Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biomater Adv ; 145: 213254, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584583

ABSTRACT

Despite advances in bone tissue engineering, fabricating a scaffold which can be used as an implant for large bone defects remains challenge. One of the great importance in fabricating a biomimetic bone implant is considering the possibility of the integration of the structure and function of implants with hierarchical structure of bone. Herein, we propose a method to mimic the structural unit of compact bone, osteon, with spatial pattern of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) in the adjacent layers that mimic Haversian canal and lamella, respectively. To this end, coaxial extrusion-based bioprinting technique via a customized quadruple-layer core-shell nozzle was employed. 3D implant scaffold-cell construct was fabricated by using polyethylene glycol as a hollowing agent in the first layer, gelatin methacryloyl (GelMA) and alginate blended hydrogel encapsulating HUVEC cells with vascular endothelial growth factor nanoparticles in the second layer (vasculogenic layer) to mimic vascular vessel, and GelMA and alginate blended hydrogel containing hMSCs cells in the outer osteogenic layer to imitate lamella. Two types of bone minerals, whitlockite and hydroxyapatite, were incorporated in osteogenic layer to induce osteoblastic differentiation and enhance mechanical properties (the young's modules of nanocomposite increased from 35 kPa to 80 kPa). In-vitro evaluations demonstrated high cell viability (94 % within 10 days) and proliferation. Furthermore, ALP enzyme activity increased considerably within 2 weeks and mineralized extra cellular matrix considerably produced within 3 weeks. Also, a significant increase in osteogenic markers was observed indicating the presence of differentiated osteoblast cells. Therefore, the work indicates the potential of single step 3D bioprinting process to fabricate biomimetic osteons to use as bone grafts for regeneration.


Subject(s)
Bioprinting , Haversian System , Humans , Alginates , Bioprinting/methods , Haversian System/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hydrogels/pharmacology , Nanogels , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism , Printing, Three-Dimensional
2.
Biomech Model Mechanobiol ; 19(5): 1879-1896, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32112154

ABSTRACT

Mechanical loading-induced fluid flow in lacunar-canalicular space (LCS) of bone excites osteocyte cells to release signalling molecules which initiate osteo-activities. Theoretical models considered canaliculi as a uniform and symmetrical space/channel in bone. However, experimental studies reported that canalicular walls are irregular and curvy resulting in inhomogeneous fluid motion which may influence the molecular transport. Therefore, a new mathematical model of LCS with curvy canalicular walls is developed to characterize cantilever bending-induced canalicular flow behaviour in terms of pore-pressure, fluid velocity, and streamlines. The model also analyses the mobility of signalling molecules involved in bone mechanotransduction as a function of loading frequency and permeability of LCS. Inhomogeneous flow is observed at higher loading frequency which amplifies mechanotransduction; nevertheless, it also promotes trapping of signalling molecules. The effects of shape and size of signalling molecules on transport behaviour are also studied. Trivially, signalling molecules larger in size and weight move slower as compared to molecules small in size and weight which validates the findings of the present study. The outcomes will ultimately be useful in designing better biomechanical exercise in combination with pharmaceutical agents to improve the bone health.


Subject(s)
Haversian System/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Animals , Biological Transport , Biomechanical Phenomena , Computer Simulation , Dinoprostone/metabolism , Mice , Motion , Nitric Oxide/metabolism , Porosity , Pressure , Tibia/physiology
3.
Bone ; 123: 76-85, 2019 06.
Article in English | MEDLINE | ID: mdl-30898694

