increase under climate change. Yet, we lack understanding of how ecological interactions will be affected under ocean warming and acidification (OWA) conditions. We tested the antagonistic effects of three strains of the dinoflagellate HAB species Alexandrium catenella on three target species (the chlorophyte Tetraselmis sp., the cryptomonad Rhodomonas salina, and the diatom Thalassiosira weissflogii) at various biomass ratios between species, at ambient (16 °C and 400 µatm CO2) and OWA (20 °C and 2000 µatm CO2) conditions. In these experiments the Alexandrium strains had been raised under OWA conditions for ∼100 generations. All three non-HAB species increased their growth rate under OWA relative to ambient conditions. Growth rate inhibition was evident for R. salina and Tetraselmis sp. under OWA conditions, but not under ambient conditions. These negative effects were exacerbated at higher concentrations of Alexandrium relative to non-HAB species. By contrast, T. weissflogii showed positive growth in the presence of two strains of Alexandrium under ambient conditions, whereas growth was unaffected under OWA. Contrary to our expectations, A. catenella had a slight negative response in the presence of the diatom. These results demonstrate that Alexandrium exerts higher antagonistic effects under OWA compared to ambient conditions, and these effects are species-specific and density dependent. These negative effects may shift phytoplankton community composition under OWA conditions.


Subject(s)
Dinoflagellida , Dinoflagellida/physiology , Hydrogen-Ion Concentration , Seawater/chemistry , Harmful Algal Bloom/physiology , Diatoms/physiology , Climate Change
2.
Harmful Algae ; 134: 102629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705615

ABSTRACT

Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.


Subject(s)
Harmful Algal Bloom , Microalgae , Microalgae/physiology , Harmful Algal Bloom/physiology , Electrophysiological Phenomena
3.
Water Res ; 249: 120974, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38101044

ABSTRACT

Noctiluca scintillans (red) is a widely distributed heterotrophic dinoflagellate and a prominent red tide forming species. This study investigated the effects of Noctiluca blooms on marine microbial diversity and functionality using multi-omics approaches. Our findings revealed significant differences in the community composition of Noctiluca-associated bacteria compared to those associated with autotrophic plankton and free-living bacteria in the surrounding seawater. The dominant bacterial groups within the Noctiluca-associated community shifted at various bloom stages, which could be attributed to changes in prey composition of Noctiluca. During the non-bloom stage, Burkholderiaceae, Carnobacteriaceae, and Pseudomonadaceae dominated the community, while Vibrionaceae became dominant during the bloom stage, and Saprospiraceae, Crocinitomicaceae, and Pirellulaceae thrived during the post-bloom stage. Compared to the non-bloom stage, Noctiluca-associated bacterial community at the bloom stage exhibited significant down-regulation of genes related to complex carbohydrate metabolism, while up-regulation of genes related to glucose transportation and utilization. Furthermore, we identified Vibrio anguillarum, a potential pathogenic bacterium to marine fish, as a major component of the Vibrionaceae family during the bloom stage. The occurrence of V. anguillarum associated with Noctiluca blooms may be attributed to the increased availability of its preferred carbon sources and its high capabilities in glucose transportation, motility and chemotaxis. Moreover, the presence of Vibrio infection genes (hap, hlyA, rtxA) encoding vibriolysin, hemolysin, and RTX (Repeats-in-toxin) toxin in the V. anguillarum genome, with the hap gene showing high expression levels during Noctiluca blooms, indicates an elevated risk of infection. This study underscores the unique composition of the bacterial community associated with red tide forming heterotrophic dinoflagellates and suggests that Noctiluca cells may serve as reservoirs and vectors for pathogenic bacteria, potentially posing a threat to fish-farming and the health of other marine organisms.


