Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Proc Natl Acad Sci U S A ; 120(42): e2302482120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816050

ABSTRACT

Myocardial infarction (MI) is a leading cause of heart failure (HF), associated with morbidity and mortality worldwide. As an essential part of gene expression regulation, the role of alternative polyadenylation (APA) in post-MI HF remains elusive. Here, we revealed a global, APA-mediated, 3' untranslated region (3' UTR)-lengthening pattern in both human and murine post-MI HF samples. Furthermore, the 3' UTR of apoptotic repressor gene, AVEN, is lengthened after MI, contributing to its downregulation. AVEN knockdown increased cardiomyocyte apoptosis, whereas restoration of AVEN expression substantially improved cardiac function. Mechanistically, AVEN 3' UTR lengthening provides additional binding sites for miR-30b-5p and miR-30c-5p, thus reducing AVEN expression. Additionally, PABPN1 (poly(A)-binding protein 1) was identified as a potential regulator of AVEN 3' UTR lengthening after MI. Altogether, our findings revealed APA as a unique mechanism regulating cardiac injury in response to MI and also indicated that the APA-regulated gene, AVEN, holds great potential as a critical therapeutic target for treating post-MI HF.


Subject(s)
Heart Injuries , MicroRNAs , Myocardial Infarction , Animals , Humans , Mice , 3' Untranslated Regions/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Down-Regulation , Heart Injuries/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Poly(A)-Binding Protein I
2.
Front Immunol ; 14: 1122317, 2023.
Article in English | MEDLINE | ID: mdl-37275860

ABSTRACT

Purpose: Myocardial injury is a common complication in patients with endotoxaemia/sepsis, especially in children. Moreover, it develops through an unclear pathophysiological mechanism, and effective therapies are lacking. Recently, RNA modification, particularly N 6-methyladenosine (m6A) modification, has been found to be involved in various physiological processes and to play important roles in many diseases. However, the role of m6A modification in endotoxaemia/sepsis-induced myocardial injury is still in its infancy. Therefore, we attempted to construct the m6A modification map of myocardial injury in a rat model treated by lipopolysaccharide (LPS) and explore the role of m6A modification in LPS-induced myocardial injury. Method: Myocardial injury adolescent rat model was constructed by intraperitoneal injection of LPS. m6A RNA Methylation Quantification Kit was used to detect overall level of m6A modification in rat cardiac tissue. m6A-specific methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted to identify the altered m6A-modified genes and differentially expressed genes in cardiac tissue of rats treated by LPS and control rats (6 versus. 6). Bioinformatics was used to analyze the functions of differentially m6A modified genes, differentially expressed genes, and genes with both differential m6A modification and differential expression. qPCR was used to detect expression of m6A modification related enzymes. Result: We found that the overall level of m6A modification in cardiac tissue of the LPS group was up-regulated compared with that of the control group. MeRIP-seq and RNA-seq results showed that genes with differential m6A modification, genes with differential expression and genes with both differential m6A modification and differential expression were closely associated with inflammatory responses and apoptosis. In addition, we found that m6A-related enzymes (Mettl16, Rbm15, Fto, Ythdc2 and Hnrnpg) were differentially expressed in the LPS group versus. the control group. Conclusion: m6A modification is involved in the pathogenesis process of LPS-induced myocardial injury, possibly through the regulation of inflammatory response and apoptosis-related pathways. These results provide valuable information regarding the potential pathogenic mechanisms underlying LPS-induced myocardial injury.


Subject(s)
Endotoxemia , Heart Injuries , Sepsis , Animals , Rats , Lipopolysaccharides/toxicity , RNA , Endotoxemia/chemically induced , Endotoxemia/genetics , Transcriptome , Heart Injuries/chemically induced , Heart Injuries/genetics
3.
JCI Insight ; 8(5)2023 03 08.
Article in English | MEDLINE | ID: mdl-36883566

ABSTRACT

The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.