ABSTRACT

The osteocyte lacunar-canalicular network (LCN) penetrates bone and houses the osteocytes and their processes. Despite its rather low volume fraction, the LCN represents an outstanding large surface that is possibly used by the osteocytes to interact with the surrounding mineralized bone matrix thereby contributing to mineral homeostasis. The aim of this study was to quantitatively describe such contributions by spatially correlating the local density of the LCN with the mineral content at the same location in micrometer-sized volume elements in human osteons. For this purpose, 65 osteons from the femur midshaft from healthy adults (n = 4) and children (n = 2) were structurally characterized with two different techniques. The 3D structure of the LCN in the osteons was imaged with confocal laser scanning microscopy after staining the bone samples with rhodamine. Subsequent image analysis provided the canalicular length density, i.e. the total length of the canaliculi per unit volume (µm/µm3). Quantitative information on the mineral content (wt%Ca) from the identical regions was obtained using quantitative backscattered electron imaging. As the LCN-porosity lowers the mineral content, a negative correlation between Ca content and network density was expected. Calculations predict a reduction of around -0.97 fmol Ca per µm of network. However, the experiment revealed for 62 out of 65 osteons a positive correlation resulting in an average additional Ca loading of +1.15 fmol per µm of canalicular network, i.e. an accumulation of mineral has occurred at dense network regions. We hypothesize that this accumulation happens in the close vicinity of canaliculi forming mineral reservoirs that can be utilized by osteocytes. Significant differences found between individuals indicate that the extent of mineral loading of the reservoir zone reflects an important parameter for mineral homeostasis.


Subject(s)
Bone Matrix/metabolism , Haversian System/metabolism , Child, Preschool , Female , Humans , Microscopy, Confocal , Middle Aged , Osteocytes/metabolism
4.
Bone ; 110: 187-193, 2018 05.
Article in English | MEDLINE | ID: mdl-29427789

ABSTRACT

Cement lines are known as thin peripheral boundaries of the osteons. With a thickness below 5 µm their composition of inorganic and organic compounds has been a matter of debate. Here, we hypothesized that cement lines become hypermineralized and their degree of mineralization is not constant but related to the tissue age of the osteon. Therefore, we analyzed the calcium content of osteons and their corresponding cement lines in a range of different tissue ages reflected by osteonal mineralization levels in femoral cortical bone of both postmenopausal women with osteoporosis and bisphosphonate-treated cases. Quantitative backscattered electron imaging (qBEI) showed that cement lines are hypermineralized entities with consistently higher calcium content than their corresponding osteons (mean calcium content: 29.46 ±â€¯0.80 vs. 26.62 ±â€¯1.11 wt%; p < 0.001). Micro-Raman spectroscopy complemented the qBEI data by showing a significantly higher phosphate/amide I ratio in the cement lines compared to the osteonal bone (8.78 ±â€¯0.66 vs. 6.33 ±â€¯0.58, p < 0.001), which was both due to an increased phosphate peak and a reduced amide I peak in cement lines. A clear positive correlation of cement line mineralization and the mineralization of the osteon was observed (r = 0.839, p = 0.003). However, the magnitude of the difference between cement line and osteonal calcium content decreased with increased osteonal calcium content (r = -0.709, p < 0.001), suggesting diverging mineralization dynamics in these osseous entities. The number of mineralized osteocyte lacunae per osteon bone area correlated positively with both osteonal and cement line calcium content (p < 0.01). The degree of mineralization of cement lines may represent another tissue-age related phenomenon, given that it strongly relates to the osteonal mineralization level. Understanding of the cement lines' mineralization and their changes in aging and disease states is important for predicting crack propagation pathways and fracture resistance mechanisms in human cortical bone.


Subject(s)
Bone Remodeling/physiology , Bone and Bones/metabolism , Haversian System/cytology , Absorptiometry, Photon , Aged , Aged, 80 and over , Bone Remodeling/genetics , Female , Haversian System/metabolism , Humans , Microscopy, Electron, Scanning , Osteocytes/cytology , Osteocytes/metabolism , Postoperative Period , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
5.
Calcif Tissue Int ; 101(2): 148-158, 2017 08.
Article in English | MEDLINE | ID: mdl-28417147

ABSTRACT

Modeling and remodeling are two key determinants of human skeletal growth though little is known about the histomorphometry of cortical bone during ontogeny. In this study, we examined the density and geometric properties of primary and secondary osteons (osteon area and diameter, vascular canal area and diameter) in subperiosteal cortical bone from the human humerus (n = 84) between birth and age 18 years. Sections were removed from the anterior midshaft aspect of humeri from skeletons. Age-at-death was reconstructed using standard osteological techniques. Analyses revealed significant correlation between the histomorphometric variables and age. Higher densities of primary osteons occurred between infancy and 7 years of age but were almost completely replaced by secondary osteons after 14 years of age. The geometry of primary osteons was less clearly related to age. Secondary osteons were visible after 2 years of age and reached their greatest densities in the oldest individuals. Osteon size was positively but weakly influenced by age. Our data imply that modeling and remodeling are age-dependent processes that vary markedly from birth to adulthood in the human humerus.