Subject(s)
Dinoflagellida , Dinoflagellida/physiology , Harmful Algal Bloom/physiology , Bacteria , Carbohydrates , Glucose
4.
Harmful Algae ; 129: 102490, 2023 11.
Article in English | MEDLINE | ID: mdl-37951604

ABSTRACT

Allelopathy is a biological mechanism that can promote harmful algal blooms (HAB) via the inhibition of sympatric phytoplankton. While nutrient loading can also promote HABs, the ability of allelopathy to stimulate HABs via the regeneration of nutrients has yet to be explored. To examine the impacts of allelopathically liberated N on HAB species, a series of experiments were performed using multiple allelopathic HAB species including the dinoflagellates Alexandrium catenella and Margalefidinium polykrikoides, and the pelagophyte, Aureoumbra lagunensis. These HAB species were paired with the cosmopolitan dinoflagellate, Akashiwo sanguinea, that was labeled with 15NO3- or 15NH4+, allowing the release and transfer of N to be traced as a time course during allelopathic interactions. During all experiments, the allelopathic inhibition of Akashiwo was accompanied by increases in cell densities, growth rates, and the δ15N content of the HAB species, evidencing the transfer of N liberated from Akashiwo. The cellular transfer of 15N and release of dissolved N was higher when Akashiwo was grown with 15NO3- compared to 15NH4+ suggesting a differential subcellular-compartmentalization of N sources. Regardless of the type of N, HAB species obtained 60 - 100% of their cellular N from lysed Akashiwo cells and there was an enrichment of the δ15N content of the dissolved NH4+ pool post-lysis of Akashiwo. Collectively, the results demonstrate that beyond facilitating species succession, allelopathy can supply HABs with N and, therefore, is likely important for promoting and sustaining HABs. Given that allelopathy is known to be a dose-dependent process, allelopathy may induce a positive feedback loop, whereby competitors are lysed, N is liberated, HABs are intensified and, in turn, become more strongly allelopathic.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Harmful Algal Bloom/physiology , Allelopathy , Nitrogen , Dinoflagellida/physiology , Phytoplankton
5.
Harmful Algae ; 129: 102512, 2023 11.
Article in English | MEDLINE | ID: mdl-37951607

ABSTRACT

The effects of nutrient effluents from fish cage aquaculture are an important eutrophication concern. It has been proposed that marine fish farm derived nutrients have the potential to increase phytoplankton abundance and lead to intensification of Harmful Algal Blooms (HABs), and that these blooms may negatively impact both the finfish and the shellfish industry. This study addressed this hypothesis using farmed salmon biomass in Scottish marine waters (as a proxy for nutrient load added to the water column as a consequence of fish farming) cell abundance of HAB taxa that most frequently impact shellfish farms and human health in the region (Dinophysis spp., Alexandrium spp. and Pseudo-nitzschia spp.), and cell abundance of one phytoplankton species of particular concern to the salmon farming industry (Karenia mikimotoi). Data from a 15-year weekly HAB monitoring programme and parallel national monitoring data relating to salmon farm stocking biomass were summarised in 5 km per 5 km aggregation boxes. Linear regression models were used to assess (i) inter-annual variation in cell abundance and total annual farmed salmon biomass; (ii) intra-annual (monthly) variation in harmful phytoplankton cell abundance and salmon biomass; (iii) a further analysis included seasonal effects within the intra-annual analysis. Farmed salmon biomass alone had a non-significant effect on cell abundance of any of the studied phytoplankton taxa. In contrast, a significant effect on cell abundance was found when using location, month or season as the predictive variable. Despite the non-significant impact of fish biomass on phytoplankton counts, the relationship varied seasonally, with a different response of Dinophysis spp. indicating a taxa specific interaction. A possible explanation for the lack of a significant relationship between farmed salmon and harmful phytoplankton cell abundance is that aquaculture farms are generally located in hydrodynamically energetic locations where recurrent flushing likely allows efficient dilution of nutrients. Overall, the analyses suggest that current levels of salmon farming activities do not markedly impact the abundance of routinely monitored biotoxin producing or fish killing phytoplankton taxa in Scottish waters.


