Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Environ Sci Pollut Res Int ; 30(34): 82014-82030, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316626

ABSTRACT

Carbon disulfide (CS2) is one of the sulfur components that are naturally present in petroleum fractions. Its presence causes corrosion issues in the fuel facilities and deactivates the catalysts in the petrochemical processes. It is a hazardous component that negatively impacts the environment and public health due to its toxicity. This study used zinc-carbon (ZC) composite as a CS2 adsorbent from the gasoline fraction model component. The carbon is derived from date stone biomass. The ZC composite was prepared via a homogenous precipitation process by urea hydrolysis. The physicochemical properties of the prepared adsorbent are characterized using different techniques. The results confirm the loading of zinc oxide/hydroxide carbonate and urea-derived species on the carbon surface. The results were compared by the parent samples, raw carbon, and zinc hydroxide prepared by conventional and homogeneous precipitation. The CS2 adsorption process was performed using a batch system at atmospheric pressure. The effects of adsorbent dosage and adsorption temperatures have been examined. The results indicate that ZC has the highest CS2 adsorption capacity (124.3 mg.g-1 at 30 °C) compared to the parent adsorbents and the previously reported data. The kinetics and thermodynamic calculation results indicate the spontaneity and feasibility of the CS2 adsorption process.


Subject(s)
Carbon Disulfide , Gasoline , Hazardous Substances , Carbon Disulfide/analysis , Carbon Disulfide/chemistry , Carbon Disulfide/toxicity , Zinc/chemistry , Carbon/chemistry , Microwaves , Adsorption , Hazardous Substances/analysis , Hazardous Substances/chemistry , Hazardous Substances/toxicity
2.
Environ Sci Process Impacts ; 25(5): 901-911, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37042393

ABSTRACT

We here report chemical characteristics relevant to the fate and transport of the recently discovered environmental toxicant 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or "6PPDQ"). 6PPDQ is a transformation product of the tire rubber antioxidant 6PPD that is ubiquitous in roadway environments, including atmospheric particulate matter, soils, runoff, and receiving waters, after dispersal from tire rubber use and wear on roadways. The aqueous solubility and octanol-water partitioning coefficient (i.e. log KOW) for 6PPDQ were measured to be 38 ± 10 µg L-1 and 4.30 ± 0.02, respectively. Within the context of analytical measurement and laboratory processing, sorption to various laboratory materials was evaluated, indicating that glass was largely inert but loss of 6PPDQ to other materials was common. Aqueous leaching simulations from tire tread wear particles (TWPs) indicated short term release of ∼5.2 µg 6PPDQ per gram TWP over 6 h under flow-through conditions. Aqueous stability tests observed a slight-to-moderate loss of 6PPDQ over 47 days (26 ± 3% loss) for pH 5, 7 and 9. These measured physicochemical properties suggest that 6PPDQ is generally poorly soluble but fairly stable over short time periods in simple aqueous systems. 6PPDQ can also leach readily from TWPs for subsequent environmental transport, posing high potential for adverse effects in local aquatic environments.


Subject(s)
Benzoquinones , Hazardous Substances , Phenylenediamines , Rubber , Water Pollutants, Chemical , Hazardous Substances/chemistry , Particulate Matter/chemistry , Water/chemistry , Water Pollutants, Chemical/chemistry , Phenylenediamines/chemistry , Benzoquinones/chemistry , Solubility
3.
Ecotoxicol Environ Saf ; 255: 114806, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36948010