Subject(s)
Bone Remodeling/physiology , Haversian System/pathology , Humerus/metabolism , Adolescent , Age Factors , Child , Child, Preschool , Cortical Bone/physiology , Female , Femur/metabolism , Haversian System/metabolism , Humans , Male , Sex Characteristics
6.
J Mater Sci Mater Med ; 28(3): 38, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28144850

ABSTRACT

Animal bones bear varied impact loadings during in the movements of animals. The impact resistance and micro-damage of bones are influenced by their various microstructures at different length scales. In this paper, according to the microstructure of osteon, three 2-D microstructure models (circumferential ellipse lacunae (Model A), radial elliptical lacunae (Model B) and circular lacunae (Model C) were constructed for investigating the influences of the arranged direction and shape of osteocyte lacunae on resisting impact and micro-damage. Impact analytical results show that the maximal stress of the Model A is the minimum and that of the Model B is the maximal under same boundary conditions, which indicates that the circumferentially elliptical lacunae, whose minor axis is along the radial direction of the osteon (Model A), can enhance impact resistance of osteons effectively. The investigated results of the progressive damage show that the circumferentially ellipse lacunae (Model A) are more benefit to resist micro-damage and that the micro-cracks in the model are mainly along the circumferential direction of the osteon. These investigated results for the novel microstructures found in osteon can serve engineers as guidance in the designs of biomimetic and bioinspired tubular structures or materials for engineering applications.


Subject(s)
Haversian System/metabolism , Haversian System/physiology , Osteocytes/cytology , Animals , Biomimetics , Cattle , Femur/pathology , Humans , Microscopy, Electron, Scanning , Models, Theoretical , Nanostructures , Tissue Engineering/methods
7.
J Anat ; 226(5): 478-88, 2015 May.
Article in English | MEDLINE | ID: mdl-25943007

ABSTRACT

In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages.


Subject(s)
Cellular Microenvironment/physiology , Collagen Type VI/metabolism , Femur/growth & development , Haversian System/physiology , Osteoblasts/metabolism , Animals , Core Binding Factor Alpha 1 Subunit/metabolism , Extracellular Matrix/metabolism , Femur/metabolism , Haversian System/metabolism , Immunohistochemistry , Plant Lectins , Proteoglycans/metabolism , Rats
8.
Calcif Tissue Int ; 97(3): 292-307, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25783011

ABSTRACT

Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.


Subject(s)
Bone and Bones/metabolism , Fractures, Bone/metabolism , Haversian System/metabolism , Tensile Strength/physiology , Water/metabolism , Animals , Humans , Porosity
9.
J Struct Biol ; 187(3): 266-275, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25025981

ABSTRACT

Chemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues.


Subject(s)
Fibrillar Collagens/analysis , Haversian System/metabolism , Imaging, Three-Dimensional/methods , Spectrum Analysis, Raman/methods , Computer Simulation , Femur/metabolism , Fibrillar Collagens/chemistry , Fibrillar Collagens/metabolism , Humans , Models, Molecular
10.
J Mech Behav Biomed Mater ; 37: 109-24, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24907671

ABSTRACT

In this work, we present two strategies for the numerical modelling of microcracks and damage within an osteon. A numerical model of a single osteon under compressive diametral load is developed, including lamellae organized concentrically around the haversian canal and the presence of lacunae. Elastic properties have been estimated from micromechanical models that consider the mineralized collagen fibrils reinforced with hydroxyapatite crystals and the dominating orientation of the fibrils in each lamella. Microcracks are simulated through the node release technique, enabling propagation along the lamellae interfaces by application of failure criteria initially conceived for composite materials, in particular the Brewer and Lagacé criterion for delamination. A second approach is also presented, which is based on the progressive degradation of the stiffness at the element level as the damage increases. Both strategies are discussed, showing a good agreement with experimental evidence reported by other authors. It is concluded that interlaminar shear stresses are the main cause of failure of an osteon under compressive diametral load.