Subject(s)
Heart , Heterogeneous-Nuclear Ribonucleoprotein U , Myocardial Infarction , Myocytes, Cardiac , RNA, Long Noncoding , Regeneration , Animals , Mice , Heart/physiology , Heart/physiopathology , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/physiopathology , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Macrophages/metabolism , Macrophages/physiology , Mammals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Regeneration/genetics , Regeneration/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
Shock ; 59(4): 627-636, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36680791

ABSTRACT

ABSTRACT: Background: Lipopolysaccride-induced myocardial injury was characterized by frequent mitochondrial dysfunction. Our previous studies found that nucleolin (NCL) played important protective roles in myocardial ischemia-reperfusion injury. Recently, it has been found that NCL has a protective effect on LPS-induced myocardial injury in vivo . However, the exact underlying mechanisms that how NCL protects myocardium against the LPS-induced myocardial injury remains unclear. Objective: The aim of the study is to investigate the protective role of NCL in LPS-induced myocardial injury from the aspect of mitochondrial biogenesis. Methods: The cardiac-specific NCL-knockout (NCL -/- ) or NCL f/f mice were injected with LPS (10 mg/kg) to induce LPS-induced myocardial injury. The supernatant generated after LPS stimulation of macrophages was used as the conditioned medium to stimulate H9C2 and established the injured cell model. Analysis of mRNA stability, RNA-binding protein immunoprecipitation assay, and luciferase reporter assay were performed to detect the mechanism by which NCL regulated the expression of PGC-1α. Results: The expression of NCL and PGC-1α was elevated in cardiac tissue and cardiomyocytes during LPS-induced myocardial injury. The cardiac-specific NCL-knockout decreased PGC-1α expression, inhibited mitochondrial biogenesis, and increased cardiomyocytes death during LPS-induced myocardial injury in vitro and in vivo . In contrast, the overexpression of NCL could improve mitochondrial biogenesis in H9C2 cells. Moreover, the analysis of mRNA stability and luciferase reporter assay revealed that the interaction between NCL and PGC-1α significantly promoted the stability of PGC-1α mRNA, thereby upregulating the expression of PGC-1α and exerting a cardioprotective effect. In addition, the activation of PGC-1α diminished the detrimental effects of NCL knockdown on mitochondrial biogenesis in vitro and in vivo . Conclusions: Nucleolin upregulated the gene expression of PGC-1α by directly binding to the 5'-UTR of PGC-1α mRNA and increasing its mRNA stabilities, then promoted mitochondrial biogenesis, and played protective effect on cardiomyocytes during LPS-induced myocardial injury. Taken together, all these data showed that NCL activated PGC-1α to rescue cardiomyocytes from LPS-induced myocardial injury insult, suggesting that the cardioprotective role of NCL might be a promising prospect for clinical treatment of patients with endotoxemia.


Subject(s)
Heart Injuries , Mitochondria , Myocytes, Cardiac , Organelle Biogenesis , Animals , Mice , Heart Injuries/chemically induced , Heart Injuries/genetics , Heart Injuries/metabolism , Lipopolysaccharides/pharmacology , Myocytes, Cardiac/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mitochondria/metabolism , Nucleolin
5.
Free Radic Biol Med ; 197: 46-57, 2023 03.
Article in English | MEDLINE | ID: mdl-36693441

ABSTRACT

Myocardial injury is a serious complication of sepsis associated with high morbidity and mortality. Our previous work has confirmed that silibinin (SIL) alleviates septic myocardial injury, but the specific molecular mechanism has not been fully elucidated. This study aimed to identify its potential targets through network pharmacology combined with experimental verification. Firstly, a total of 29 overlapping genes between sepsis and SIL targets were obtained from RNA-seq analysis and the known databases. Subsequently, KEGG and GO analysis showed that these genes were enriched in immune response and cytokine-cytokine receptor interaction pathways. Notably, CCR2 was identified as an important candidate hub by protein-protein interaction analysis and molecular docking approach. In vivo experiments showed that SIL treatment significantly improved survival rate and cardiac function in septic mice, accompanied by decreased CCR2 expression. Moreover, in vitro experiments obtained the similar results. Especially, CCR2 siRNA attenuated inflammation response. In conclusion, this study systematically elucidated the key target of SIL in the treatment of septic myocardial injury. These findings provide valuable insights into the targets of sepsis and offer new avenues for exploring drug effect systematically.


