Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.815
Filter
1.
ACS Infect Dis ; 10(5): 1839-1855, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725407

ABSTRACT

Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , tat Gene Products, Human Immunodeficiency Virus/chemistry , Gram-Negative Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Hydrophobic and Hydrophilic Interactions , Hydrocarbons/chemistry , Hydrocarbons/pharmacology , Hemolysis/drug effects , Protein Conformation, alpha-Helical
2.
Nat Commun ; 15(1): 3851, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719803

ABSTRACT

Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).


Subject(s)
Antimalarials , Breast Feeding , Lactation , Milk, Human , Primaquine , Humans , Female , Primaquine/pharmacokinetics , Primaquine/administration & dosage , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Infant , Milk, Human/chemistry , Milk, Human/metabolism , Adult , Infant, Newborn , Hemolysis/drug effects , Models, Biological
3.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Article in English | MEDLINE | ID: mdl-38708182

ABSTRACT

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Subject(s)
Antineoplastic Agents , Artemisinins , Drug Resistance, Neoplasm , Imidazoles , Lung Neoplasms , Metal-Organic Frameworks , Reactive Oxygen Species , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Animals , Humans , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Hydrogen-Ion Concentration , A549 Cells , Drug Liberation , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Hemolysis/drug effects
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 617-626, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708493

ABSTRACT

OBJECTIVE: To investigate immunogenic and toxic effects of graphene oxide (GO) nanoparticles in mouse skeletal muscles and in human blood in vitro. METHODS: GO nanoparticles prepared using a probe sonicator were supended in deionized H2O or PBS, and particle size and surface charge of the nanoparticles were measured with dynamic light scattering (DLS). Different concentrations (0.5, 1.0 and 2.0 mg/mL) of GO suspension or PBS were injected at multiple sites in the gastrocnemius muscle (GN) of C57BL/6 mice, and inflammatory response and immune cell infiltrations were detected with HE and immunofluorescence staining. We also examined the effects of GO nanoparticles on human red blood cell (RBC) morphology, hemolysis and blood coagulation using scanning electron microscope (SEM), spectrophotometry, and thromboelastography (TEG). RESULTS: GO nanoparticles suspended in PBS exhibited better colloidal dispersity, stability and surface charge effects than those in deionized H2O. In mouse GNs, injection of GO suspensions dose- and time-dependently resulted in sustained muscular inflammation and myofiber degeneration at the injection sites, which lasted till 8 weeks after the injection; immunofluorescence staining revealed obvious infiltration of monocytes, macrophages, dendritic cells and CD4+ T cells around the injection sites in mouse GNs. In human RBCs, incubation with GO suspensions at 0.2, 2.0 and 20 mg/mL, but not at 0.002 or 0.02 mg/mL, caused significant alterations of cell morphology and hemolysis. TEG analysis showed significant abnormalities of blood coagulation parameters following treatment with high concentrations of GO. CONCLUSION: GO nanoparticles can induce sustained inflammatory and immunological responses in mouse GNs and cause RBC hemolysis and blood coagulation impairment, suggesting its muscular toxicity and hematotoxicity at high concentrations.


Subject(s)
Erythrocytes , Graphite , Hemolysis , Mice, Inbred C57BL , Muscle, Skeletal , Nanoparticles , Animals , Graphite/toxicity , Graphite/chemistry , Mice , Erythrocytes/drug effects , Humans , Muscle, Skeletal/drug effects , Hemolysis/drug effects , Particle Size , Blood Coagulation/drug effects
5.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38714021

ABSTRACT

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Hemolysis , Lysine , Microbial Sensitivity Tests , Lysine/chemistry , Lysine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Hemolysis/drug effects , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Structure-Activity Relationship , Proteolysis/drug effects , Humans , Molecular Structure
6.
Ann Clin Microbiol Antimicrob ; 23(1): 44, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755634