ABSTRACT

Cancer, the second largest human disease, has become a major public health problem. The prediction of chemicals' carcinogenicity before their synthesis is crucial. In this paper, seven machine learning algorithms (i.e., Random Forest (RF), Logistic Regression (LR), Support Vector Machines (SVM), Complement Naive Bayes (CNB), K-Nearest Neighbor (KNN), XGBoost, and Multilayer Perceptron (MLP)) were used to construct the carcinogenicity triple classification prediction (TCP) model (i.e., 1A, 1B, Category 2). A total of 1444 descriptors of 118 hazardous organic chemicals were calculated by Discovery Studio 2020, Sybyl X-2.0 and PaDEL-Descriptor software. The constructed carcinogenicity TCP model was evaluated through five model evaluation indicators (i.e., Accuracy, Precision, Recall, F1 Score and AUC). The model evaluation results show that Accuracy, Precision, Recall, F1 Score and AUC evaluation indicators meet requirements (greater than 0.6). The accuracy of RF, LR, XGBoost, and MLP models for predicting carcinogenicity of Category 2 is 91.67%, 79.17%, 100%, and 100%, respectively. In addition, the constructed machine learning model in this study has potential for error correction. Taking XGBoost model as an example, the predicted carcinogenicity level of 1,2,3-Trichloropropane (96-18-4) is Category 2, but the actual carcinogenicity level is 1B. But the difference between Category 2 and 1B is only 0.004, indicating that the XGBoost is one optimum model of the seven constructed machine learning models. Besides, results showed that functional groups like chlorine and benzene ring might influence the prediction of carcinogenic classification. Therefore, considering functional group characteristics of chemicals before constructing the carcinogenicity prediction model of organic chemicals is recommended. The predicted carcinogenicity of the organic chemicals using the optimum machine leaning model (i.e., XGBoost) was also evaluated and verified by the toxicokinetics. The RF and XGBoost TCP models constructed in this paper can be used for carcinogenicity detection before synthesizing new organic substances. It also provides technical support for the subsequent management of organic chemicals.


Subject(s)
Carcinogens , Hazardous Substances , Machine Learning , Organic Chemicals , Bayes Theorem , Carcinogenesis , Carcinogens/toxicity , Carcinogens/chemistry , Hazardous Substances/chemistry , Hazardous Substances/toxicity , Organic Chemicals/toxicity , Organic Chemicals/chemistry , Support Vector Machine , World Health Organization , Algorithms , United States , European Union , China , Databases, Factual
4.
ALTEX ; 40(1): 125-140, 2023.
Article in English | MEDLINE | ID: mdl-35796348

ABSTRACT

Manufacturing and functionalizing materials at the nanoscale has led to the generation of a whole array of nanoforms (NFs) of substances varying in size, morphology, and surface characteristics. Due to financial, time, and ethical considerations, testing every unique NF for adverse effects is virtually impossible. Use of hypothesis-driven grouping and read-across approaches, as supported by the GRACIOUS Framework, represents a promising alternative to case-by-case testing that will make the risk assessment process more efficient. Through application of appropriate grouping hypotheses, the Framework facilitates the assessment of similarity between NFs, thereby supporting grouping and read-across of information, minimizing the need for new testing, and aligning with the 3R principles of replacement, reduction, and refinement of animals in toxicology studies. For each grouping hypothesis an integrated approach to testing and assessment (IATA) guides the user in data gathering and acquisition to test the hypothesis, following a structured format to facilitate efficient decision-making. Here we present the template used to generate the GRACIOUS grouping hypotheses encompassing information relevant to "Lifecycle, environmental release, and human exposure", "What they are: physicochemical characteristics", "Where they go: environmental fate, uptake, and toxicokinetics", and "What they do: human and environmental toxicity". A summary of the template-derived hypotheses focusing on human health is provided, along with an overview of the IATAs generated by the GRACIOUS project. We discuss the application and flexibility of the template, providing the opportunity to expand the application of grouping and read-across in a logical, evidence-based manner to a wider range of NFs and substances.