Subject(s)
Finite Element Analysis , Haversian System/cytology , Mechanical Phenomena , Adolescent , Adult , Biomechanical Phenomena , Collagen/metabolism , Compressive Strength , Elasticity , Haversian System/metabolism , Haversian System/physiology , Humans , Minerals/metabolism , Young Adult
11.
PLoS One ; 8(7): e69275, 2013.
Article in English | MEDLINE | ID: mdl-23874932

ABSTRACT

Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.


Subject(s)
Biological Evolution , Bone and Bones/cytology , Haversian System/cytology , Xenarthra/anatomy & histology , Animals , Body Weight , Bone and Bones/metabolism , Femur , Haversian System/metabolism , Humerus , Phylogeny , Xenarthra/classification , Xenarthra/genetics
12.
Bone ; 50(5): 1107-14, 2012 May.
Article in English | MEDLINE | ID: mdl-22353552

ABSTRACT

There is little information on the distribution of osteocytes within the individual cortical osteon, but using direct 3-D imaging in a single subject, Hannah et al. found a gradient with a two-fold higher density of cells adjacent to the cement line compared to near the canal. Since a limiting factor for bone formation might be the availability of osteoblasts due to their recruitment as osteocytes, we studied distributions of osteonal osteocytes in frozen sections of the femoral neck cortex. Osteocytes were stained with an anti-sclerostin antibody and counter-stained with toluidine blue. Adjacent sections were stained for alkaline phosphatase (ALP). Each osteonal osteocyte was categorised as being sclerostin-positive (scl+) or negative (scl-). ImageJ was used to measure the perimeter and area of each osteon and canal, while special purpose routines were used to measure the minimum distances of each osteocyte from the cement line and the canal. Canal area was strongly correlated with osteon area. Osteocytes were most dense close to the cement line; and their areal density within the matrix declined up to three-fold between the cement line and the canal, depending on osteon diameter. Large and small osteons had similar densities of osteocytes close to the cement line, but fractured neck of femur cases had significantly lower densities of osteocytes close to the canal. Higher osteocyte density close to the canal was associated with ALP expression. It is concluded that entombment of osteocytes newly drawn from the osteoblast pool into the mineralising matrix is independent of preceding bone resorption depth. As osteonal infilling proceeds, osteocyte formation declines more rapidly than matrix formation, leading to a progressive reduction in osteocyte density. A shrinking supply of precursor osteoblasts due to previous osteocyte recruitment, apoptosis, or both could produce this effect. In a statistically significant contrast, sclerostin negative osteocytes adjacent to the canal had the expected effect of reducing canal size in controls but this was not seen in hip fracture. This demonstrated the failure of osteonal osteoblasts to sustain bone formation through a complete remodelling cycle in osteoporosis, perhaps due to insufficient osteoblasts remaining capable of mineralized matrix formation. The failure of osteocytic sclerostin suppression to associate with bone formation in these osteons might alternatively be explained by downstream interference with sclerostin's effect on wnt signalling.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Femur Neck/pathology , Haversian System/pathology , Hip Fractures/pathology , Osteocytes/pathology , Adaptor Proteins, Signal Transducing , Aged , Cell Count , Cell Death , Female , Genetic Markers , Haversian System/metabolism , Hip Fractures/metabolism , Humans , Male , Microscopy, Polarization , Models, Biological , Organ Size , Osteocytes/metabolism
13.
Calcif Tissue Int ; 90(3): 202-10, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22249525