ABSTRACT

BACKGROUND: Due to their resistance and difficulty in treatment, biofilm-associated infections are problematic among hospitalized patients globally and account for 60% of all bacterial infections in humans. Antibiofilm peptides have recently emerged as an alternative treatment since they can be effectively designed and exert a different mode of biofilm inhibition and eradication. METHODS: A novel antibiofilm peptide, BiF, was designed from the conserved sequence of 18 α-helical antibiofilm peptides by template-assisted technique and its activity was improved by hybridization with a lipid binding motif (KILRR). Novel antibiofilm peptide derivatives were modified by substituting hydrophobic amino acids at positions 5 or 7, and both, with positively charged lysines (L5K, L7K). These peptide derivatives were tested for antibiofilm and antimicrobial activities against biofilm-forming Staphylococcus epidermidis and multiple other microbes using crystal violet and broth microdilution assays, respectively. To assess their impact on mammalian cells, the toxicity of peptides was determined through hemolysis and cytotoxicity assays. The stability of candidate peptide, BiF2_5K7K, was assessed in human serum and its secondary structure in bacterial membrane-like environments was analyzed using circular dichroism. The action of BiF2_5K7K on planktonic S. epidermidis and its effect on biofilm cell viability were assessed via viable counting assays. Its biofilm inhibition mechanism was investigated through confocal laser scanning microscopy and transcription analysis. Additionally, its ability to eradicate mature biofilms was examined using colony counting. Finally, a preliminary evaluation involved coating a catheter with BiF2_5K7K to assess its preventive efficacy against S. epidermidis biofilm formation on the catheter and its surrounding area. RESULTS: BiF2_5K7K, the modified antibiofilm peptide, exhibited dose-dependent antibiofilm activity against S. epidermidis. It inhibited biofilm formation at subinhibitory concentrations by altering S. epidermidis extracellular polysaccharide production and quorum-sensing gene expression. Additionally, it exhibited broad-spectrum antimicrobial activity and no significant hemolysis or toxicity against mammalian cell lines was observed. Its activity is retained when exposed to human serum. In bacterial membrane-like environments, this peptide formed an α-helix amphipathic structure. Within 4 h, a reduction in the number of S. epidermidis colonies was observed, demonstrating the fast action of this peptide. As a preliminary test, a BiF2_5K7K-coated catheter was able to prevent the development of S. epidermidis biofilm both on the catheter surface and in its surrounding area. CONCLUSIONS: Due to the safety and effectiveness of BiF2_5K7K, we suggest that this peptide be further developed to combat biofilm infections, particularly those of biofilm-forming S. epidermidis.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus epidermidis , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemolysis/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
7.
Toxicon ; 243: 107739, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38704125

ABSTRACT

The stingrays of the genus Himantura imbricata are present in all of the world's oceans, but the toxicity of their venoms has not yet been thoroughly characterized. The zebrafish as a toxicology model can be used for general toxicity testing of drugs and the investigation of toxicological mechanisms. The aim of this study was to evaluate the effect of crude venom from the stingray H. imbricata on the zebrafish Danio rerio. Juvenile zebrafish were injected with different concentrations of venom from H. imbricata via subcutaneous injections. The venom's effects were established via histological examination and hemolytic activity in zebrafish. The histopathological analysis revealed significant tissue damage in the organs of the zebrafish injected with venom, including liver necrosis and kidney degeneration. A blood examination revealed echinocytes, hemolysis, and nuclear abnormalities. Bodyweight estimations and histopathological attributes of the gills, heart, muscle, liver, intestine, eye, and brain were determined. The histological staining studies of the gills, liver, and intestine were measurably higher in the venom groups compared with the other two groups. Aggregately, the result shows that zebrafish may act as a valuable biomarker for alterations impelled by H. imbricata venom. The work delivers a useful model with substantial pharmacological potential for new drugs and a better comprehension of research on stingray venom.


Subject(s)
Zebrafish , Animals , Fish Venoms/toxicity , Hemolysis/drug effects , Liver/drug effects , Liver/pathology , Toxicity Tests , Gills/drug effects , Gills/pathology
8.
Medicine (Baltimore) ; 103(18): e38039, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701291