Subject(s)
Hazardous Substances , Animals , Humans , Risk Assessment , Hazardous Substances/toxicity , Hazardous Substances/chemistry , Toxicokinetics
5.
Regul Toxicol Pharmacol ; 130: 105131, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35124139

ABSTRACT

Emergency response planning guideline values are used to protect the public when there has been a short-term chemical release. These values serve the purpose of identifying areas where a hazard exists if the concentration of hazardous chemicals is exceeded for the specified exposure duration. This paper focuses on carbonyl chlorides, a class of highly irritant/corrosive chemical intermediates characterized by the reactive moiety R-COCl. Despite their unifying property of reacting with nucleophilic biopolymers/peptides lining the airways of the respiratory tract, their adverse outcome pathway (AOP), in addition to surface area dose, appears to be dominated by their site(s) of major deposition (liquid) or retention (gas) within the respiratory tract. Thus, the physicochemical properties "phase" and "lipophilicity" become more decisive for the AOP than the chemical structure. This complicates the grouping of portal-of-entry irritant chemicals for the read-across prediction of chemicals, especially those with semivolatile properties. Phosgene (COCl2) served as a template to predict emergency response planning levels 2 (non-incapacitating, reversible injury) and 3 (nonlethal) for related chemicals such as SOCl2, formates, and acid chlorides. A rationale and guide to the systematic characterization of uncertainties associated with the lung region, water solubility of the vapor phase, and chemical specificity is given. The approach described in this paper highlights the regional differences and outcomes that are phenotypically described as irritation of the respiratory tract. Especially for such a data-lean group of chemicals, reliable read-across predictions could reduce the uncertainty associated with the derivation of values used for emergency-related risk assessment and management. Likewise, the approach suggested could improve the grouping and categorization of such chemicals, providing a means to reduce animal testing with potentially corrosive chemicals. Overall, the course taken for read-across predictions provided valid estimates as long as emphasis was directed to the physicochemical properties determining the most critical regional injury within the respiratory tract.


Subject(s)
Hazardous Substances/chemistry , Hazardous Substances/toxicity , Irritants/chemistry , Irritants/toxicity , Animal Testing Alternatives , Hazardous Substances/standards , Humans , Inhalation Exposure , Irritants/standards , Lung Injury/chemically induced , Reference Values
6.
Int J Biol Macromol ; 194: 790-799, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34838577

ABSTRACT

Different groups of synthetic dyes might lead to environmental pollution. The binding affinity among hazardous materials with biomolecules necessitates a detailed understanding of their binding properties. Malachite Green might induce a change in the iron transfer by Apo-transferrin. Spectroscopic studies showed malachite green oxalate (MGO) could form the apo-transferrin-MGO complex and change the Accessible Surface Area (ASA) of the key amino acids for iron transfer. According to the ASA results the accessible surface area of Tyrosine, Aspartate, and Histidine of apo-transferrin significantly were changed, which can be considered as a convincing reason for changing the iron transfer. Moreover, based on the fluorescence data MGO could quench the fluorescence intensity of apo-transferrin in a static quenching mechanism. The experimental and Molecular Dynamic simulation results represented that the binding process led to micro environmental changes, around tryptophan residues and altered the tertiary structure of apo-transferrin. The Circular Dichroism (CD) spectra result represented a decrease in the amount of the α-Helix, as well as, increase in the ß-sheet volumes of the apo-transferrin structure. Moreover, FTIR spectroscopy results showed a hypochromic shift in the peaks of amide I and II. Molecular docking and MD simulation confirmed all the computational findings.


Subject(s)
Hazardous Substances/chemistry , Iron/chemistry , Rosaniline Dyes/chemistry , Transferrin/chemistry , Biological Transport , Humans , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Spectrum Analysis , Structure-Activity Relationship
7.
Nature ; 600(7889): 456-461, 2021 12.
Article in English | MEDLINE | ID: mdl-34912090

ABSTRACT

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Subject(s)
Air Pollutants/adverse effects , Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Flame Retardants/adverse effects , Hazardous Substances/analysis , Internationality , Organophosphates/adverse effects , Air/analysis , Air Pollutants/chemistry , Air Pollutants/poisoning , Animals , Bioaccumulation , Cities/statistics & numerical data , Computer Simulation , Ecosystem , Flame Retardants/analysis , Flame Retardants/poisoning , Hazardous Substances/adverse effects , Hazardous Substances/chemistry , Hazardous Substances/poisoning , Humans , Organophosphate Poisoning , Organophosphates/analysis , Organophosphates/chemistry , Risk Assessment
8.
PLoS One ; 16(11): e0258425, 2021.
Article in English | MEDLINE | ID: mdl-34735484