ABSTRACT

Differences in the binding affinities of bisphosphonates for bone mineral have been proposed to determine their localizations and duration of action within bone. The main objective of this study was to test the hypothesis that mineral binding affinity affects bisphosphonate distribution at the basic multicellular unit (BMU) level within both cortical and cancellous bone. To accomplish this objective, skeletally mature female rabbits (n = 8) were injected simultaneously with both low- and high-affinity bisphosphonate analogs bound to different fluorophores. Skeletal distribution was assessed in the rib, tibia, and vertebra using confocal microscopy. The staining intensity ratio between osteocytes contained within the cement line of newly formed rib osteons or within the reversal line of hemiosteons in vertebral trabeculae compared to osteocytes outside the cement/reversal line was greater for the high-affinity compared to the low-affinity compound. This indicates that the low-affinity compound distributes more equally across the cement/reversal line compared to a high-affinity compound, which concentrates mostly near surfaces. These data, from an animal model that undergoes intracortical remodeling similar to humans, demonstrate that the affinity of bisphosphonates for the bone determines the reach of the drugs in both cortical and cancellous bone.


Subject(s)
Bone Density Conservation Agents/pharmacokinetics , Bone Remodeling/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Diphosphonates/pharmacokinetics , Animals , Binding Sites/drug effects , Binding Sites/physiology , Binding, Competitive/drug effects , Binding, Competitive/physiology , Bone Remodeling/physiology , Bone and Bones/cytology , Female , Haversian System/cytology , Haversian System/drug effects , Haversian System/metabolism , Osteocytes/cytology , Osteocytes/drug effects , Osteocytes/metabolism , Osteoporosis/drug therapy , Rabbits , Tissue Distribution/physiology
14.
Bone ; 50(1): 245-54, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22071000

ABSTRACT

It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer.


Subject(s)
Antlers/anatomy & histology , Antlers/chemistry , Bone and Bones/anatomy & histology , Deer/anatomy & histology , Minerals/chemistry , Minerals/metabolism , Nutritional Status , Animals , Calcification, Physiologic , Diet , Elastic Modulus , Haversian System/anatomy & histology , Haversian System/metabolism , Porosity , Stress, Mechanical , Tissue Distribution
15.
Mol Cell Proteomics ; 10(9): M110.006718, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21606484

ABSTRACT

There is growing evidence supporting the need for a broad scale investigation of the proteins and protein modifications in the organic matrix of bone and the use of these measures to predict fragility fractures. However, limitations in sample availability and high heterogeneity of bone tissue cause unique experimental and/or diagnostic problems. We addressed these by an innovative combination of laser capture microscopy with our newly developed liquid chromatography separation methods, followed by gel electrophoresis and mass spectrometry analysis. Our strategy allows in-depth analysis of very limited amounts of bone material, and thus, can be important to medical sciences, biology, forensic, anthropology, and archaeology. The developed strategy permitted unprecedented biochemical analyses of bone-matrix proteins, including collagen modifications, using nearly nanoscale amounts of exceptionally homogenous bone tissue. Dissection of fully mineralized bone-tissue at such degree of homogeneity has not been achieved before. Application of our strategy established that: (1) collagen in older interstitial bone contains higher levels of an advanced glycation end product pentosidine then younger osteonal tissue, an observation contrary to the published data; (2) the levels of two enzymatic crosslinks (pyridinoline and deoxypiridinoline) were higher in osteonal than interstitial tissue and agreed with data reported by others; (3) younger osteonal bone has higher amount of osteopontin and osteocalcin then older interstitial bone and this has not been shown before. Taken together, these data show that the level of fluorescent crosslinks in collagen and the amount of two major noncollagenous bone matrix proteins differ at the level of osteonal and interstitial tissue. We propose that this may have important implications for bone remodeling processes and bone microdamage formation.


Subject(s)
Arginine/analogs & derivatives , Bone Matrix/metabolism , Chromatography, Liquid/methods , Dissection/methods , Haversian System/metabolism , Lysine/analogs & derivatives , Microscopy, Confocal/methods , Osteopontin/analysis , Proteomics/methods , Age Factors , Amino Acids/analysis , Amino Acids/chemistry , Anthropology/methods , Arginine/analysis , Arginine/chemistry , Bone Matrix/chemistry , Bone Remodeling , Calcification, Physiologic , Collagen/chemistry , Collagen/metabolism , Forensic Sciences/methods , Haversian System/chemistry , Humans , Lysine/analysis , Lysine/chemistry , Mass Spectrometry , Nanoparticles , Osteocalcin/chemistry , Osteocalcin/metabolism , Osteopontin/chemistry
16.
J Biomech ; 44(7): 1285-90, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21396648