ABSTRACT

As a result of increasing drug resistance, crossover resistance development, prolonged therapy, and the absence of different agents with innovative methods for implementation, the efficacy of recent antileishmanial medications is severely declining. So, it is vital to look for other medications from botanical remedies that have antileishmanial activity. The latex of Euphorbia abyssinica (E abyssinica) and the leaves of Clematis simensis fresen (C simensis) were macerated in methanol (80%). In vitro antileishmanial activity of the preparation was tried on promastigotes of Leishmania aethiopica (L aethiopica) and Leishmania donovani (L donovani) using resazurin assay, and fluorescence intensity was measured. One percent of dimethyl sulfoxide (DMSO) and media as negative control and amphotericin B as positive control were used. Additionally, hemolytic & phytochemical tests of the preparation were done. The mean and standard errors of each extract were evaluated and interpreted for statistical significance using one-way analysis of variance. From sigmoidal dose-response curves of % inhibition, half maximal inhibitory concentration (IC50) values were determined by GraphPad Prism and Microsoft Excel; outcomes were presented as mean ±â€…standard error of mean of triplicate trials. P < .05 was statistical significance. The phytochemical screening of C simensis and E abyssinica confirmed the existence of steroids, phenols, tannins, saponins, alkaloids, terpenoids, flavonoids and glycosides. C simensis possesses antileishmanial activity with IC50 outcomes of 46.12 ±â€…0.03 and 8.18 ±â€…0.10 µg/mL on the promastigotes of L aethiopica and L donovani, respectively. However, E abyssinica showed stronger activity with IC50 outcomes of 16.07 ±â€…0.05 µg/mL and 4.82 ±â€…0.07 µg/mL on L aethiopica and L donovani, respectively. C simensis and E abyssinica have a less hemolytic effect on human red blood cells at low concentrations. The outcomes from this investigation demonstrated that the preparation of C simensis and E abyssinica indicated significant antileishmanial activity. Therefore, further in vivo assessment of antileishmanial, cytotoxicity activity and quantitative identification of secondary metabolites are highly recommended.


Subject(s)
Antiprotozoal Agents , Euphorbia , Latex , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Euphorbia/chemistry , Latex/pharmacology , Latex/chemistry , Antiprotozoal Agents/pharmacology , Plant Leaves/chemistry , Humans , Leishmania donovani/drug effects , Inhibitory Concentration 50 , Leishmania/drug effects , Methanol , Solvents , Hemolysis/drug effects
9.
Sci Rep ; 14(1): 9469, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658583

ABSTRACT

Bovine mastitis caused by S. aureus has a major economic impact on the dairy sector. With the crucial need for new therapies, anti-virulence strategies have gained attention as alternatives to antibiotics. Here we aimed to identify novel compounds that inhibit the production/activity of hemolysins, a virulence factor of S. aureus associated with mastitis severity. We screened Bacillus strains obtained from diverse sources for compounds showing anti-hemolytic activity. Our results demonstrate that lipopeptides produced by Bacillus spp. completely prevented the hemolytic activity of S. aureus at certain concentrations. Following purification, both iturins, fengycins, and surfactins were able to reduce hemolysis caused by S. aureus, with iturins showing the highest anti-hemolytic activity (up to 76% reduction). The lipopeptides showed an effect at the post-translational level. Molecular docking simulations demonstrated that these compounds can bind to hemolysin, possibly interfering with enzyme action. Lastly, molecular dynamics analysis indicated general stability of important residues for hemolysin activity as well as the presence of hydrogen bonds between iturins and these residues, with longevous interactions. Our data reveals, for the first time, an anti-hemolytic activity of lipopeptides and highlights the potential application of iturins as an anti-virulence therapy to control bovine mastitis caused by S. aureus.


Subject(s)
Bacillus , Hemolysin Proteins , Hemolysis , Lipopeptides , Molecular Docking Simulation , Staphylococcus aureus , Bacillus/metabolism , Bacillus/chemistry , Staphylococcus aureus/drug effects , Hemolysis/drug effects , Animals , Cattle , Lipopeptides/pharmacology , Lipopeptides/chemistry , Hemolysin Proteins/antagonists & inhibitors , Hemolysin Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Female , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Molecular Dynamics Simulation
11.
Mar Drugs ; 22(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667805