Subject(s)
Heart Injuries , Animals , Mice , Cytokines , Heart Injuries/drug therapy , Heart Injuries/genetics , Molecular Docking Simulation , Myocardium , Receptors, CCR2/genetics , Silybin/therapeutic use
6.
J Adv Res ; 43: 163-174, 2023 01.
Article in English | MEDLINE | ID: mdl-36585106

ABSTRACT

INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.


Subject(s)
Epoxide Hydrolases , Heart Injuries , Obesity , Animals , Female , Male , Rats , CRISPR-Cas Systems , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/pathology , Insulin Resistance/genetics , Lysophospholipids , Obesity/genetics , Obesity/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Reperfusion Injury/genetics
7.
Nat Commun ; 13(1): 7704, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513650

ABSTRACT

The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfß pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.


Subject(s)
Heart Injuries , Zebrafish , Animals , Zebrafish/metabolism , Heart/physiology , Pericardium , Stem Cells/metabolism , Heart Injuries/genetics , Epithelial-Mesenchymal Transition/genetics , Proteoglycans/metabolism , Extracellular Matrix Proteins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Cells ; 11(21)2022 10 26.
Article in English | MEDLINE | ID: mdl-36359773

ABSTRACT

The aim of the present study was to investigate the levels of YKL-40 during and after coronary artery bypass grafting surgery (CABG) and to establish possible connections between YKL-40 and markers of oxidative stress, inflammation, and myocardial injury. Patients undergoing elective CABG utilizing cardiopulmonary bypass (CPB) were recruited into the study. Blood samples were collected at the onset of anesthesia, during surgery and post-operatively. Levels of YKL-40, 8-isoprostane, interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and troponin T (TnT) were measured by immunoassay. YKL-40 levels increased significantly 24 h after CPB. Positive correlation was seen between post-operative TnT and YKL-40 levels (r = 0.457, p = 0.016) and, interestingly, baseline YKL-40 predicted post-operative TnT increase (r = 0.374, p = 0.050). There was also a clear association between YKL-40 and the chemotactic factors MCP-1 (r = 0.440, p = 0.028) and IL-8 (r = 0.484, p = 0.011) linking YKL-40 to cardiac inflammation and fibrosis following CABG. The present results show, for the first time, that YKL-40 is associated with myocardial injury and leukocyte-activating factors following coronary artery bypass surgery. YKL-40 may be a factor and/or biomarker of myocardial inflammation and injury and subsequent fibrosis following heart surgery.


Subject(s)
Chemotaxis, Leukocyte , Chitinase-3-Like Protein 1 , Heart Injuries , Humans , Biomarkers , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/physiology , Chitinase-3-Like Protein 1/metabolism , Coronary Artery Bypass/adverse effects , Fibrosis , Glycoproteins , Heart Injuries/genetics , Heart Injuries/metabolism , Inflammation , Interleukin-8 , Pilot Projects
9.
J Diabetes Res ; 2022: 2923291, 2022.
Article in English | MEDLINE | ID: mdl-35734237

ABSTRACT

Background: This study is aimed at exploring the key genes and the possible mechanism of heart damage caused by obesity. Methods: We analyzed the GSE98226 dataset. Firstly, differentially expressed genes (DEGs) were identified in heart tissues of obese and normal mice. Then, we analyzed DEGs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Thirdly, we constructed a protein-protein interaction (PPI) network and key modules and searched hub genes. Finally, we observed the pathological changes associated with obesity through histopathology. Results: A total of 763 DEGs were discovered, including 629 upregulated and 134 downregulated genes. GO enrichment analysis showed that these DEGs were mainly related to the regulation of transcription, DNA-templated, nucleic acid binding, and metal ion binding. KEGG pathway analysis revealed that the DEGs were enriched in long-term depression, gap junction, and sphingolipid signaling pathways. Finally, we identified UTP14A, DKC1, DDX10, PinX1, and ESF1 as the hub genes. Histopathologic analysis showed that obesity increased the number of collagen fibers and decreased the number of microvessels and proliferation of the endothelium and increased endothelial cell damage which further leads to dysfunction of cardiac microcirculation. Conclusion: UTP14A, DKC1, DDX10, PinX1, and ESF1 have been identified as hub genes in obesity-induced pathological changes in the heart and may be involved in obesity-induced cardiac injury by affecting cardiac microcirculatory function.