Subject(s)
Dinoflagellida , Salmo salar , Animals , Humans , Harmful Algal Bloom/physiology , Dinoflagellida/physiology , Phytoplankton , Aquaculture
6.
Harmful Algae ; 129: 102513, 2023 11.
Article in English | MEDLINE | ID: mdl-37951608

ABSTRACT

Freshwater ecosystems are highly susceptible to harmful algal blooms (HABs), which are often caused by monospecific dense blooms. Effective preventive management strategies are urgently needed to avoid wide-ranging and severe impacts often resulting in costly damage to resources and unsustainable management options. In this study, we utilized SDM techniques focused on Prymnesium parvum, one of the most notorious HABs species worldwide. We first compare the climatic space occupied by P. parvum in North America, Europe and Australia. Additionally, we use MaxEnt algorithm to infer, for the first time, the potentially suitable freshwater environments in the aforementioned ranges. We also discuss the risks of invasion in reservoirs - prone habitats to persistent blooms of pests and invasive phytoplanktonic species. Our results show populations with distinctive niches suggesting ecophysiological tolerances, perhaps reflecting different strains. Our model projections revealed that the potential extent for P. parvum invasions is much broader than its current geographic distribution. The spatial configuration of reservoirs, if not sustaining dense blooms due to non-optimal conditions, favors colonization of multiple basins and ecoregions not yet occupied by P. parvum. Our models can provide valuable insights to decision-makers and monitoring programs while reducing the resources required to control the spread of P. parvum in disturbed habitats. Lastly, as impact magnitude is influenced by toxicity which in turn varies between different strains, we suggest future studies to incorporate intraspecific genetic information and fine-scale environmental variables to estimate potential distribution of P. parvum.


Subject(s)
Haptophyta , Haptophyta/genetics , Ecosystem , Harmful Algal Bloom/physiology , North America , Fresh Water
7.
Environ Res ; 238(Pt 2): 117179, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37748671

ABSTRACT

Marine benthic dinoflagellate toxins, potent bioactive compounds with wide-ranging presence in marine ecosystems, have surged in response to global climate change and human activities, prompting an urgent and imperative inquiry. This study conducts an in-depth review of contemporary research concerning these toxins, employing meticulous bibliometric analysis. Leveraging a dataset of 736 relevant literatures sourced from the Web of Science (spanning from 2000 to May 2023), our analysis delves comprehensively into the scientific discourse surrounding these toxic compounds. Employing tools such as VOSviewer, co-citation analysis, co-occurrence analysis, and cluster analysis, our study yields nuanced insights into the intricate characteristics and trajectories of the field. The co-citation analysis underscores the pivotal role played by benthic and epiphytic dinoflagellates like Ostreopsis and Gambierdiscus in shaping prevailing research trends. Our study identifies four distinct research directions, encompassing the domains of ecology, toxicology, toxin production, and taxonomy. Moreover, it traces the evolutionary journey of research stages, marking the transition from a focus on taxonomy to an emphasis on unraveling molecular mechanisms. The culmination of our comprehensive analysis yields three pertinent research recommendations: a call for widescale global studies, the advancement of rapid toxin monitoring techniques, and a deeper exploration of the factors influencing toxin synthesis and toxicity. These findings provide invaluable insights to researchers grappling with the complex realm of harmful algal blooms and substantially enrich the understanding of this pivotal and pressing field.