ABSTRACT

A system to differentiate and quantify liquid and headspace vapor leaks from closed system drug-transfer devices (CSTDs) is presented. CSTDs are designed to reduce or eliminate hazardous drug (HD) exposure risk when compounding and administering HDs. CSTDs may leak liquid, headspace, or a mixture of the two. The amount of HD contained in liquid and headspace leaks may be substantially different. Use of a test solution containing two VOCs with differences in ratios of VOC concentrations in the headspace and liquid enables source apportionment of leaked material. SIFT-MS was used to detect VOCs from liquid and headspace leaks in the vapor phase. Included in this report is a novel method to determine the origin and magnitude of leaks from CSTDs. A limit of leak detection of 24 µL of headspace vapor and 0.14 µL of test liquid were found using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS).


Subject(s)
Pharmaceutical Preparations/chemistry , Protective Devices , Volatile Organic Compounds/adverse effects , Hazardous Substances/adverse effects , Hazardous Substances/chemistry , Humans , Mass Spectrometry/instrumentation
9.
J Am Chem Soc ; 143(32): 12422-12427, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34357754

ABSTRACT

The approach to reproductive health and safety in academic laboratories requires increased focus and a shift in paradigm. Our analysis of the current guidance from more than 100 academic institutions' Chemical Hygiene Plans (CHPs) indicates that the burden to implement laboratory reproductive health and safety practices is often placed on those already pregnant or planning conception. We also found inconsistencies in the classification of potential reproductive toxins by resources generally considered to be authoritative, adding further confusion. In the interest of human health and safe laboratory practice, we suggest straightforward changes that institutions and individual laboratories can make to address these present deficiencies: Provide consistent and clear information to laboratory researchers about reproductive health and normalize the discussion of reproductive health among all researchers. Doing so will promote safer and more inclusive laboratory environments.


Subject(s)
Hazardous Substances/adverse effects , Laboratories , Occupational Health , Organic Chemicals/adverse effects , Research Personnel , Safety Management , Female , Hazardous Substances/chemistry , Humans , Organic Chemicals/chemistry , Pregnancy , United States , United States Occupational Safety and Health Administration
10.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445263

ABSTRACT

Nitroaromatic compounds (NACs) are ubiquitous in the environment due to their extensive industrial applications. The recalcitrance of NACs causes their arduous degradation, subsequently bringing about potential threats to human health and environmental safety. The problem of how to effectively predict the toxicity of NACs has drawn public concern over time. Quantitative structure-activity relationship (QSAR) is introduced as a cost-effective tool to quantitatively predict the toxicity of toxicants. Both OECD (Organization for Economic Co-operation and Development) and REACH (Registration, Evaluation and Authorization of Chemicals) legislation have promoted the use of QSAR as it can significantly reduce living animal testing. Although numerous QSAR studies have been conducted to evaluate the toxicity of NACs, systematic reviews related to the QSAR modeling of NACs toxicity are less reported. The purpose of this review is to provide a thorough summary of recent QSAR studies on the toxic effects of NACs according to the corresponding classes of toxic response endpoints.


Subject(s)
Hazardous Substances/chemistry , Hazardous Substances/classification , Hazardous Substances/toxicity , Animals , Humans , Quantitative Structure-Activity Relationship
11.
Regul Toxicol Pharmacol ; 125: 105015, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34293429

ABSTRACT

A decision-scheme outlining the steps for identifying the appropriate chemical category and subsequently appropriate tested source analog(s) for data gap filling of a target chemical by read-across is described. The primary features used in the grouping of the target chemical with source analogues within a database of 10,039 discrete organic substances include reactivity mechanisms associated with protein interactions and specific-acute-oral-toxicity-related mechanisms (e.g., mitochondrial uncoupling). Additionally, the grouping of chemicals making use of the in vivo rat metabolic simulator and neutral hydrolysis. Subsequently, a series of structure-based profilers are used to narrow the group to the most similar analogues. The scheme is implemented in the OECD QSAR Toolbox, so it automatically predicts acute oral toxicity as the rat oral LD50 value in log [1/mol/kg]. It was demonstrated that due to the inherent variability in experimental data, classification distribution should be employed as more adequate in comparison to the exact classification. It was proved that the predictions falling in the adjacent GSH categories to the experimentally-stated ones are acceptable given the variation in experimental data. The model performance estimated by adjacent accuracy was found to be 0.89 and 0.54 while based on R2. The mechanistic and predictive coverages were >0.85.