Subject(s)
Gene Expression Profiling , Heart Injuries , Animals , Cell Cycle Proteins/genetics , Computational Biology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Heart Injuries/genetics , Mice , Microcirculation , Obesity/complications , Obesity/genetics , Tumor Suppressor Proteins/genetics
10.
Mol Med Rep ; 25(4)2022 04.
Article in English | MEDLINE | ID: mdl-35137927

ABSTRACT

Myocardial injury occurs in the majority of patients with sepsis and is associated with early mortality. MicroRNAs (miRs) transported by exosomes have been implicated in numerous diseases, such as tumors, acute myocardial infarction and cardiovascular disease. Human serum albumin (hsa)­miR­1262 has been shown to serve a role in sepsis; however, its role in exosomes isolated from patients with sepsis and septic myocardial injury remains unclear. In the present study, serum exosomes were isolated via ultracentrifugation. Solute carrier family 2 member 1 (SLC2A1), an essential mediator in energy metabolism, was silenced and overexpressed in the human myocardial AC16 cell line using lentiviral plasmids containing either SLC2A1­targeting short interfering RNAs or SLC2A1 cDNA, respectively. Cell apoptosis was analyzed using flow cytometry, and the extracellular acidification rate and oxygen consumption rate of AC16 cells were determined using an XFe24 Extracellular Flux Analyzer. Furthermore, the dual­luciferase reporter assay was used to evaluate the interaction between hsa­miR­1262 and SLC2A1. Finally, reverse transcription­quantitative PCR and western blotting were used to evaluate gene and protein expression levels, respectively. Exosomes isolated from the blood of patients with sepsis (Sepsis­exo) markedly reduced aerobic glycolysis activity, but significantly promoted the apoptosis of human AC16 cells in a time­dependent manner. Moreover, Sepsis­exo significantly increased hsa­miR­1262 expression levels, but significantly decreased SLC2A1 mRNA expression levels in a time­dependent manner. Bioinformatics analysis indicated that hsa­miR­1262 bound to the 3' untranslated region of SLC2A1 to negatively regulate its expression. The silencing of SLC2A1 promoted apoptosis and suppressed glycolysis in AC16 cells, whereas SLC2A1 overexpression resulted in the opposite effects. Therefore, the present study demonstrated that exosomes derived from patients with sepsis may inhibit glycolysis and promote the apoptosis of human myocardial cells through exosomal hsa­miR­1262 via its target SLC2A1. These findings highlighted the importance of the hsa­miR­1262/SLC2A1 signaling pathway in septic myocardial injury and provided novel insights into therapeutic strategies for septic myocardial depression.


Subject(s)
Apoptosis , Exosomes/metabolism , Glucose Transporter Type 1/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Sepsis/blood , Serum Albumin, Human/metabolism , 3' Untranslated Regions/genetics , Cell Line , Glucose Transporter Type 1/genetics , Glycolysis , Heart Injuries/genetics , Heart Injuries/metabolism , Humans , MicroRNAs/genetics , Myocytes, Cardiac/drug effects , Signal Transduction/genetics , Time Factors
11.
Cell Death Dis ; 13(2): 120, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136022

ABSTRACT

The mammalian heart is capable of achieving perfect regeneration following cardiac injury through sustained cardiomyocyte proliferation during the early period after birth. However, this regenerative capacity is lost by postnatal day 7 and throughout adulthood. CUGBP1 is critical for normal cardiac development but its role in heart regeneration remains unclear. Cardiac CUGBP1 levels are high in the early postnatal period and soon downregulate to adult levels within 1 week following birth in mice. The simultaneously diminished regenerative capacity and CUGBP1 levels by postnatal day lead us to hypothesize that CUGBP1 may be beneficial in heart regeneration. In this study, the function of CUGBP1 in heart regeneration was tested by a heart apex resection mouse model. We demonstrate that cardiac inactivation of CUGBP1 impairs neonatal heart regeneration at P1, in turn, replenishment of CUGBP1 levels prolong regenerative potential at P8 and P14. Furthermore, our results imply that the Wnt/ß-catenin signaling and GATA4 involve in the CUGBP1 modulated neonatal heart regeneration. Altogether, our findings support CUGBP1 as a key factor promoting post-injury heart regeneration and provide a potential therapeutic method for heart disease.