ABSTRACT

Three Laminaria japonica polysaccharides (LJPs) extracted via water extraction (LJP-W), acid extraction (LJP-A), and enzymatic extraction (LJP-E) were used as raw materials to be cross-linked with chitosan and polyvinyl alcohol to prepare hydrogels. Compared with conventional hydrogel systems, all three types of LJP-based polysaccharide hydrogels exhibited better swelling properties (14 times their original weight) and the absorption ability of simulated body fluid (first 2 h: 6-10%). They also demonstrated better rigidity and mechanical strength. Young's modulus of LJP-E was 4 times that of the blank. In terms of hemostatic properties, all three polysaccharide hydrogels did not show significant cytotoxic and hemolytic properties. The enzyme- and acid-extracted hydrogels (LJP-Gel-A and LJP-Gel-E) demonstrated better whole-blood coagulant ability compared with the water-extracted hydrogel (LJP-Gel-W), as evidenced by the whole blood coagulation index being half that of LJP-Gel-W. Additionally, the lactate dehydrogenase viabilities of LJP-Gel-A and LJP-Gel-E were significantly higher, at about four and three times those of water extraction, respectively. The above results suggested that LJP-Gel-A and LJP-Gel-E exhibited better blood coagulation capabilities than LJP-Gel-W, due to their enhanced platelet enrichment and adhesion properties. Consequently, these hydrogels are more conducive to promoting coagulation and have good potential for wound hemostasis.


Subject(s)
Blood Coagulation , Edible Seaweeds , Hemostatics , Hydrogels , Laminaria , Polysaccharides , Hydrogels/chemistry , Hydrogels/pharmacology , Laminaria/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Blood Coagulation/drug effects , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/isolation & purification , Humans , Animals , Chitosan/chemistry , Chitosan/pharmacology , Polyvinyl Alcohol/chemistry , Hemostasis/drug effects , Hemolysis/drug effects
12.
Sci Rep ; 14(1): 9624, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671030

ABSTRACT

Fernandoa adenophylla, due to the presence of phytochemicals, has various beneficial properties and is used in folk medicine to treat many conditions. This study aimed to isolate indanone derivative from F. adenophylla root heartwood and assess in-vitro anti-inflammatory and anti-diabetic characteristics at varying concentrations. Heat-induced hemolysis and glucose uptake by yeast cells assays were conducted to evaluate these properties. Besides, docking analyses were performed on four molecular targets. These studies were combined with molecular dynamics simulations to elucidate the time-evolving inhibitory effect of selected inhibitors within the active pockets of the target proteins (COX-1 and COX-2). Indanone derivative (10-100 µM) inhibited the lysis of human red blood cells from 9.12 ± 0.75 to 72.82 ± 4.36% and, at 5-100 µM concentrations, it significantly increased the yeast cells' glucose uptake (5.16 ± 1.28% to 76.59 ± 1.62%). Concluding, the isolated indanone might act as an anti-diabetic agent by interacting with critical amino acid residues of 5' adenosine monophosphate-activated protein kinase (AMPK), and it showed a binding affinity with anti-inflammatory targets COX-1, COX-2, and TNF-α. Besides, the obtained results may help to consider the indanone derivative isolated from F. adenophylla as a promising candidate for drug delivery, subject to outcomes of further in vivo and clinical studies.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Hypoglycemic Agents , Molecular Docking Simulation , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cyclooxygenase 2/metabolism , Indans/pharmacology , Indans/chemistry , Cyclooxygenase 1/metabolism , Molecular Dynamics Simulation , Glucose/metabolism , Hemolysis/drug effects , Saccharomyces cerevisiae/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Erythrocytes/metabolism , Computer Simulation
13.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673786

ABSTRACT

Antimicrobial peptides (AMPs) are viewed as potential compounds for the treatment of bacterial infections. Nevertheless, the successful translation of AMPs into clinical applications has been impeded primarily due to their low stability in biological environments and potential toxicological concerns at higher concentrations. The covalent attachment of AMPs to a material's surface has been sought to improve their stability. However, it is still an open question what is required to best perform such an attachment and the role of the support. In this work, six different AMPs were covalently attached to a long-ranged ordered amphiphilic hydrogel, with their antibacterial efficacy evaluated and compared to their performance when free in solution. Among the tested AMPs were four different versions of synthetic end-tagged AMPs where the sequence was altered to change the cationic residue as well as to vary the degree of hydrophobicity. Two previously well-studied AMPs, Piscidin 1 and Omiganan, were also included as comparisons. The antibacterial efficacy against Staphylococcus aureus remained largely consistent between free AMPs and those attached to surfaces. However, the activity pattern against Pseudomonas aeruginosa on hydrogel surfaces displayed a marked contrast to that observed in the solution. Additionally, all the AMPs showed varying degrees of hemolytic activity when in solution. This activity was entirely diminished, and all the AMPs were non-hemolytic when attached to the hydrogels.