ABSTRACT

The presence of the residual stresses in bone tissue has been noted and the authors have reported that there are residual stresses in bone tissue. The aim of our study is to measure the residual stress distribution in the cortical bone of the extremities of vertebrates and to describe the relationships with the osteon population density. The study used the rabbit limb bones (femur, tibia/fibula, humerus, and radius/ulna) and measured the residual stresses in the bone axial direction at anterior and posterior positions on the cortical surface. The osteons at the sections at the measurement positions were observed by microscopy. As a result, the average stresses at the hindlimb bones and the forelimb bones were 210 and 149 MPa, respectively. In the femur, humerus, and radius/ulna, the residual stresses at the anterior position were larger than those at the posterior position, while in the tibia, the stress at the posterior position was larger than that at the anterior position. Further, in the femur and humerus, the osteon population densities in the anterior positions were larger than those in the posterior positions. In the tibia, the osteon population density in the posterior position was larger than that in the anterior position. Therefore, tensile residual stresses were observed at every measurement position in the rabbit limb bones and the value of residual stress correlated with the osteon population density (r=0.55, P<0.01).


Subject(s)
Extremities/physiology , Animals , Biomechanical Phenomena , Bone and Bones/metabolism , Female , Femur/pathology , Haversian System/metabolism , Haversian System/physiology , Humerus/pathology , Microscopy/methods , Pressure , Rabbits , Radius/pathology , Stress, Mechanical , Tensile Strength , Ulna/pathology , X-Ray Diffraction
17.
Am J Physiol Cell Physiol ; 299(5): C922-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20660162

ABSTRACT

Whereas recent work has demonstrated the role of oxygen tension in the regulation of skeletal cell function and viability, the microenvironmental oxemic status of bone cells remains unknown. In this study, we have employed the Krogh cylinder model of oxygen diffusion to predict the oxygen distribution profiles in cortical and cancellous bone. Under the assumption of saturation-type Michaelis-Menten kinetics, our numerical modeling has indicated that, under steady-state conditions, there would be oxygen gradients across mature osteons and trabeculae. In Haversian bone, the calculated oxygen tension decrement ranges from 15 to 60%. For trabecular bone, a much shallower gradient is predicted. We note that, in Haversian bone, the gradient is largely dependent on osteocyte oxygen utilization and tissue oxygen diffusivity; in trabecular bone, the gradient is dependent on oxygen utilization by cells lining the bone surface. The Krogh model also predicts dramatic differences in oxygen availability during bone development. Thus, during osteon formation, the modeling equations predict a steep oxygen gradient at the initial stage of development, with the gradient becoming lesser as osteonal layers are added. In contrast, during trabeculum formation, the oxygen gradient is steepest when the diameter of the trabeculum is maximal. Based on these results, it is concluded that significant oxygen gradients exist within cortical and cancellous bone and that the oxygen tension may regulate the physical dimensions of both osteons and bone trabeculae.


Subject(s)
Bone and Bones , Haversian System , Models, Biological , Models, Theoretical , Oxygen/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/ultrastructure , Haversian System/metabolism , Haversian System/ultrastructure , Humans
18.
Ann Biomed Eng ; 36(12): 1961-77, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18810639

ABSTRACT

Solute transport through the bone lacunar-canalicular system is essential for osteocyte viability and function, and it can be measured using fluorescence recovery after photobleaching (FRAP). The mathematical model developed here aims to analyze solute transport during FRAP in mechanically loaded bone. Combining both whole bone-level poroelasticity and cellular-level solute transport, we found that load-induced solute transport during FRAP is characterized by an exponential recovery rate, which is determined by the dimensionless Strouhal (St) number that characterizes the oscillation effects over the mean flows, and that significant transport occurs only for St values below a threshold, when the solute stroke displacement exceeds the distance between the source and sink (the canalicular length). This threshold mechanism explains the general flow behaviors such as increasing transport with increasing magnitude and decreasing frequency. Mechanical loading is predicted to enhance transport of all tracers relative to diffusion, with the greatest enhancement for medium-sized tracers and less enhancement for small and large tracers. This study provides guidelines for future FRAP experiments, based on which the model can be used to quantify bone permeability, solute-matrix interaction, and flow velocities. These studies should provide insights into bone adaptation and metabolism, and help to treat various bone diseases and conditions.