Subject(s)
Hazardous Substances/chemistry , Mouth Diseases/chemically induced , Quantitative Structure-Activity Relationship , Toxicity Tests, Acute/methods , Animals , Dose-Response Relationship, Drug , Lethal Dose 50 , Protein Interaction Maps , Rats
12.
Food Chem Toxicol ; 153: 112252, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33961928

ABSTRACT

Toxicologists face several challenges when communicating with the public about the potential risks of chemical substances in consumer products. However, based on the consumers' scepticism and detachment from the use of chemical substances in the manufacturing of consumer goods, evidence is needed on how this communication can be improved. Hence, the goal of this study was to experimentally check the effect of an informational video on consumers' acceptance of trace chemicals in consumer products, their willingness to purchase and finally, their perception of the dose-response mechanism. For this, an informational video was developed and evaluated in a pre-post online study with a sample of South Korean consumers (N = 600). The results suggest that providing information on toxicological principles increases people's acceptance of trace chemicals in consumer products and their willingness to purchase a consumer product containing trace chemicals. Within the article, implications for practice and ideas for new research avenues are presented.


Subject(s)
Hazardous Substances/chemistry , Hazardous Substances/toxicity , Adult , Consumer Behavior , Consumer Product Safety , Environmental Exposure/adverse effects , Female , Health Knowledge, Attitudes, Practice , Humans , Male , Middle Aged , Risk Assessment
13.
Dalton Trans ; 50(22): 7818-7825, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34008585

ABSTRACT

Water pollution originating from organic dyes is endangering the survival and development of society; however, adsorbents with high capacity (>5000 mg g-1) for the fast removal (≤30 min) of Congo Red (CR) in aqueous solution have been not reported to date. In the present work, an acid-base stably layered MOF, [Cd(H2L)(BS)2]n·2nH2O (L-MOF-1, H2L = N1,N2-bis(pyridin-3-ylmethyl)ethane-1,2-diamine, BS = benzenesulfonate), was hydrothermally prepared. L-MOF-1 exhibited high-performance adsorption of CR in aqueous solution at room temperature. The experimental adsorption capacity of the L-MOF-1 adsorbent towards CR reached up to about 12 000 mg g-1 in 20 min in the pH range of 2.2-4.7, which is the best adsorbent with the highest capacity and fastest adsorption of CR to date. The spontaneous adsorption process can be described by the pseudo-second-order kinetic and Langmuir isotherm models. Meanwhile, the L-MOF-1 absorbent possessed a highly positive zeta potential in acid condition (even at pH = 2.2, zeta potential = 36.2 mV). Its good adsorption performance mainly originates from its strong electrostatic attraction with CR in acidic condition, together with diverse hydrogen bonds and ππ stacking interactions. Furthermore, the L-MOF-1 absorbent exhibited good selectivity and could be reused five times through simply washing, where its adsorption efficiency was hardly affected. Therefore, L-MOF-1 is a potential absorbent for effectively removing CR from dye wastewater.