Subject(s)
Anti-Bacterial Agents , Hemolysis , Hydrogels , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemolysis/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Humans , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Erythrocytes/drug effects
14.
Molecules ; 29(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675708

ABSTRACT

Dragon's blood (DB) is a traditional Chinese medicine (TCM) with hemostatic effects and antibacterial properties. However, it is still challenging to use for rapid hemostasis because of its insolubility. In this study, different amounts of DB were loaded on mesoporous silica nanoparticles (MSNs) to prepare a series of DB-MSN composites (5DB-MSN, 10DB-MSN, and 20DB-MSN). DB-MSN could quickly release DB and activate the intrinsic blood coagulation cascade simultaneously by DB and MSN. Hemostasis tests demonstrated that DB-MSN showed superior hemostatic effects than either DB or MSNs alone, and 10DB-MSN exhibited the best hemostatic effect. In addition, the antibacterial activities of DB-MSN against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) improved with the increase in DB. Furthermore, the hemolysis assay and cytocompatibility assay demonstrated that all DB-MSNs exhibited excellent biocompatibility. Based on these results, 10DB-MSN is expected to have potential applications for emergency hemostatic and antibacterial treatment in pre-hospital trauma.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hemostasis , Hemostatics , Nanoparticles , Plant Extracts , Silicon Dioxide , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Escherichia coli/drug effects , Hemostasis/drug effects , Staphylococcus aureus/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Porosity , Animals , Hemolysis/drug effects , Blood Coagulation/drug effects , Humans , Dracaena/chemistry , Mice , Microbial Sensitivity Tests
15.
Int J Pharm ; 656: 124075, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599445

ABSTRACT

AIM: This study aims to design chemically crosslinked thiolated cyclodextrin-based hydrogels and to evaluate their mucoadhesive properties via mucosal residence time studies on porcine small intestinal mucosa and on porcine buccal mucosa. METHODS: Free thiol groups of heptakis(6-deoxy-6-thio)-ß-cyclodextrin (ß-CD-SH) were S-protected with 2-mercaptoethanesulfonic acid (MESNA) followed by crosslinking with citric acid. Cytotoxicity was assessed by hemolysis as well as resazurin assay. Hydrogels were characterized by their rheological and mucoadhesive properties. Ritonavir was employed as model drug for in vitro release studies from these hydrogels. RESULTS: The structure of S-protected ß-CD-SH was confirmed by IR and 1H NMR spectroscopy. Degree of thiolation was 390 ± 7 µmol/g. Hydrogels based on native ß-CD showed hemolysis of 12.5 ± 2.5 % and 13.6 ± 2.7 % within 1 and 3 h, whereas hemolysis of just 3.5 ± 2.8 % and 3.9 ± 3.0 % was observed for the S-protected thiolated CD hydrogels, respectively. Both native and S-protected thiolated hydrogels showed minor cytotoxicity on Caco-2 cells. Rheological investigations of S-protected thiolated ß-CD-based hydrogel (16.2 % m/v) showed an up to 13-fold increase in viscosity in contrast to the corresponding native ß-CD-based hydrogel. Mucosal residence time studies showed that thiolated ß-CD-based hydrogel is removed to a 16.6- and 2.4-fold lower extent from porcine small intestinal mucosa and porcine buccal mucosa in comparision to the native ß-CD-based hydrogel, respectively. Furthermore, a sustained release of ritonavir from S-protected thiolated ß-CD-based hydrogels was observed. CONCLUSION: Because of their comparatively high mucoadhesive and release-controlling properties, S-protected thiolated ß-CD-based hydrogels might be promising systems for mucosal drug delivery.