Subject(s)
Heart Injuries , Myocytes, Cardiac , Animals , Animals, Newborn , Cell Proliferation , Heart/physiology , Heart Injuries/genetics , Mammals , Mice , Myocytes, Cardiac/physiology
12.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-34905515

ABSTRACT

Acute cardiac injury is prevalent in critical COVID-19 and associated with increased mortality. Its etiology remains debated, as initially presumed causes - myocarditis and cardiac necrosis - have proved uncommon. To elucidate the pathophysiology of COVID-19-associated cardiac injury, we conducted a prospective study of the first 69 consecutive COVID-19 decedents at CUIMC in New York City. Of 6 acute cardiac histopathologic features, presence of microthrombi was the most commonly detected among our cohort. We tested associations of cardiac microthrombi with biomarkers of inflammation, cardiac injury, and fibrinolysis and with in-hospital antiplatelet therapy, therapeutic anticoagulation, and corticosteroid treatment, while adjusting for multiple clinical factors, including COVID-19 therapies. Higher peak erythrocyte sedimentation rate and C-reactive protein were independently associated with increased odds of microthrombi, supporting an immunothrombotic etiology. Using single-nuclei RNA-sequencing analysis on 3 patients with and 4 patients without cardiac microthrombi, we discovered an enrichment of prothrombotic/antifibrinolytic, extracellular matrix remodeling, and immune-potentiating signaling among cardiac fibroblasts in microthrombi-positive, relative to microthrombi-negative, COVID-19 hearts. Non-COVID-19, nonfailing hearts were used as reference controls. Our study identifies a specific transcriptomic signature in cardiac fibroblasts as a salient feature of microthrombi-positive COVID-19 hearts. Our findings warrant further mechanistic study as cardiac fibroblasts may represent a potential therapeutic target for COVID-19-associated cardiac microthrombi.


Subject(s)
COVID-19 , Heart Injuries , RNA-Seq , SARS-CoV-2/metabolism , Thrombosis , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Female , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/pathology , Humans , Male , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Prospective Studies , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/pathology
13.
J Cell Physiol ; 237(3): 1888-1901, 2022 03.
Article in English | MEDLINE | ID: mdl-34958118

ABSTRACT

Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.


Subject(s)
Adaptor Proteins, Signal Transducing , Glycation End Products, Advanced , Heart Injuries , Proteasome Endopeptidase Complex , Adaptor Proteins, Signal Transducing/metabolism , Animals , Diabetes Mellitus, Experimental/chemically induced , Glycation End Products, Advanced/metabolism , Heart Injuries/chemically induced , Heart Injuries/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination
14.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34813507

ABSTRACT

Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair.


Subject(s)
Myocardium/metabolism , Myocytes, Cardiac/metabolism , Phosphoric Diester Hydrolases/metabolism , Pyrimidines/biosynthesis , Pyrophosphatases/metabolism , Regeneration , Signal Transduction , Adenosine Monophosphate/genetics , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Heart Injuries/genetics , Heart Injuries/metabolism , Mice , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics
15.
Sci Rep ; 11(1): 12572, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131275