Subject(s)
Benzenesulfonates/chemistry , Cadmium/chemistry , Coloring Agents/chemistry , Congo Red/chemistry , Ethylenediamines/chemistry , Metal-Organic Frameworks/chemistry , Pyridines/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hazardous Substances/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods
14.
ALTEX ; 38(1): 123-137, 2021.
Article in English | MEDLINE | ID: mdl-33086383

ABSTRACT

One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown or variable composition, complex reaction products and biological materials). Because the inherent complexity and variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of tissues. Petroleum substances were assayed in dilution series to derive point of departure estimates for each cell type and phenotype. Extensive quality control measures were taken to ensure that only high-confidence in vitro data were used to determine whether current groupings of these petroleum substances, based largely on the manufacturing process and physico-chemical properties, are justifiable. We found that bioactivity data-based groupings of petroleum substances were generally consistent with the manufacturing class-based categories. We also showed that these data, especially bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary cells, can be used to rank substances in a manner highly concordant with their expected in vivo hazard potential based on their chemical compositional profile. Overall, this study demonstrates that NAMs can be used to inform groupings of UVCBs, to assist in identification of repre­sentative substances in each group for testing when needed, and to fill data gaps by read-across.


Subject(s)
Animal Testing Alternatives/methods , Hazardous Substances/chemistry , Induced Pluripotent Stem Cells/drug effects , Petroleum/analysis , Petroleum/toxicity , Toxicity Tests/methods , Hazardous Substances/toxicity , Humans
15.
J Appl Toxicol ; 41(2): 247-255, 2021 02.
Article in English | MEDLINE | ID: mdl-32671887

ABSTRACT

Photosafety evaluations of chemicals used in consumer products, such as pharmaceuticals and cosmetics, are very important. Currently, two non-animal tests for photosafety evaluations, the in vitro 3T3 neutral red uptake phototoxicity test (NRU PT) and the reactive oxygen species (ROS) assay, are used to detect photoreactive chemicals. However, these two tests are difficult to apply to hydrophobic chemicals. In the present study, we attempted to develop a new photosafety test method, named the electron spin resonance-based photosafety test (ESR-PT), that would be applicable even to hydrophobic chemicals based on the detection of singlet oxygen generation after irradiation using ESR spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-piperidine as a spin trap reagent. To achieve a quantitative evaluation, the singlet oxygen formation (SOF) value, which can be calculated as the increment in relative intensity after irradiation of the test mixture normalized by the increment in relative intensity after irradiation of the vehicle control solution, was calculated. The performance of the ESR-PT was evaluated by testing all the proficiency chemicals of the ROS assay plus additional chemicals, including hydrophobic chemicals and chemicals that tested false negative in the 3T3-NRU PT and ROS assay. SOF values were successfully calculated for all the chemicals tested including the hydrophobic chemicals, and the accuracy of the ESR-PT using a tentative cutoff value of 2.8 against the photosafety information was 100%. Therefore, the SOF value could be an effective parameter for photosafety evaluations, suggesting that the newly developed ESR-PT is a promising non-animal test applicable even to hydrophobic chemicals.


Subject(s)
Animal Testing Alternatives , Hazardous Substances/chemistry , Hazardous Substances/toxicity , Hydrophobic and Hydrophilic Interactions , Light , Safety Management/methods , Singlet Oxygen/chemistry , Biological Assay/methods , Dermatitis, Phototoxic , Electron Spin Resonance Spectroscopy/methods
16.
Regul Toxicol Pharmacol ; 119: 104834, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33227364

ABSTRACT

Due to the large amount of chemical substances on the market, fast and reproducible screening is essential to prioritize chemicals for further evaluation according to highest concern. We here evaluate the performance of structural similarity models that are developed to identify potential substances of very high concern (SVHC) based on structural similarity to known SVHCs. These models were developed following a systematic analysis of the performance of 112 different similarity measures for varying SVHC-subgroups. The final models consist of the best combinations of fingerprint, similarity coefficient and similarity threshold, and suggested a high predictive performance (≥80%) on an internal dataset consisting of SVHC and non-SVHC substances. However, the application performance on an external dataset was not evaluated. Here, we evaluated the application performance of the developed similarity models with a 'pseudo-external assessment' on a set of substances (n = 60-100 for the varying SVHC-subgroups) that were putatively assessed as SVHC or non-SVHC based upon consensus scoring using expert elicitations (n = 30 experts). Expert scores were direct evaluations based on structural similarity to the most similar SVHCs according to the similarity models, and did not consider an extensive evaluation of available data. The use of expert opinions is particularly suitable as this is exactly the intended purpose of the chemical similarity models: a quick, reproducible and automated screening tool that mimics the expert judgement that is frequently applied in various screening applications. In addition, model predictions were analyzed via qualitative approaches and discussed via specific examples, to identify the model's strengths and limitations. The results indicate a good statistical performance for carcinogenic, mutagenic or reprotoxic (CMR) and endocrine disrupting (ED) substances, whereas a moderate performance was observed for (very) persistent, (very) bioaccumulative and toxic (PBT/vPvB) substances when compared to expert opinions. For the PBT/vPvB model, particularly false positive substances were identified, indicating the necessity of outcome interpretation. The developed similarity models are made available as a freely-accessible online tool. In general, the structural similarity models showed great potential for screening and prioritization purposes. The models proved to be effective in identifying groups of substances of potential concern, and could be used to identify follow-up directions for substances of potential concern.