Subject(s)
Dinoflagellida , Humans , Dinoflagellida/physiology , Marine Toxins , Ecosystem , Harmful Algal Bloom/physiology , Ecology
8.
Water Res ; 242: 120230, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37392510

ABSTRACT

For decades, red tide control has been recognized as necessary for mitigating financial damage to fish farms. Chemical disinfectants, frequently used for water disinfection, can reduce the risk of red tides on inland fish farms. This study systematically evaluated four different chemical disinfectants (ozone (O3), permanganate (MnO4-), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2)) for their potential use in inland fish farms to control red tides by investigating their (i) inactivation efficacy regarding C. polykrikoides, (ii) total residual oxidant and byproduct formation, and (iii) toxicity to fish. The inactivation efficacy of C. polykrikoides cells by chemical disinfectants from highest to lowest followed the order of O3 > MnO4- > NaOCl > H2O2 for different cell density conditions and disinfectant doses. The O3 and NaOCl treatments generated bromate as an oxidation byproduct by reacting with bromide ions in seawater. The acute toxicity tests of the disinfectants for juvenile red sea bream (Pagrus major) showed that 72-h LC50 values were 1.35 (estimated), 0.39, 1.32, and 102.61 mg/L for O3, MnO4-, NaOCl, and H2O2, respectively. Considering the inactivation efficacy, exposure time of residual oxidants, byproduct formation, and toxicity toward fish, H2O2 is suggested as the most practical disinfectant for controlling red tides in inland fish farms.


Subject(s)
Dinoflagellida , Disinfectants , Animals , Harmful Algal Bloom/physiology , Dinoflagellida/physiology , Hydrogen Peroxide , Seawater , Oxidants , Fishes
9.
Curr Biol ; 33(11): 2246-2259.e8, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37224809

ABSTRACT

Harmful algal blooms of the toxic haptophyte Prymnesium parvum are a recurrent problem in many inland and estuarine waters around the world. Strains of P. parvum vary in the toxins they produce and in other physiological traits associated with harmful algal blooms, but the genetic basis for this variation is unknown. To investigate genome diversity in this morphospecies, we generated genome assemblies for 15 phylogenetically and geographically diverse strains of P. parvum, including Hi-C guided, near-chromosome-level assemblies for two strains. Comparative analysis revealed considerable DNA content variation between strains, ranging from 115 to 845 Mbp. Strains included haploids, diploids, and polyploids, but not all differences in DNA content were due to variation in genome copy number. Haploid genome size between strains of different chemotypes differed by as much as 243 Mbp. Syntenic and phylogenetic analyses indicate that UTEX 2797, a common laboratory strain from Texas, is a hybrid that retains two phylogenetically distinct haplotypes. Investigation of gene families variably present across the strains identified several functional categories associated with metabolic and genome size variation in P. parvum, including genes for the biosynthesis of toxic metabolites and proliferation of transposable elements. Together, our results indicate that P. parvum comprises multiple cryptic species. These genomes provide a robust phylogenetic and genomic framework for investigations into the eco-physiological consequences of the intra- and inter-specific genetic variation present in P. parvum and demonstrate the need for similar resources for other harmful algal-bloom-forming morphospecies.


Subject(s)
Haptophyta , Toxins, Biological , Harmful Algal Bloom/physiology , Phylogeny , Haptophyta/genetics , DNA/genetics
10.
Mar Genomics ; 69: 101027, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921441

ABSTRACT

Marine algicidal bacteria and their metabolites are considered to be one of the most effective strategies to mitigate the harmful algal blooms (HABs). The bacterium Hahella sp. KA22 has previously been confirmed to have strong algicidal activity against the HABs causing microalgae, Heterosigma akashiwo. In this study, the molecular mechanism of microalgae cell death was detected. The results showed that the cell growth rate and photosynthetic efficiency were inhibited with addition of algicidal strain KA22, while the accumulation of reactive oxygen species (ROS) and oxidative damage in H. akashiwo cells increased. A total of 2056 unigenes were recognized to be differentially expressed in transcriptome sequences. In particular, the transcriptional levels of light-harvesting pigments and structural proteins in the oxygen-evolving-complex were continuously down-regulated, corresponding to the significant reduction of photosynthetic efficiency and the accumulation of ROS. Furthermore, glutamate dehydrogenase was significantly up-regulated in abundance. Meanwhile, calcium-dependent protein kinases were also detected with significant changes. Collectively, algicidal stress caused the suppressed electron transfer in chloroplast and impaired detoxification of intracellular oxidants by glutathione, which may subsequently result in multiple cell regulation and metabolic responses and ultimately lead to the ROS-dependent cell death of H. akashiwo.