ABSTRACT

Ischemia reperfusion (IR) injury plays a pivotal role in many diseases and leads to collateral damage during surgical interventions. While most studies focus on alleviating its severity in the context of brain, liver, kidney, and cardiac tissue, research as regards to skeletal muscle has not been conducted to the same extent. In the past, myostatin (MSTN), primarily known for supressing muscle growth, has been implicated in inflammatory circuits, and research provided promising results for cardiac IR injury mitigation by inhibiting MSTN cell surface receptor ACVR2B. This generated the question if interrupting MSTN signaling could temper IR injury in skeletal muscle. Examining human specimens from free myocutaneous flap transfer demonstrated increased MSTN signaling and tissue damage in terms of apoptotic activity, cell death, tissue edema, and lipid peroxidation. In subsequent in vivo MstnLn/Ln IR injury models, we identified potential mechanisms linking MSTN deficiency to protective effects, among others, inhibition of p38 MAPK signaling and SERCA2a modulation. Furthermore, transcriptional profiling revealed a putative involvement of NK cells. Collectively, this work establishes a protective role of MSTN deficiency in skeletal muscle IR injury.


Subject(s)
Activin Receptors, Type II/genetics , Heart Injuries/genetics , Myostatin/genetics , Reperfusion Injury/genetics , Animals , Disease Models, Animal , Heart Injuries/pathology , Heart Injuries/surgery , Humans , Liver/metabolism , Liver/pathology , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Myostatin/deficiency , Reperfusion Injury/pathology , Reperfusion Injury/surgery , Signal Transduction/genetics
16.
Int Immunopharmacol ; 96: 107814, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34162165

ABSTRACT

Diabetic heart is one of the common complications of diabetes mellitus. Platelet-rich plasma (PRP) is an autologous product rich in growth factors that can enhance tissue regeneration. This work was conducted to study the PRP ability to improve diabetes-inducing cardiac changes. Also, it sheds more light on the possible mechanisms through which PRP induces its effects. Rats were divided into; control, PRP, diabetic, and PRP-diabetic groups. Cardiac specimens were obtained and processed for biochemical, histological, and immunohistochemical study. The diabetic group exhibited a significant increase in cardiac oxidative stress, inflammation, and cardiac injury markers if compared with the control group. Additionally, the cardiac tissue showed variable morphological changes in the form of focal distortion and loss of cardiac myocytes. Distorted mitochondria and heterochromatic nuclei were observed in the cardiac muscle fibers. The mean number of charcoal-stained macrophages, and mean area fraction for collagen fibers, mean number of PCNA-immune positive cardiac muscle were significantly decrease in PRP- diabetic group. Collectively, the results showed that PRP treatment ameliorated most of all these previous changes. CONCLUSION: PRP ameliorated the diabetic cardiac injury via inhibition of oxidative stress and inflammation. It was confirmed by biochemical, histological, and immunohistochemical study. It could be concluded that PRP could be used as a potential therapy for diabetic heart.


Subject(s)
Diabetes Complications/therapy , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/therapy , Heart Injuries/therapy , Platelet-Rich Plasma , Animals , Blood Glucose/analysis , Diabetes Complications/blood , Diabetes Complications/genetics , Diabetes Complications/pathology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Heart Injuries/blood , Heart Injuries/genetics , Heart Injuries/pathology , Heart Ventricles/injuries , Heart Ventricles/pathology , Heart Ventricles/ultrastructure , Insulin/blood , Insulin-Like Growth Factor I/genetics , Male , Oxidative Stress , Rats , Tumor Necrosis Factor-alpha/genetics
17.
Ann Clin Lab Sci ; 51(2): 231-240, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33941563