Subject(s)
Hazardous Substances/chemistry , Hazardous Substances/toxicity , Models, Theoretical , Animal Testing Alternatives , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/toxicity , Carcinogens/chemistry , Carcinogens/toxicity , Diet , Endocrine Disruptors/chemistry , Endocrine Disruptors/toxicity , Molecular Structure , Mutagens/chemistry , Mutagens/toxicity , Phenols/chemistry , Phenols/toxicity , Risk Assessment , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/toxicity
17.
Anal Chem ; 92(21): 14589-14593, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33080133

ABSTRACT

A sampling, modulation, and separation (SMS) unit was tested for detection of hazardous chemicals. The SMS unit, designed and developed for on-site sampling and analysis, consists of a dynamic inlet system coupled with a fast, miniaturized gas chromatograph (GC). Feasibility of the SMS unit was evaluated together with a hazardous chemical vapor generator. The performance of the SMS unit was tested with automated thermal desorption after SMS to collect samples for GC-mass spectrometry (GC-MS) measurements. Detection of sarin nerve agent was verified. Additionally, the vapor generator was connected to the SMS unit, which was hyphenated with a photoionization detector (PID), thus creating a fast GC-PID system. This system gave a positive response for degradation products of sulfur mustard, thereby indicating suitability of the SMS-PID unit for field drone applications.


Subject(s)
Hazardous Substances/chemistry , Hazardous Substances/isolation & purification , Mass Spectrometry/methods , Miniaturization/methods , Temperature , Time Factors , Volatilization
18.
Nanotoxicology ; 14(9): 1241-1257, 2020 11.
Article in English | MEDLINE | ID: mdl-32909499

ABSTRACT

This review aims to elucidate the current knowledge and future research needs regarding the hazard potential of nanocellulose to human health. Growing interest from research and industry alike has led to increasing likelihood of human contact to the material via various exposure routes. Although a number of comprehensive reviews on human health hazards of nanocellulose have been conducted, this paper brings new insights as it systematically analyzes and quantitatively assesses the results of in vivo and in vitro tests in terms of investigated endpoints, tested concentration ranges, physicochemical properties, surface modifications and source of the tested nanocellulose, exposure route, and cell lines used. The quality of the studies is further inspected based on various established criteria. Considering the rapid development of nanocellulose-based products and the novelty of the material, human health studies remain scarce. By assessing those that have been conducted, patterns and gaps were identified that will be helpful to guide future research. The results show that there are still significant uncertainties remaining, particularly regarding in vivo testing, with pulmonary exposure showing some cause for concern. Although a substantial number of in vitro studies have been undertaken, results are often conflicting. The detected effects could not be directly attributed to size of nanoparticles, cell lines, surface modifications or tested concentrations. This may also be linked to the varying quality of the studies. This review ends by identifying key gaps to help pave the way for future research and ensure the safe development and use of nanocellulose.