Subject(s)
Dinoflagellida , Gammaproteobacteria , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Harmful Algal Bloom/physiology , Dinoflagellida/physiology , Bacteria/metabolism , Cell Death
11.
Harmful Algae ; 117: 102267, 2022 08.
Article in English | MEDLINE | ID: mdl-35944950

ABSTRACT

Phosphorus (P) is one of the major macronutrients necessary for phytoplankton growth. In some parts of the ocean, however, P is frequently scarce, hence, there is limited phytoplankton growth. To cope with P deficiency, phytoplankton evolved a variety of strategies, including, utilization of different P sources. Polyphosphate (polyP) is ubiquitously present and serves an essential function in aquatic environments, but it is unclear if and how this polymer is utilized by phytoplankton. Here, we examined the physiological and molecular responses of the widely present harmful algal bloom (HAB) species, Heterosigma akashiwo in polyP utilization, and in coping with P-deficiency. Our results revealed that two forms of inorganic polyP, namely, sodium tripolyphosphate and sodium hexametaphosphate, support H. akashiwo growth as efficiently as orthophosphate. However, few genes involved in polyP utilization have been identified. Under P-deficient conditions, genes associated with P transport, dissolved organic P utilization, sulfolipid synthesis, and energy production, were markedly elevated. In summary, our results indicate that polyP is bioavailable to H. akashiwo, and this HAB species have evolved a comprehensive strategy to cope with P deficiency.


Subject(s)
Dinoflagellida , Stramenopiles , Dinoflagellida/genetics , Harmful Algal Bloom/physiology , Phytoplankton/physiology , Polyphosphates , Transcriptome
12.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110408

ABSTRACT

Domoic acid (DA), the causative agent of amnesic shellfish poisoning, is produced by select organisms within two distantly related algal clades: planktonic diatoms and red macroalgae. The biosynthetic pathway to isodomoic acid A was recently solved in the harmful algal bloom-forming diatom Pseudonitzschia multiseries, establishing the genetic basis for the global production of this potent neurotoxin. Herein, we sequenced the 507-Mb genome of Chondria armata, the red macroalgal seaweed from which DA was first isolated in the 1950s, identifying several copies of the red algal DA (rad) biosynthetic gene cluster. The rad genes are organized similarly to the diatom DA biosynthesis cluster in terms of gene synteny, including a cytochrome P450 (CYP450) enzyme critical to DA production that is notably absent in red algae that produce the simpler kainoid neurochemical, kainic acid. The biochemical characterization of the N-prenyltransferase (RadA) and kainoid synthase (RadC) enzymes support a slightly altered DA biosynthetic model in C. armata via the congener isodomoic acid B, with RadC behaving more like the homologous diatom enzyme despite higher amino acid similarity to red algal kainic acid synthesis enzymes. A phylogenetic analysis of the rad genes suggests unique origins for the red macroalgal and diatom genes in their respective hosts, with native eukaryotic CYP450 neofunctionalization combining with the horizontal gene transfer of N-prenyltransferases and kainoid synthases to establish DA production within the algal lineages.


Subject(s)
Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Kainic Acid/analogs & derivatives , Neurotoxins/metabolism , Rhodophyta/metabolism , Biological Evolution , Biosynthetic Pathways/genetics , Diatoms/genetics , Diatoms/metabolism , Harmful Algal Bloom/physiology , Kainic Acid/metabolism , Multigene Family/genetics , Neurotoxins/genetics , Phylogeny , Shellfish Poisoning/metabolism
13.
PLoS One ; 17(1): e0260755, 2022.
Article in English | MEDLINE | ID: mdl-34986155