Subject(s)
Hydrogels , Mouth Mucosa , Sulfhydryl Compounds , beta-Cyclodextrins , Hydrogels/chemistry , Animals , Humans , Caco-2 Cells , Swine , Sulfhydryl Compounds/chemistry , Mouth Mucosa/metabolism , beta-Cyclodextrins/chemistry , Intestinal Mucosa/metabolism , Rheology , Hemolysis/drug effects , Adhesiveness , Drug Liberation , Polymers/chemistry , Cell Survival/drug effects , Intestine, Small/metabolism
16.
Int J Biol Macromol ; 266(Pt 2): 131338, 2024 May.
Article in English | MEDLINE | ID: mdl-38569987

ABSTRACT

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 µM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.


Subject(s)
Manganese , Serum Albumin, Bovine , Water , Serum Albumin, Bovine/chemistry , Manganese/chemistry , Water/chemistry , Animals , Protons , Cattle , Cross-Linking Reagents/chemistry , Nanoparticles/chemistry , Hemolysis/drug effects , Protein Denaturation/drug effects , Magnetic Resonance Imaging/methods , Humans
17.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38651274

ABSTRACT

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Animals , Microbial Sensitivity Tests , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Peptides/chemistry , Peptides/pharmacology , Protein Conformation, alpha-Helical , Micelles , Escherichia coli Infections/drug therapy , Hemolysis/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Mice , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/pharmacology , Humans
18.
Int J Lab Hematol ; 46 Suppl 1: 43-54, 2024 May.
Article in English | MEDLINE | ID: mdl-38622956

ABSTRACT

Complement inhibitors are the mainstay of paroxysmal nocturnal hemoglobinuria (PNH) treatment. The anti-C5 monoclonal antibody eculizumab was the first treatment to improve hemolysis, thrombotic risk, and survival in PNH although at the price of a life-long intravenous fortnightly drug. Additionally, suboptimal response may occur in up to 2/3 of patients with persistent anemia due to incomplete control of intravascular hemolysis, development of upstream C3-mediated extravascular hemolysis (EVH), or concomitant bone marrow failure. Ravulizumab, a longer half-life anti-C5 developed from eculizumab, administered every 8 weeks, improved patient convenience, and reduced pharmacokinetic breakthrough hemolysis (BTH) by establishing more stable anti-C5 concentrations. More recently, several other anti-C5 compounds (crovalimab, pozelimab, tesidolumab, cemdisiran, zilucoplan, and coversin) are on study in clinical trials. Upstream inhibition of complement cascade was also explored with the anti-C3 pegcetacoplan, and with the alternative pathway inhibitors iptacopan (anti-factor B) and danicopan (anti-factor D). These drugs efficiently target EVH and are able to improve anemia and transfusion need in suboptimal responders to anti-C5. The route and schedule of administration (twice weekly subcutaneously for pegcetacoplan and twice or thrice oral daily dosing for iptacopan and danicopan, respectively) are very convenient but pose novel issues regarding adherence. Additionally, both anti-C5 and upstream inhibitors do not resolve the unmet need of pharmacodynamic BTH events due to complement amplifying conditions such as infections, traumas, and surgery. In this review, we will recapitulate PNH physiopathology, clinical presentation, and diagnosis and describe available and developing drugs that will lead to a precision medicine approach for this rare though heterogenous disease.


Subject(s)
Antibodies, Monoclonal, Humanized , Complement Inactivating Agents , Hemoglobinuria, Paroxysmal , Hemoglobinuria, Paroxysmal/drug therapy , Humans , Complement Inactivating Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Complement C5/antagonists & inhibitors , Hemolysis/drug effects
19.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670939

ABSTRACT

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Hemolysis , Streptococcus pneumoniae , Streptolysins , Streptolysins/metabolism , Streptolysins/chemistry , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Streptococcus pneumoniae/drug effects , Bacterial Toxins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/antagonists & inhibitors , Hemolysis/drug effects , Hemolysin Proteins/metabolism , Hemolysin Proteins/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , A549 Cells , Cholesterol/metabolism , Cryoelectron Microscopy , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Virulence Factors/metabolism
20.
Eur J Pharm Sci ; 197: 106776, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663759

ABSTRACT

The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.


Subject(s)
Biofilms , Drug Resistance, Multiple, Bacterial , Hemolysis , Microbial Sensitivity Tests , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Biofilms/drug effects , Hemolysis/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Animals , Fungi/drug effects , Cell Survival/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Gram-Negative Bacteria/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...