Subject(s)
Bone and Bones/metabolism , Fluorescence Recovery After Photobleaching , Haversian System/metabolism , Models, Theoretical , Osteocytes/metabolism , Solutions/metabolism , Animals , Biological Transport , Biomechanical Phenomena , Bone and Bones/cytology , Humans , Models, Biological
19.
Bone ; 43(3): 476-82, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18619937

ABSTRACT

Osteon diameter is generally smaller in bone regions that experience larger strains. A mechanism relating osteon diameter to strain is as yet unknown. We propose that strain-induced osteocyte signals inhibit osteoclastic bone resorption. This mechanism was previously shown to produce load-aligned osteons in computer simulations. Now we find that it also predicts smaller osteon diameter for higher loads. Additionally, we find that our model predicts osteon development with two cutting cones, one moving up and one moving down the loading axis. Such 'double-ended osteons' were reported in literature as a common type of osteon development. Further, we find that a steep gradient in strain magnitude can result in an osteonal tunnel with continuous resorption along the less strained side, which corresponds to 'drifting osteons' reported in literature.


Subject(s)
Biomechanical Phenomena/methods , Bone and Bones/metabolism , Haversian System/metabolism , Animals , Biochemistry/methods , Bone Remodeling , Compressive Strength , Computer Simulation , Humans , Models, Statistical , Osteoblasts/cytology , Osteoclasts/cytology , Osteocytes/cytology , Stress, Mechanical , Tensile Strength
20.
Matrix Biol ; 27(1): 34-41, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17884405

ABSTRACT

At the tissue level it is well established that the rate of remodeling is related to the degree of mineralization. However, it is unknown how long it takes for an individual bone structural unit (BSU) to become fully mineralized during secondary mineralization. Using synchrotron Fourier transform infrared microspectroscopy (FTIRM) we examined the time required for newly formed bone matrix to reach a physiological mineralization limit. Twenty-six, four-month old female New Zealand white rabbits were administered up to four different fluorochrome labels at specific time points to evaluate the chemical composition of labeled osteons from the tibial diaphysis that had mineralized for 1, 8, 18, 35, 70, 105, 140, 175, 210, 245, 280, 315, 350, and 385 days. Interstitial bone from 505 day old rabbits was used as a reference value for the physiological limit to which bone mineralizes. Using synchrotron FTIRM, area integrations were carried out on protein (Amide I: 1688-1623 cm(-1)), carbonate (v(2)CO(3)(2-): 905-825 cm(-1)), and phosphate (v(4)PO(4)(3-): 650-500 cm(-1)) IR bands. IR spectral data are presented as ratios of phosphate/protein (overall matrix mineralization) and carbonate/protein. The rate of mineralization of osteonal bone proceeded rapidly between day 1 and 18, reaching 67% of interstitial bone levels. This was followed by a slower, more progressive accumulation of mineral up to day 350. By 350 days the rate of increase plateaued. The ratio of carbonate/protein also increased rapidly during the first 18 days, reaching 73% of interstitial bone levels. The ratio of carbonate/protein plateaued by day 315, reaching levels not significantly different to interstitial bone levels. In conclusion, our data demonstrate that bone accumulates mineral rapidly during the first 18 days (primary mineralization), followed by a more gradual increase in the accumulation of mineral (secondary mineralization) which we found to be completed in 350 days.


Subject(s)
Bone Remodeling/physiology , Bone and Bones/chemistry , Calcification, Physiologic , Haversian System , Spectroscopy, Fourier Transform Infrared , Animals , Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Carbonates/analysis , Female , Haversian System/chemistry , Haversian System/metabolism , Phosphates/analysis , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...