ABSTRACT

Nearly all annual blooms of the toxic dinoflagellate Karenia brevis (K. brevis) pose a serious threat to coastal Southwest Florida. These blooms discolor water, kill fish and marine mammals, contaminate shellfish, cause mild to severe respiratory irritation, and discourage tourism and recreational activities, leading to significant health and economic impacts in affected communities. Despite these issues, we still lack standard measures suitable for assessing bloom severity or for evaluating the efficacy of modeling efforts simulating bloom initiation and intensity. In this study, historical cell count observations along the southwest Florida shoreline from 1953 to 2019 were used to develop monthly and annual bloom severity indices (BSI). Similarly, respiratory irritation observations routinely reported in Sarasota and Manatee Counties from 2006 to 2019 were used to construct a respiratory irritation index (RI). Both BSI and RI consider spatial extent and temporal evolution of the bloom, and can be updated routinely and used as objective criteria to aid future socioeconomic and scientific studies of K. brevis. These indices can also be used to help managers and decision makers both evaluate the risks along the coast during events and design systems to better respond to and mitigate bloom impacts. Before 1995, sampling was done largely in response to reports of discolored water, fish kills, or respiratory irritation. During this timeframe, lack of sampling during the fall, when blooms typically occur, generally coincided with periods of more frequent-than-usual offshore winds. Consequently, some blooms may have been undetected or under-sampled. As a result, the BSIs before 1995 were likely underestimated and cannot be viewed as accurately as those after 1995. Anomalies in the frequency of onshore wind can also largely account for the discrepancies between BSI and RI during the period from 2006 to 2019. These findings highlighted the importance of onshore wind anomalies when predicting respiratory irritation impacts along beaches.


Subject(s)
Dinoflagellida/growth & development , Forecasting/methods , Harmful Algal Bloom/physiology , Dinoflagellida/pathogenicity , Florida , Humans , Marine Toxins/analysis , Respiratory System , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology
14.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769058

ABSTRACT

Karenia mikimotoi is a well-known harmful algal bloom species. Blooms of this dinoflagellate have become a serious threat to marine life, including fish, shellfish, and zooplanktons and are usually associated with massive fish death. Despite the discovery of several toxins such as gymnocins and gymnodimines in K. mikimotoi, the mechanisms underlying the ichthyotoxicity of this species remain unclear, and molecular studies on this topic have never been reported. The present study investigates the fish-killing mechanisms of K. mikimotoi through comparative proteomic analysis. Marine medaka, a model fish organism, was exposed to K. mikimotoi for a three-part time period (LT25, LT50 and LT90). Proteins extracted from the whole fish were separated by using two-dimensional gel electrophoresis, and differentially expressed proteins were identified with reference to an untreated control. The change in fish proteomes over the time-course of exposure were analyzed. A total of 35 differential protein spots covering 19 different proteins were identified, of which most began to show significant change in expression levels at the earliest stage of intoxication. Among the 19 identified proteins, some are closely related to the oxidative stress responses, energy metabolism, and muscle contraction. We propose that oxidative stress-mediated muscle damage might explain the symptoms developed during the ichthyotoxicity test, such as gasping for breath, loss of balance, and body twitching. Our findings lay the foundations for more in-depth studies of the mechanisms of K. mikimotoi's ichthyotoxicity.


Subject(s)
Dinoflagellida/pathogenicity , Fishes/metabolism , Fishes/parasitology , Proteome/metabolism , Animals , Energy Metabolism/physiology , Harmful Algal Bloom/physiology , Muscle Contraction/physiology , Oxidative Stress/physiology , Proteomics/methods
15.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34620710