Subject(s)
Cellulose/toxicity , Hazardous Substances/toxicity , Nanoparticles/toxicity , Animals , Cellulose/chemistry , Hazardous Substances/chemistry , Humans , Inhalation Exposure/adverse effects , Nanoparticles/chemistry , Occupational Exposure/adverse effects , Particle Size , Surface Properties
19.
J Occup Environ Hyg ; 17(10): 480-494, 2020 10.
Article in English | MEDLINE | ID: mdl-32776823

ABSTRACT

In the event of a chemical, biological, radiological, or nuclear (CBRN) hazard release, emergency responders rely on respiratory protection to prevent inhalation of these hazards. The National Institute for Occupational Safety and Health's (NIOSH) CBRN Statement of Standard calls for CBRN respirator canisters to be challenged with 11 different chemical test representative agents (TRAs) during certification testing, which represent hazards from 7 distinct Chemical Families; these 11 TRAs were identified during the original 2001 CBRN hazard assessment. CBRN hazards are constantly evolving in type, intent of use, and ways of dissemination. Thus, new and emerging hazards must be identified to ensure CBRN canisters continue to provide protection to emergency responders against all hazards that would most likely be used in an intentional or unintentional event. The objectives are to: (1) update the CBRN list of hazards to ensure NIOSH-approved CBRN canisters continue to provide adequate protection capabilities from newly emerging chemical and radiological hazards and (2) identify the need to update NIOSH TRAs to ensure testing conditions represent relevant hazards. These objectives were accomplished by reviewing recent hazard assessments to identify a list of chemical and radiological respiratory hazards, evaluate chemical/physical properties and filtration behavior for these hazards, group the hazards based on NIOSH's current Chemical Families, and finally compare the hazards to the current TRAs based on anticipated filtration behavior, among other criteria. Upon completion of the evaluation process, 237 hazards were identified and compared to NIOSH's current CBRN TRAs. Of these 237 hazards, 203 were able to be categorized into one of NIOSH's current seven Chemical Families. Five were identified for further evaluation. Based on reviewing key chemical/physical properties of each hazard, NIOSH's current 11 TRAs remain representative of the identified respiratory CBRN hazards to emergency responders and should continue to be used during NIOSH certification testing. Thus, NIOSH's CBRN Statement of Standard remains unchanged. The process developed standardizes a methodology for future hazard evaluations.


Subject(s)
Air Filters/standards , Air Pollutants, Radioactive/chemistry , Hazardous Substances/chemistry , Inhalation Exposure/prevention & control , Respiratory Protective Devices/standards , Adsorption , Materials Testing/methods , National Institute for Occupational Safety and Health, U.S. , United States
20.
Presse Med ; 49(4): 104046, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32768614

ABSTRACT

Tattooing entails a high amount of tattoo colorants that is injected into skin. Tattoo colorants usually contain various substances of which the colouring component is the major ingredient that can be assigned to two different groups. Firstly, amorphous carbon particles (carbon black) are almost exclusively found in black tattoos. Secondly, tattooists use azo and polycyclic pigments to create nearly all colours of the visible spectrum. Due to their different but frequently complex chemistry, tattoo colorants usually contain various compounds like by-products and impurities which may exhibit health concerns. Professional tattooists inject that mixture into skin using the solid needles of tattoo machines. It is known that part of injected tattoo colorants is predominantly transported away from skin via lymphatic system. In addition to tattooing, exposure of tattooed skin to solar radiation or laser light may cause decomposition of pigment molecules leading to new and potential hazard chemical compounds. In light of the various hazard substances in the tattoo colorants and its decomposition products, tattooing might pose a health risk not only to skin but also to other organs of humans.


Subject(s)
Coloring Agents/toxicity , Hazardous Substances/toxicity , Tattooing/adverse effects , Coloring Agents/chemistry , Hazardous Substances/chemistry , History, 21st Century , Humans , Metals/chemistry , Metals/toxicity , Pigments, Biological/chemistry , Pigments, Biological/pharmacology , Preservatives, Pharmaceutical/chemistry , Preservatives, Pharmaceutical/toxicity , Skin/drug effects , Skin/pathology , Solvents/chemistry , Solvents/toxicity , Tattooing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...