ABSTRACT

OBJECTIVE: Sepsis is a systemic inflammatory response syndrome that results in severe myocardial injury. This study aimed to explore the role and mechanism of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in sepsis-induced myocardial injury in vitro. METHODS: Embryonic rat ventricular myocardial cell line (H9c2) was treated with lipopolysaccharide (LPS) to simulate sepsis-induced myocardial injury in vitro. A quantitative real-time polymerase chain reaction was executed to determine the expression of SNHG1 and microRNA (miR)-181a-5p. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide assay was employed to measure cell viability. The levels of inflammatory factors (tumor necrosis factor alpha [TNF-α], interleukin 6 [IL-6], and IL-1ß) were measured by enzyme-linked immunosorbent assay. Oxidative stress was assessed by measuring malondialdehyde, superoxide dismutase, and lactate dehydrogenase. The targeted interrelations among SNHG1, miR-181a-5p, and X-linked inhibitor of apoptosis protein (XIAP) were verified by dual-luciferase reporter assay. Relative protein expression of XIAP was detected by western blot. RESULTS: SNHG1 and XIAP were down-regulated, and miR-181a-5p was up-regulated in LPS-induced H9c2 cells. Overexpression of SNHG1 or inhibition of miR-181a-5p facilitated cell viability and repressed inflammation and oxidative stress in LPS-treated H9c2 cells. MiR-181a-5p was a target of and negatively regulated by SNHG1. At the same time, XIAP was a target gene of and inversely modulated by miR-181a-5p. In addition, XIAP was positively regulated by SNHG1. Up-regulation of miR-181a-5p or silencing of XIAP reversed the inhibitory effects of SNHG1 on inflammation and oxidative stress, as well as the promoting effects on cell viability in LPS-induced H9c2 cells. CONCLUSION: SNHG1 protected H9c2 cells against LPS-induced injury through modulating the miR-181a-5p/XIAP axis.


Subject(s)
Heart Injuries/genetics , RNA, Long Noncoding/genetics , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heart Injuries/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , MicroRNAs/genetics , Myocardium/metabolism , RNA, Long Noncoding/metabolism , RNA, Small Nucleolar/pharmacology , Rats , Sepsis/complications , Sepsis/genetics , Tumor Necrosis Factor-alpha/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics
18.
Environ Toxicol Pharmacol ; 85: 103653, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33812011

ABSTRACT

Ambient air fine particulate matter (PM2.5) may increase cardiovascular disease risks. In this study, we investigated the miR-208/GATA4/myosin heavy chain (MHC) regulation mechanisms on cardiac injury in rats after PM2.5 exposure via an animal inhalation device. The results showed that PM2.5 exposure for 2 months caused pathological heart injury, reduced nucleus-cytoplasm ratio, and increased the levels of CK-MB and cTnI, showing cardiac hypertrophy. Oxidative stress and inflammatory responses were also observed in rats' hearts exposed to PM2.5. Of note, PM2.5 exposure for 2-month significantly elevated GATA4 and ß-MHC mRNA and protein expression compared with the corresponding controls, along with the high-expression of miR-208b. The ratios of ß-MHC/α-MHC expression induced by PM2.5 were remarkably raised in comparison to their controls. It suggested that the up-regulation of miR-208b/ß-MHC and GATA4 and the conversion from α-MHC to ß-MHC may be the important causes of cardiac hypertrophy in rats incurred by PM2.5.


Subject(s)
Air Pollutants/toxicity , Cardiomegaly , Heart Injuries , Particulate Matter/toxicity , Animals , Cardiac Myosins/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Heart/drug effects , Heart/physiopathology , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/pathology , Heart Injuries/physiopathology , Heart Rate/drug effects , Male , MicroRNAs , Myocardium/pathology , Myosin Heavy Chains/genetics , Rats, Sprague-Dawley
19.
Signal Transduct Target Ther ; 6(1): 133, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762571

ABSTRACT

As a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and ß-oxidation in a 5' AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Subject(s)
AMP-Activated Protein Kinase Kinases/genetics , Diabetic Cardiomyopathies/genetics , Fibroblast Growth Factor 1/genetics , Heart Injuries/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Animals , Cell Proliferation/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/therapy , Fibroblast Growth Factor 1/blood , Fibroblast Growth Factor 1/pharmacology , Heart Injuries/pathology , Heart Injuries/prevention & control , Homeostasis/drug effects , Humans , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/genetics , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , RNA-Seq , Reactive Oxygen Species/metabolism
20.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 102-111, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33128543

ABSTRACT

Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Apoptosis/genetics , Disease Models, Animal , Down-Regulation , Gene Knockdown Techniques , Heart Injuries/genetics , Heart Injuries/pathology , Heart Injuries/prevention & control , Hydrogen Peroxide/toxicity , Male , Mice, Inbred C57BL , Myocardial Ischemia/etiology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Primary Cell Culture , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...