ABSTRACT

Blooms of marine phytoplankton fix complex pools of dissolved organic matter (DOM) that are thought to be partitioned among hundreds of heterotrophic microbes at the base of the food web. While the relationship between microbial consumers and phytoplankton DOM is a key component of marine carbon cycling, microbial loop metabolism is largely understood from model organisms and substrates. Here, we took an untargeted approach to measure and analyze partitioning of four distinct phytoplankton-derived DOM pools among heterotrophic populations in a natural microbial community using a combination of ecogenomics, stable isotope probing (SIP), and proteomics. Each 13C-labeled exudate or lysate from a diatom or a picocyanobacterium was preferentially assimilated by different heterotrophic taxa with specialized metabolic and physiological adaptations. Bacteroidetes populations, with their unique high-molecular-weight transporters, were superior competitors for DOM derived from diatom cell lysis, rapidly increasing growth rates and ribosomal protein expression to produce new relatively high C:N biomass. Proteobacteria responses varied, with relatively low levels of assimilation by Gammaproteobacteria populations, while copiotrophic Alphaproteobacteria such as the Roseobacter clade, with their diverse array of ABC- and TRAP-type transporters to scavenge monomers and nitrogen-rich metabolites, accounted for nearly all cyanobacteria exudate assimilation and produced new relatively low C:N biomass. Carbon assimilation rates calculated from SIP data show that exudate and lysate from two common marine phytoplankton are being used by taxonomically distinct sets of heterotrophic populations with unique metabolic adaptations, providing a deeper mechanistic understanding of consumer succession and carbon use during marine bloom events.


Subject(s)
Alphaproteobacteria/metabolism , Bacteroidetes/metabolism , Cyanobacteria/metabolism , Dissolved Organic Matter/metabolism , Gammaproteobacteria/metabolism , Phytoplankton/microbiology , Carbon Cycle/physiology , Diatoms/metabolism , Harmful Algal Bloom/physiology , Isotope Labeling , Microbial Consortia , Phytoplankton/metabolism
16.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607950

ABSTRACT

Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.


Subject(s)
Dinoflagellida/growth & development , Dinoflagellida/metabolism , Harmful Algal Bloom/physiology , Neurotoxins/metabolism , Shellfish Poisoning , Alaska , Arctic Regions , Climate Change , Ecosystem , Geologic Sediments/parasitology , Hot Temperature , Humans , Ice Cover , Public Health
17.
PLoS One ; 16(9): e0257017, 2021.
Article in English | MEDLINE | ID: mdl-34550975

ABSTRACT

Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.


Subject(s)
DNA, Bacterial/genetics , Genome, Bacterial , Harmful Algal Bloom/physiology , Metagenome , Microcystis/genetics , Quorum Sensing/genetics , Carbon/metabolism , High-Throughput Nucleotide Sequencing , Lakes/microbiology , Microbiota/genetics , Microcystis/classification , Microcystis/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Phylogeny , Signal Transduction , United States
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298944

ABSTRACT

Energetic metabolism is essential in maintaining the viability of all organisms. Resting cysts play important roles in the ecology of dinoflagellates, particularly for harmful algal blooms (HABs)-causative species. However, the energetic metabolism underlying the germination potency maintenance of resting cysts of dinoflagellate have been extremely scarce in studies from physiological and, particularly, molecular perspectives. Therefore, we used the cosmopolitan Scrippsiella trochoidea as a representative of HABs-forming and cyst-producing dinoflagellates in this work to obtain novel insights into the molecular mechanisms, regulating the energetic metabolism in dinoflagellate resting cysts, under different physical condition. As the starting step, we established a cDNA subtractive library via suppression subtractive hybridization (SSH) technology, from which we screened an incomplete sequence for the ß subunit of ATP synthase gene (ß-F1-ATPase), a key indicator for the status of cell's energetic metabolism. The full-length cDNA of ß-F1-ATPase gene from S.trochoidea (Stß-F1-ATPase) was then obtained via rapid amplification of cDNA ends (RACE) (Accession: MZ343333). Our real-time qPCR detections, in vegetative cells and resting cysts treated with different physical conditions, revealed that (1) the expression of Stß-F1-ATPase in resting cysts was generally much lower than that in vegetative cells, and (2) the Stß-F1-ATPase expressions in the resting cysts under darkness, lowered temperature, and anoxia, and during an extended duration of dormancy, were significantly lower than that in cysts under the condition normally used for culture-maintaining (a 12 h light:12 h dark cycle, 21 °C, aerobic, and newly harvested). Our detections of the viability (via Neutral Red staining) and cellular ATP content of resting cysts, at the conditions corresponding to the abovementioned treatments, showed that both the viability and ATP content decreased rapidly within 12 h and then maintained at low levels within the 4-day experimentation under all the three conditions applied (4 °C, darkness, and anoxia), which are well in accordance with the measurements of the transcription of Stß-F1-ATPase. These results demonstrated that the energy consumption of resting cysts reaches a low, but somehow stable, level within a short time period and is lower at low temperature, darkness, and anoxia than that at ambient temperature. Our work provides an important basis for explaining that resting cysts survive long-term darkness and low temperature in marine sediments from molecular and physiological levels.


Subject(s)
Dinoflagellida/genetics , Harmful Algal Bloom/physiology , Darkness , Geologic Sediments/parasitology , Temperature
19.
Toxins (Basel) ; 13(5)2021 05 13.
Article in English | MEDLINE | ID: mdl-34068425

ABSTRACT

Cyanobacterial blooms in eutrophic freshwater is a global threat to the functioning of ecosystems, human health and the economy. Parties responsible for the ecosystems and human health increasingly demand reliable predictions of cyanobacterial development to support necessary decisions. Long-term data series help with identifying environmental drivers of cyanobacterial developments in the context of climatic and anthropogenic pressure. Here, we analyzed 13 years of eutrophication and climatic data of a shallow temperate reservoir showing a high interannual variability of cyanobacterial development and composition, which is a less occurring and/or less described phenomenon compared to recurrant monospecific blooms. While between 2007-2012 Planktothrix agardhii dominated the cyanobacterial community, it shifted towards Microcystis sp. and then Dolichospermum sp. afterwards (2013-2019). The shift to Microcystis sp. dominance was mainly influenced by generally calmer and warmer conditions. The later shift to Dolichospermum sp. was driven by droughts influencing, amongst others, the N-load, as P remained unchanged over the time period. Both, climatic pressure and N-limitation contributed to the high variability of cyanobacterial blooms and may lead to a new equilibrium. The further reduction of P-load in parallel to the decreasing N-load is important to suppress cyanobacterial blooms and ameliorate ecosystem health.


Subject(s)
Climate Change , Cyanobacteria/physiology , Harmful Algal Bloom/physiology , Climate , Ecosystem , Environmental Monitoring , Eutrophication/physiology , Humans , Nutrients
20.
Carbohydr Polym ; 259: 117710, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33673989

ABSTRACT

Harmful algal blooms induce severe environmental problems. It is challenging to remove algae by the current available treatments involving complicate process and costly instruments. Here, we developed a CaO2@PEG-loaded water-soluble self-branched chitosan (CP-SBC) system, which can remove algae from water in one-step without additional instrumentation. This approach utilizes a novel flocculant (self-branched chitosan) integrated with flotation function (induced by CaO2@PEG). CP-SBC exhibited better flocculation performance than commercial flocculants, which is attributed to the enhanced bridging and sweeping effect of branched chitosan. CP-SBC demonstrated outstanding biocompatibility, which was verified by zebrafish test and algae activity test. CaO2@PEG-loaded self-branched chitosan can serve as an "Air flotation system" to spontaneous float the flocs after flocculation by sustainably released O2. Furthermore, CP-SBC can improve water quality through minimizing dissolved oxygen depletion and reducing total phosphorus concentrations.


Subject(s)
Chitosan/chemistry , Harmful Algal Bloom/physiology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Calcium Compounds/chemistry , Flocculation/drug effects , Harmful Algal Bloom/drug effects , Kinetics , Larva/drug effects , Oxides/chemistry , Oxygen/chemistry , Phosphorus/chemistry , Polyethylene Glycols/chemistry , Porosity , Zebrafish/growth & development , Zebrafish/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...